123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234 |
- import websocket # NOTE: websocket-client (https://github.com/websocket-client/websocket-client)
- import uuid
- import json
- import urllib.request
- import urllib.parse
- import random
- import logging
- from config import SRC_LOG_LEVELS
- log = logging.getLogger(__name__)
- log.setLevel(SRC_LOG_LEVELS["COMFYUI"])
- from pydantic import BaseModel
- from typing import Optional
- COMFYUI_DEFAULT_PROMPT = """
- {
- "3": {
- "inputs": {
- "seed": 0,
- "steps": 20,
- "cfg": 8,
- "sampler_name": "euler",
- "scheduler": "normal",
- "denoise": 1,
- "model": [
- "4",
- 0
- ],
- "positive": [
- "6",
- 0
- ],
- "negative": [
- "7",
- 0
- ],
- "latent_image": [
- "5",
- 0
- ]
- },
- "class_type": "KSampler",
- "_meta": {
- "title": "KSampler"
- }
- },
- "4": {
- "inputs": {
- "ckpt_name": "model.safetensors"
- },
- "class_type": "CheckpointLoaderSimple",
- "_meta": {
- "title": "Load Checkpoint"
- }
- },
- "5": {
- "inputs": {
- "width": 512,
- "height": 512,
- "batch_size": 1
- },
- "class_type": "EmptyLatentImage",
- "_meta": {
- "title": "Empty Latent Image"
- }
- },
- "6": {
- "inputs": {
- "text": "Prompt",
- "clip": [
- "4",
- 1
- ]
- },
- "class_type": "CLIPTextEncode",
- "_meta": {
- "title": "CLIP Text Encode (Prompt)"
- }
- },
- "7": {
- "inputs": {
- "text": "Negative Prompt",
- "clip": [
- "4",
- 1
- ]
- },
- "class_type": "CLIPTextEncode",
- "_meta": {
- "title": "CLIP Text Encode (Prompt)"
- }
- },
- "8": {
- "inputs": {
- "samples": [
- "3",
- 0
- ],
- "vae": [
- "4",
- 2
- ]
- },
- "class_type": "VAEDecode",
- "_meta": {
- "title": "VAE Decode"
- }
- },
- "9": {
- "inputs": {
- "filename_prefix": "ComfyUI",
- "images": [
- "8",
- 0
- ]
- },
- "class_type": "SaveImage",
- "_meta": {
- "title": "Save Image"
- }
- }
- }
- """
- def queue_prompt(prompt, client_id, base_url):
- log.info("queue_prompt")
- p = {"prompt": prompt, "client_id": client_id}
- data = json.dumps(p).encode("utf-8")
- req = urllib.request.Request(f"{base_url}/prompt", data=data)
- return json.loads(urllib.request.urlopen(req).read())
- def get_image(filename, subfolder, folder_type, base_url):
- log.info("get_image")
- data = {"filename": filename, "subfolder": subfolder, "type": folder_type}
- url_values = urllib.parse.urlencode(data)
- with urllib.request.urlopen(f"{base_url}/view?{url_values}") as response:
- return response.read()
- def get_image_url(filename, subfolder, folder_type, base_url):
- log.info("get_image")
- data = {"filename": filename, "subfolder": subfolder, "type": folder_type}
- url_values = urllib.parse.urlencode(data)
- return f"{base_url}/view?{url_values}"
- def get_history(prompt_id, base_url):
- log.info("get_history")
- with urllib.request.urlopen(f"{base_url}/history/{prompt_id}") as response:
- return json.loads(response.read())
- def get_images(ws, prompt, client_id, base_url):
- prompt_id = queue_prompt(prompt, client_id, base_url)["prompt_id"]
- output_images = []
- while True:
- out = ws.recv()
- if isinstance(out, str):
- message = json.loads(out)
- if message["type"] == "executing":
- data = message["data"]
- if data["node"] is None and data["prompt_id"] == prompt_id:
- break # Execution is done
- else:
- continue # previews are binary data
- history = get_history(prompt_id, base_url)[prompt_id]
- for o in history["outputs"]:
- for node_id in history["outputs"]:
- node_output = history["outputs"][node_id]
- if "images" in node_output:
- for image in node_output["images"]:
- url = get_image_url(
- image["filename"], image["subfolder"], image["type"], base_url
- )
- output_images.append({"url": url})
- return {"data": output_images}
- class ImageGenerationPayload(BaseModel):
- prompt: str
- negative_prompt: Optional[str] = ""
- steps: Optional[int] = None
- seed: Optional[int] = None
- width: int
- height: int
- n: int = 1
- def comfyui_generate_image(
- model: str, payload: ImageGenerationPayload, client_id, base_url
- ):
- host = base_url.replace("http://", "").replace("https://", "")
- comfyui_prompt = json.loads(COMFYUI_DEFAULT_PROMPT)
- comfyui_prompt["4"]["inputs"]["ckpt_name"] = model
- comfyui_prompt["5"]["inputs"]["batch_size"] = payload.n
- comfyui_prompt["5"]["inputs"]["width"] = payload.width
- comfyui_prompt["5"]["inputs"]["height"] = payload.height
- # set the text prompt for our positive CLIPTextEncode
- comfyui_prompt["6"]["inputs"]["text"] = payload.prompt
- comfyui_prompt["7"]["inputs"]["text"] = payload.negative_prompt
- if payload.steps:
- comfyui_prompt["3"]["inputs"]["steps"] = payload.steps
- comfyui_prompt["3"]["inputs"]["seed"] = (
- payload.seed if payload.seed else random.randint(0, 18446744073709551614)
- )
- try:
- ws = websocket.WebSocket()
- ws.connect(f"ws://{host}/ws?clientId={client_id}")
- log.info("WebSocket connection established.")
- except Exception as e:
- log.exception(f"Failed to connect to WebSocket server: {e}")
- return None
- try:
- images = get_images(ws, comfyui_prompt, client_id, base_url)
- except Exception as e:
- log.exception(f"Error while receiving images: {e}")
- images = None
- ws.close()
- return images
|