main.py 45 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332
  1. # TODO: Merge this with the webui_app and make it a single app
  2. import json
  3. import logging
  4. import mimetypes
  5. import os
  6. import shutil
  7. import uuid
  8. from datetime import datetime
  9. from pathlib import Path
  10. from typing import Iterator, Optional, Sequence, Union
  11. from fastapi import Depends, FastAPI, File, Form, HTTPException, UploadFile, status
  12. from fastapi.middleware.cors import CORSMiddleware
  13. from pydantic import BaseModel
  14. import tiktoken
  15. from open_webui.storage.provider import Storage
  16. from open_webui.apps.webui.models.knowledge import Knowledges
  17. from open_webui.apps.retrieval.vector.connector import VECTOR_DB_CLIENT
  18. # Document loaders
  19. from open_webui.apps.retrieval.loaders.main import Loader
  20. # Web search engines
  21. from open_webui.apps.retrieval.web.main import SearchResult
  22. from open_webui.apps.retrieval.web.utils import get_web_loader
  23. from open_webui.apps.retrieval.web.brave import search_brave
  24. from open_webui.apps.retrieval.web.duckduckgo import search_duckduckgo
  25. from open_webui.apps.retrieval.web.google_pse import search_google_pse
  26. from open_webui.apps.retrieval.web.jina_search import search_jina
  27. from open_webui.apps.retrieval.web.searchapi import search_searchapi
  28. from open_webui.apps.retrieval.web.searxng import search_searxng
  29. from open_webui.apps.retrieval.web.serper import search_serper
  30. from open_webui.apps.retrieval.web.serply import search_serply
  31. from open_webui.apps.retrieval.web.serpstack import search_serpstack
  32. from open_webui.apps.retrieval.web.tavily import search_tavily
  33. from open_webui.apps.retrieval.utils import (
  34. get_embedding_function,
  35. get_model_path,
  36. query_collection,
  37. query_collection_with_hybrid_search,
  38. query_doc,
  39. query_doc_with_hybrid_search,
  40. )
  41. from open_webui.apps.webui.models.files import Files
  42. from open_webui.config import (
  43. BRAVE_SEARCH_API_KEY,
  44. TIKTOKEN_ENCODING_NAME,
  45. RAG_TEXT_SPLITTER,
  46. CHUNK_OVERLAP,
  47. CHUNK_SIZE,
  48. CONTENT_EXTRACTION_ENGINE,
  49. CORS_ALLOW_ORIGIN,
  50. ENABLE_RAG_HYBRID_SEARCH,
  51. ENABLE_RAG_LOCAL_WEB_FETCH,
  52. ENABLE_RAG_WEB_LOADER_SSL_VERIFICATION,
  53. ENABLE_RAG_WEB_SEARCH,
  54. ENV,
  55. GOOGLE_PSE_API_KEY,
  56. GOOGLE_PSE_ENGINE_ID,
  57. PDF_EXTRACT_IMAGES,
  58. RAG_EMBEDDING_ENGINE,
  59. RAG_EMBEDDING_MODEL,
  60. RAG_EMBEDDING_MODEL_AUTO_UPDATE,
  61. RAG_EMBEDDING_MODEL_TRUST_REMOTE_CODE,
  62. RAG_EMBEDDING_BATCH_SIZE,
  63. RAG_FILE_MAX_COUNT,
  64. RAG_FILE_MAX_SIZE,
  65. RAG_OPENAI_API_BASE_URL,
  66. RAG_OPENAI_API_KEY,
  67. RAG_RELEVANCE_THRESHOLD,
  68. RAG_RERANKING_MODEL,
  69. RAG_RERANKING_MODEL_AUTO_UPDATE,
  70. RAG_RERANKING_MODEL_TRUST_REMOTE_CODE,
  71. DEFAULT_RAG_TEMPLATE,
  72. RAG_TEMPLATE,
  73. RAG_TOP_K,
  74. RAG_WEB_SEARCH_CONCURRENT_REQUESTS,
  75. RAG_WEB_SEARCH_DOMAIN_FILTER_LIST,
  76. RAG_WEB_SEARCH_ENGINE,
  77. RAG_WEB_SEARCH_RESULT_COUNT,
  78. SEARCHAPI_API_KEY,
  79. SEARCHAPI_ENGINE,
  80. SEARXNG_QUERY_URL,
  81. SERPER_API_KEY,
  82. SERPLY_API_KEY,
  83. SERPSTACK_API_KEY,
  84. SERPSTACK_HTTPS,
  85. TAVILY_API_KEY,
  86. TIKA_SERVER_URL,
  87. UPLOAD_DIR,
  88. YOUTUBE_LOADER_LANGUAGE,
  89. AppConfig,
  90. )
  91. from open_webui.constants import ERROR_MESSAGES
  92. from open_webui.env import SRC_LOG_LEVELS, DEVICE_TYPE, DOCKER
  93. from open_webui.utils.misc import (
  94. calculate_sha256,
  95. calculate_sha256_string,
  96. extract_folders_after_data_docs,
  97. sanitize_filename,
  98. )
  99. from open_webui.utils.utils import get_admin_user, get_verified_user
  100. from langchain.text_splitter import RecursiveCharacterTextSplitter, TokenTextSplitter
  101. from langchain_community.document_loaders import (
  102. YoutubeLoader,
  103. )
  104. from langchain_core.documents import Document
  105. log = logging.getLogger(__name__)
  106. log.setLevel(SRC_LOG_LEVELS["RAG"])
  107. app = FastAPI()
  108. app.state.config = AppConfig()
  109. app.state.config.TOP_K = RAG_TOP_K
  110. app.state.config.RELEVANCE_THRESHOLD = RAG_RELEVANCE_THRESHOLD
  111. app.state.config.FILE_MAX_SIZE = RAG_FILE_MAX_SIZE
  112. app.state.config.FILE_MAX_COUNT = RAG_FILE_MAX_COUNT
  113. app.state.config.ENABLE_RAG_HYBRID_SEARCH = ENABLE_RAG_HYBRID_SEARCH
  114. app.state.config.ENABLE_RAG_WEB_LOADER_SSL_VERIFICATION = (
  115. ENABLE_RAG_WEB_LOADER_SSL_VERIFICATION
  116. )
  117. app.state.config.CONTENT_EXTRACTION_ENGINE = CONTENT_EXTRACTION_ENGINE
  118. app.state.config.TIKA_SERVER_URL = TIKA_SERVER_URL
  119. app.state.config.TEXT_SPLITTER = RAG_TEXT_SPLITTER
  120. app.state.config.TIKTOKEN_ENCODING_NAME = TIKTOKEN_ENCODING_NAME
  121. app.state.config.CHUNK_SIZE = CHUNK_SIZE
  122. app.state.config.CHUNK_OVERLAP = CHUNK_OVERLAP
  123. app.state.config.RAG_EMBEDDING_ENGINE = RAG_EMBEDDING_ENGINE
  124. app.state.config.RAG_EMBEDDING_MODEL = RAG_EMBEDDING_MODEL
  125. app.state.config.RAG_EMBEDDING_BATCH_SIZE = RAG_EMBEDDING_BATCH_SIZE
  126. app.state.config.RAG_RERANKING_MODEL = RAG_RERANKING_MODEL
  127. app.state.config.RAG_TEMPLATE = RAG_TEMPLATE
  128. app.state.config.OPENAI_API_BASE_URL = RAG_OPENAI_API_BASE_URL
  129. app.state.config.OPENAI_API_KEY = RAG_OPENAI_API_KEY
  130. app.state.config.PDF_EXTRACT_IMAGES = PDF_EXTRACT_IMAGES
  131. app.state.config.YOUTUBE_LOADER_LANGUAGE = YOUTUBE_LOADER_LANGUAGE
  132. app.state.YOUTUBE_LOADER_TRANSLATION = None
  133. app.state.config.ENABLE_RAG_WEB_SEARCH = ENABLE_RAG_WEB_SEARCH
  134. app.state.config.RAG_WEB_SEARCH_ENGINE = RAG_WEB_SEARCH_ENGINE
  135. app.state.config.RAG_WEB_SEARCH_DOMAIN_FILTER_LIST = RAG_WEB_SEARCH_DOMAIN_FILTER_LIST
  136. app.state.config.SEARXNG_QUERY_URL = SEARXNG_QUERY_URL
  137. app.state.config.GOOGLE_PSE_API_KEY = GOOGLE_PSE_API_KEY
  138. app.state.config.GOOGLE_PSE_ENGINE_ID = GOOGLE_PSE_ENGINE_ID
  139. app.state.config.BRAVE_SEARCH_API_KEY = BRAVE_SEARCH_API_KEY
  140. app.state.config.SERPSTACK_API_KEY = SERPSTACK_API_KEY
  141. app.state.config.SERPSTACK_HTTPS = SERPSTACK_HTTPS
  142. app.state.config.SERPER_API_KEY = SERPER_API_KEY
  143. app.state.config.SERPLY_API_KEY = SERPLY_API_KEY
  144. app.state.config.TAVILY_API_KEY = TAVILY_API_KEY
  145. app.state.config.SEARCHAPI_API_KEY = SEARCHAPI_API_KEY
  146. app.state.config.SEARCHAPI_ENGINE = SEARCHAPI_ENGINE
  147. app.state.config.RAG_WEB_SEARCH_RESULT_COUNT = RAG_WEB_SEARCH_RESULT_COUNT
  148. app.state.config.RAG_WEB_SEARCH_CONCURRENT_REQUESTS = RAG_WEB_SEARCH_CONCURRENT_REQUESTS
  149. def update_embedding_model(
  150. embedding_model: str,
  151. auto_update: bool = False,
  152. ):
  153. if embedding_model and app.state.config.RAG_EMBEDDING_ENGINE == "":
  154. from sentence_transformers import SentenceTransformer
  155. app.state.sentence_transformer_ef = SentenceTransformer(
  156. get_model_path(embedding_model, auto_update),
  157. device=DEVICE_TYPE,
  158. trust_remote_code=RAG_EMBEDDING_MODEL_TRUST_REMOTE_CODE,
  159. )
  160. else:
  161. app.state.sentence_transformer_ef = None
  162. def update_reranking_model(
  163. reranking_model: str,
  164. auto_update: bool = False,
  165. ):
  166. if reranking_model:
  167. if any(model in reranking_model for model in ["jinaai/jina-colbert-v2"]):
  168. try:
  169. from open_webui.apps.retrieval.models.colbert import ColBERT
  170. app.state.sentence_transformer_rf = ColBERT(
  171. get_model_path(reranking_model, auto_update),
  172. env="docker" if DOCKER else None,
  173. )
  174. except Exception as e:
  175. log.error(f"ColBERT: {e}")
  176. app.state.sentence_transformer_rf = None
  177. app.state.config.ENABLE_RAG_HYBRID_SEARCH = False
  178. else:
  179. import sentence_transformers
  180. try:
  181. app.state.sentence_transformer_rf = sentence_transformers.CrossEncoder(
  182. get_model_path(reranking_model, auto_update),
  183. device=DEVICE_TYPE,
  184. trust_remote_code=RAG_RERANKING_MODEL_TRUST_REMOTE_CODE,
  185. )
  186. except:
  187. log.error("CrossEncoder error")
  188. app.state.sentence_transformer_rf = None
  189. app.state.config.ENABLE_RAG_HYBRID_SEARCH = False
  190. else:
  191. app.state.sentence_transformer_rf = None
  192. update_embedding_model(
  193. app.state.config.RAG_EMBEDDING_MODEL,
  194. RAG_EMBEDDING_MODEL_AUTO_UPDATE,
  195. )
  196. update_reranking_model(
  197. app.state.config.RAG_RERANKING_MODEL,
  198. RAG_RERANKING_MODEL_AUTO_UPDATE,
  199. )
  200. app.state.EMBEDDING_FUNCTION = get_embedding_function(
  201. app.state.config.RAG_EMBEDDING_ENGINE,
  202. app.state.config.RAG_EMBEDDING_MODEL,
  203. app.state.sentence_transformer_ef,
  204. app.state.config.OPENAI_API_KEY,
  205. app.state.config.OPENAI_API_BASE_URL,
  206. app.state.config.RAG_EMBEDDING_BATCH_SIZE,
  207. )
  208. app.add_middleware(
  209. CORSMiddleware,
  210. allow_origins=CORS_ALLOW_ORIGIN,
  211. allow_credentials=True,
  212. allow_methods=["*"],
  213. allow_headers=["*"],
  214. )
  215. class CollectionNameForm(BaseModel):
  216. collection_name: Optional[str] = None
  217. class ProcessUrlForm(CollectionNameForm):
  218. url: str
  219. class SearchForm(CollectionNameForm):
  220. query: str
  221. @app.get("/")
  222. async def get_status():
  223. return {
  224. "status": True,
  225. "chunk_size": app.state.config.CHUNK_SIZE,
  226. "chunk_overlap": app.state.config.CHUNK_OVERLAP,
  227. "template": app.state.config.RAG_TEMPLATE,
  228. "embedding_engine": app.state.config.RAG_EMBEDDING_ENGINE,
  229. "embedding_model": app.state.config.RAG_EMBEDDING_MODEL,
  230. "reranking_model": app.state.config.RAG_RERANKING_MODEL,
  231. "embedding_batch_size": app.state.config.RAG_EMBEDDING_BATCH_SIZE,
  232. }
  233. @app.get("/embedding")
  234. async def get_embedding_config(user=Depends(get_admin_user)):
  235. return {
  236. "status": True,
  237. "embedding_engine": app.state.config.RAG_EMBEDDING_ENGINE,
  238. "embedding_model": app.state.config.RAG_EMBEDDING_MODEL,
  239. "embedding_batch_size": app.state.config.RAG_EMBEDDING_BATCH_SIZE,
  240. "openai_config": {
  241. "url": app.state.config.OPENAI_API_BASE_URL,
  242. "key": app.state.config.OPENAI_API_KEY,
  243. },
  244. }
  245. @app.get("/reranking")
  246. async def get_reraanking_config(user=Depends(get_admin_user)):
  247. return {
  248. "status": True,
  249. "reranking_model": app.state.config.RAG_RERANKING_MODEL,
  250. }
  251. class OpenAIConfigForm(BaseModel):
  252. url: str
  253. key: str
  254. class EmbeddingModelUpdateForm(BaseModel):
  255. openai_config: Optional[OpenAIConfigForm] = None
  256. embedding_engine: str
  257. embedding_model: str
  258. embedding_batch_size: Optional[int] = 1
  259. @app.post("/embedding/update")
  260. async def update_embedding_config(
  261. form_data: EmbeddingModelUpdateForm, user=Depends(get_admin_user)
  262. ):
  263. log.info(
  264. f"Updating embedding model: {app.state.config.RAG_EMBEDDING_MODEL} to {form_data.embedding_model}"
  265. )
  266. try:
  267. app.state.config.RAG_EMBEDDING_ENGINE = form_data.embedding_engine
  268. app.state.config.RAG_EMBEDDING_MODEL = form_data.embedding_model
  269. if app.state.config.RAG_EMBEDDING_ENGINE in ["ollama", "openai"]:
  270. if form_data.openai_config is not None:
  271. app.state.config.OPENAI_API_BASE_URL = form_data.openai_config.url
  272. app.state.config.OPENAI_API_KEY = form_data.openai_config.key
  273. app.state.config.RAG_EMBEDDING_BATCH_SIZE = form_data.embedding_batch_size
  274. update_embedding_model(app.state.config.RAG_EMBEDDING_MODEL)
  275. app.state.EMBEDDING_FUNCTION = get_embedding_function(
  276. app.state.config.RAG_EMBEDDING_ENGINE,
  277. app.state.config.RAG_EMBEDDING_MODEL,
  278. app.state.sentence_transformer_ef,
  279. app.state.config.OPENAI_API_KEY,
  280. app.state.config.OPENAI_API_BASE_URL,
  281. app.state.config.RAG_EMBEDDING_BATCH_SIZE,
  282. )
  283. return {
  284. "status": True,
  285. "embedding_engine": app.state.config.RAG_EMBEDDING_ENGINE,
  286. "embedding_model": app.state.config.RAG_EMBEDDING_MODEL,
  287. "embedding_batch_size": app.state.config.RAG_EMBEDDING_BATCH_SIZE,
  288. "openai_config": {
  289. "url": app.state.config.OPENAI_API_BASE_URL,
  290. "key": app.state.config.OPENAI_API_KEY,
  291. },
  292. }
  293. except Exception as e:
  294. log.exception(f"Problem updating embedding model: {e}")
  295. raise HTTPException(
  296. status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
  297. detail=ERROR_MESSAGES.DEFAULT(e),
  298. )
  299. class RerankingModelUpdateForm(BaseModel):
  300. reranking_model: str
  301. @app.post("/reranking/update")
  302. async def update_reranking_config(
  303. form_data: RerankingModelUpdateForm, user=Depends(get_admin_user)
  304. ):
  305. log.info(
  306. f"Updating reranking model: {app.state.config.RAG_RERANKING_MODEL} to {form_data.reranking_model}"
  307. )
  308. try:
  309. app.state.config.RAG_RERANKING_MODEL = form_data.reranking_model
  310. update_reranking_model(app.state.config.RAG_RERANKING_MODEL, True)
  311. return {
  312. "status": True,
  313. "reranking_model": app.state.config.RAG_RERANKING_MODEL,
  314. }
  315. except Exception as e:
  316. log.exception(f"Problem updating reranking model: {e}")
  317. raise HTTPException(
  318. status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
  319. detail=ERROR_MESSAGES.DEFAULT(e),
  320. )
  321. @app.get("/config")
  322. async def get_rag_config(user=Depends(get_admin_user)):
  323. return {
  324. "status": True,
  325. "pdf_extract_images": app.state.config.PDF_EXTRACT_IMAGES,
  326. "content_extraction": {
  327. "engine": app.state.config.CONTENT_EXTRACTION_ENGINE,
  328. "tika_server_url": app.state.config.TIKA_SERVER_URL,
  329. },
  330. "chunk": {
  331. "text_splitter": app.state.config.TEXT_SPLITTER,
  332. "chunk_size": app.state.config.CHUNK_SIZE,
  333. "chunk_overlap": app.state.config.CHUNK_OVERLAP,
  334. },
  335. "file": {
  336. "max_size": app.state.config.FILE_MAX_SIZE,
  337. "max_count": app.state.config.FILE_MAX_COUNT,
  338. },
  339. "youtube": {
  340. "language": app.state.config.YOUTUBE_LOADER_LANGUAGE,
  341. "translation": app.state.YOUTUBE_LOADER_TRANSLATION,
  342. },
  343. "web": {
  344. "ssl_verification": app.state.config.ENABLE_RAG_WEB_LOADER_SSL_VERIFICATION,
  345. "search": {
  346. "enabled": app.state.config.ENABLE_RAG_WEB_SEARCH,
  347. "engine": app.state.config.RAG_WEB_SEARCH_ENGINE,
  348. "searxng_query_url": app.state.config.SEARXNG_QUERY_URL,
  349. "google_pse_api_key": app.state.config.GOOGLE_PSE_API_KEY,
  350. "google_pse_engine_id": app.state.config.GOOGLE_PSE_ENGINE_ID,
  351. "brave_search_api_key": app.state.config.BRAVE_SEARCH_API_KEY,
  352. "serpstack_api_key": app.state.config.SERPSTACK_API_KEY,
  353. "serpstack_https": app.state.config.SERPSTACK_HTTPS,
  354. "serper_api_key": app.state.config.SERPER_API_KEY,
  355. "serply_api_key": app.state.config.SERPLY_API_KEY,
  356. "tavily_api_key": app.state.config.TAVILY_API_KEY,
  357. "searchapi_api_key": app.state.config.SEARCHAPI_API_KEY,
  358. "seaarchapi_engine": app.state.config.SEARCHAPI_ENGINE,
  359. "result_count": app.state.config.RAG_WEB_SEARCH_RESULT_COUNT,
  360. "concurrent_requests": app.state.config.RAG_WEB_SEARCH_CONCURRENT_REQUESTS,
  361. },
  362. },
  363. }
  364. class FileConfig(BaseModel):
  365. max_size: Optional[int] = None
  366. max_count: Optional[int] = None
  367. class ContentExtractionConfig(BaseModel):
  368. engine: str = ""
  369. tika_server_url: Optional[str] = None
  370. class ChunkParamUpdateForm(BaseModel):
  371. text_splitter: Optional[str] = None
  372. chunk_size: int
  373. chunk_overlap: int
  374. class YoutubeLoaderConfig(BaseModel):
  375. language: list[str]
  376. translation: Optional[str] = None
  377. class WebSearchConfig(BaseModel):
  378. enabled: bool
  379. engine: Optional[str] = None
  380. searxng_query_url: Optional[str] = None
  381. google_pse_api_key: Optional[str] = None
  382. google_pse_engine_id: Optional[str] = None
  383. brave_search_api_key: Optional[str] = None
  384. serpstack_api_key: Optional[str] = None
  385. serpstack_https: Optional[bool] = None
  386. serper_api_key: Optional[str] = None
  387. serply_api_key: Optional[str] = None
  388. tavily_api_key: Optional[str] = None
  389. searchapi_api_key: Optional[str] = None
  390. searchapi_engine: Optional[str] = None
  391. result_count: Optional[int] = None
  392. concurrent_requests: Optional[int] = None
  393. class WebConfig(BaseModel):
  394. search: WebSearchConfig
  395. web_loader_ssl_verification: Optional[bool] = None
  396. class ConfigUpdateForm(BaseModel):
  397. pdf_extract_images: Optional[bool] = None
  398. file: Optional[FileConfig] = None
  399. content_extraction: Optional[ContentExtractionConfig] = None
  400. chunk: Optional[ChunkParamUpdateForm] = None
  401. youtube: Optional[YoutubeLoaderConfig] = None
  402. web: Optional[WebConfig] = None
  403. @app.post("/config/update")
  404. async def update_rag_config(form_data: ConfigUpdateForm, user=Depends(get_admin_user)):
  405. app.state.config.PDF_EXTRACT_IMAGES = (
  406. form_data.pdf_extract_images
  407. if form_data.pdf_extract_images is not None
  408. else app.state.config.PDF_EXTRACT_IMAGES
  409. )
  410. if form_data.file is not None:
  411. app.state.config.FILE_MAX_SIZE = form_data.file.max_size
  412. app.state.config.FILE_MAX_COUNT = form_data.file.max_count
  413. if form_data.content_extraction is not None:
  414. log.info(f"Updating text settings: {form_data.content_extraction}")
  415. app.state.config.CONTENT_EXTRACTION_ENGINE = form_data.content_extraction.engine
  416. app.state.config.TIKA_SERVER_URL = form_data.content_extraction.tika_server_url
  417. if form_data.chunk is not None:
  418. app.state.config.TEXT_SPLITTER = form_data.chunk.text_splitter
  419. app.state.config.CHUNK_SIZE = form_data.chunk.chunk_size
  420. app.state.config.CHUNK_OVERLAP = form_data.chunk.chunk_overlap
  421. if form_data.youtube is not None:
  422. app.state.config.YOUTUBE_LOADER_LANGUAGE = form_data.youtube.language
  423. app.state.YOUTUBE_LOADER_TRANSLATION = form_data.youtube.translation
  424. if form_data.web is not None:
  425. app.state.config.ENABLE_RAG_WEB_LOADER_SSL_VERIFICATION = (
  426. form_data.web.web_loader_ssl_verification
  427. )
  428. app.state.config.ENABLE_RAG_WEB_SEARCH = form_data.web.search.enabled
  429. app.state.config.RAG_WEB_SEARCH_ENGINE = form_data.web.search.engine
  430. app.state.config.SEARXNG_QUERY_URL = form_data.web.search.searxng_query_url
  431. app.state.config.GOOGLE_PSE_API_KEY = form_data.web.search.google_pse_api_key
  432. app.state.config.GOOGLE_PSE_ENGINE_ID = (
  433. form_data.web.search.google_pse_engine_id
  434. )
  435. app.state.config.BRAVE_SEARCH_API_KEY = (
  436. form_data.web.search.brave_search_api_key
  437. )
  438. app.state.config.SERPSTACK_API_KEY = form_data.web.search.serpstack_api_key
  439. app.state.config.SERPSTACK_HTTPS = form_data.web.search.serpstack_https
  440. app.state.config.SERPER_API_KEY = form_data.web.search.serper_api_key
  441. app.state.config.SERPLY_API_KEY = form_data.web.search.serply_api_key
  442. app.state.config.TAVILY_API_KEY = form_data.web.search.tavily_api_key
  443. app.state.config.SEARCHAPI_API_KEY = form_data.web.search.searchapi_api_key
  444. app.state.config.SEARCHAPI_ENGINE = form_data.web.search.searchapi_engine
  445. app.state.config.RAG_WEB_SEARCH_RESULT_COUNT = form_data.web.search.result_count
  446. app.state.config.RAG_WEB_SEARCH_CONCURRENT_REQUESTS = (
  447. form_data.web.search.concurrent_requests
  448. )
  449. return {
  450. "status": True,
  451. "pdf_extract_images": app.state.config.PDF_EXTRACT_IMAGES,
  452. "file": {
  453. "max_size": app.state.config.FILE_MAX_SIZE,
  454. "max_count": app.state.config.FILE_MAX_COUNT,
  455. },
  456. "content_extraction": {
  457. "engine": app.state.config.CONTENT_EXTRACTION_ENGINE,
  458. "tika_server_url": app.state.config.TIKA_SERVER_URL,
  459. },
  460. "chunk": {
  461. "text_splitter": app.state.config.TEXT_SPLITTER,
  462. "chunk_size": app.state.config.CHUNK_SIZE,
  463. "chunk_overlap": app.state.config.CHUNK_OVERLAP,
  464. },
  465. "youtube": {
  466. "language": app.state.config.YOUTUBE_LOADER_LANGUAGE,
  467. "translation": app.state.YOUTUBE_LOADER_TRANSLATION,
  468. },
  469. "web": {
  470. "ssl_verification": app.state.config.ENABLE_RAG_WEB_LOADER_SSL_VERIFICATION,
  471. "search": {
  472. "enabled": app.state.config.ENABLE_RAG_WEB_SEARCH,
  473. "engine": app.state.config.RAG_WEB_SEARCH_ENGINE,
  474. "searxng_query_url": app.state.config.SEARXNG_QUERY_URL,
  475. "google_pse_api_key": app.state.config.GOOGLE_PSE_API_KEY,
  476. "google_pse_engine_id": app.state.config.GOOGLE_PSE_ENGINE_ID,
  477. "brave_search_api_key": app.state.config.BRAVE_SEARCH_API_KEY,
  478. "serpstack_api_key": app.state.config.SERPSTACK_API_KEY,
  479. "serpstack_https": app.state.config.SERPSTACK_HTTPS,
  480. "serper_api_key": app.state.config.SERPER_API_KEY,
  481. "serply_api_key": app.state.config.SERPLY_API_KEY,
  482. "serachapi_api_key": app.state.config.SEARCHAPI_API_KEY,
  483. "searchapi_engine": app.state.config.SEARCHAPI_ENGINE,
  484. "tavily_api_key": app.state.config.TAVILY_API_KEY,
  485. "result_count": app.state.config.RAG_WEB_SEARCH_RESULT_COUNT,
  486. "concurrent_requests": app.state.config.RAG_WEB_SEARCH_CONCURRENT_REQUESTS,
  487. },
  488. },
  489. }
  490. @app.get("/template")
  491. async def get_rag_template(user=Depends(get_verified_user)):
  492. return {
  493. "status": True,
  494. "template": app.state.config.RAG_TEMPLATE,
  495. }
  496. @app.get("/query/settings")
  497. async def get_query_settings(user=Depends(get_admin_user)):
  498. return {
  499. "status": True,
  500. "template": app.state.config.RAG_TEMPLATE,
  501. "k": app.state.config.TOP_K,
  502. "r": app.state.config.RELEVANCE_THRESHOLD,
  503. "hybrid": app.state.config.ENABLE_RAG_HYBRID_SEARCH,
  504. }
  505. class QuerySettingsForm(BaseModel):
  506. k: Optional[int] = None
  507. r: Optional[float] = None
  508. template: Optional[str] = None
  509. hybrid: Optional[bool] = None
  510. @app.post("/query/settings/update")
  511. async def update_query_settings(
  512. form_data: QuerySettingsForm, user=Depends(get_admin_user)
  513. ):
  514. app.state.config.RAG_TEMPLATE = form_data.template
  515. app.state.config.TOP_K = form_data.k if form_data.k else 4
  516. app.state.config.RELEVANCE_THRESHOLD = form_data.r if form_data.r else 0.0
  517. app.state.config.ENABLE_RAG_HYBRID_SEARCH = (
  518. form_data.hybrid if form_data.hybrid else False
  519. )
  520. return {
  521. "status": True,
  522. "template": app.state.config.RAG_TEMPLATE,
  523. "k": app.state.config.TOP_K,
  524. "r": app.state.config.RELEVANCE_THRESHOLD,
  525. "hybrid": app.state.config.ENABLE_RAG_HYBRID_SEARCH,
  526. }
  527. ####################################
  528. #
  529. # Document process and retrieval
  530. #
  531. ####################################
  532. def save_docs_to_vector_db(
  533. docs,
  534. collection_name,
  535. metadata: Optional[dict] = None,
  536. overwrite: bool = False,
  537. split: bool = True,
  538. add: bool = False,
  539. ) -> bool:
  540. log.info(f"save_docs_to_vector_db {docs} {collection_name}")
  541. # Check if entries with the same hash (metadata.hash) already exist
  542. if metadata and "hash" in metadata:
  543. result = VECTOR_DB_CLIENT.query(
  544. collection_name=collection_name,
  545. filter={"hash": metadata["hash"]},
  546. )
  547. if result is not None:
  548. existing_doc_ids = result.ids[0]
  549. if existing_doc_ids:
  550. log.info(f"Document with hash {metadata['hash']} already exists")
  551. raise ValueError(ERROR_MESSAGES.DUPLICATE_CONTENT)
  552. if split:
  553. if app.state.config.TEXT_SPLITTER in ["", "character"]:
  554. text_splitter = RecursiveCharacterTextSplitter(
  555. chunk_size=app.state.config.CHUNK_SIZE,
  556. chunk_overlap=app.state.config.CHUNK_OVERLAP,
  557. add_start_index=True,
  558. )
  559. elif app.state.config.TEXT_SPLITTER == "token":
  560. log.info(
  561. f"Using token text splitter: {app.state.config.TIKTOKEN_ENCODING_NAME}"
  562. )
  563. tiktoken.get_encoding(str(app.state.config.TIKTOKEN_ENCODING_NAME))
  564. text_splitter = TokenTextSplitter(
  565. encoding_name=str(app.state.config.TIKTOKEN_ENCODING_NAME),
  566. chunk_size=app.state.config.CHUNK_SIZE,
  567. chunk_overlap=app.state.config.CHUNK_OVERLAP,
  568. add_start_index=True,
  569. )
  570. else:
  571. raise ValueError(ERROR_MESSAGES.DEFAULT("Invalid text splitter"))
  572. docs = text_splitter.split_documents(docs)
  573. if len(docs) == 0:
  574. raise ValueError(ERROR_MESSAGES.EMPTY_CONTENT)
  575. texts = [doc.page_content for doc in docs]
  576. metadatas = [
  577. {
  578. **doc.metadata,
  579. **(metadata if metadata else {}),
  580. "embedding_config": json.dumps(
  581. {
  582. "engine": app.state.config.RAG_EMBEDDING_ENGINE,
  583. "model": app.state.config.RAG_EMBEDDING_MODEL,
  584. }
  585. ),
  586. }
  587. for doc in docs
  588. ]
  589. # ChromaDB does not like datetime formats
  590. # for meta-data so convert them to string.
  591. for metadata in metadatas:
  592. for key, value in metadata.items():
  593. if isinstance(value, datetime):
  594. metadata[key] = str(value)
  595. try:
  596. if VECTOR_DB_CLIENT.has_collection(collection_name=collection_name):
  597. log.info(f"collection {collection_name} already exists")
  598. if overwrite:
  599. VECTOR_DB_CLIENT.delete_collection(collection_name=collection_name)
  600. log.info(f"deleting existing collection {collection_name}")
  601. elif add is False:
  602. log.info(
  603. f"collection {collection_name} already exists, overwrite is False and add is False"
  604. )
  605. return True
  606. log.info(f"adding to collection {collection_name}")
  607. embedding_function = get_embedding_function(
  608. app.state.config.RAG_EMBEDDING_ENGINE,
  609. app.state.config.RAG_EMBEDDING_MODEL,
  610. app.state.sentence_transformer_ef,
  611. app.state.config.OPENAI_API_KEY,
  612. app.state.config.OPENAI_API_BASE_URL,
  613. app.state.config.RAG_EMBEDDING_BATCH_SIZE,
  614. )
  615. embeddings = embedding_function(
  616. list(map(lambda x: x.replace("\n", " "), texts))
  617. )
  618. items = [
  619. {
  620. "id": str(uuid.uuid4()),
  621. "text": text,
  622. "vector": embeddings[idx],
  623. "metadata": metadatas[idx],
  624. }
  625. for idx, text in enumerate(texts)
  626. ]
  627. VECTOR_DB_CLIENT.insert(
  628. collection_name=collection_name,
  629. items=items,
  630. )
  631. return True
  632. except Exception as e:
  633. log.exception(e)
  634. return False
  635. class ProcessFileForm(BaseModel):
  636. file_id: str
  637. content: Optional[str] = None
  638. collection_name: Optional[str] = None
  639. @app.post("/process/file")
  640. def process_file(
  641. form_data: ProcessFileForm,
  642. user=Depends(get_verified_user),
  643. ):
  644. try:
  645. file = Files.get_file_by_id(form_data.file_id)
  646. collection_name = form_data.collection_name
  647. if collection_name is None:
  648. collection_name = f"file-{file.id}"
  649. if form_data.content:
  650. # Update the content in the file
  651. # Usage: /files/{file_id}/data/content/update
  652. VECTOR_DB_CLIENT.delete(
  653. collection_name=f"file-{file.id}",
  654. filter={"file_id": file.id},
  655. )
  656. docs = [
  657. Document(
  658. page_content=form_data.content,
  659. metadata={
  660. "name": file.meta.get("name", file.filename),
  661. "created_by": file.user_id,
  662. "file_id": file.id,
  663. **file.meta,
  664. },
  665. )
  666. ]
  667. text_content = form_data.content
  668. elif form_data.collection_name:
  669. # Check if the file has already been processed and save the content
  670. # Usage: /knowledge/{id}/file/add, /knowledge/{id}/file/update
  671. result = VECTOR_DB_CLIENT.query(
  672. collection_name=f"file-{file.id}", filter={"file_id": file.id}
  673. )
  674. if result is not None and len(result.ids[0]) > 0:
  675. docs = [
  676. Document(
  677. page_content=result.documents[0][idx],
  678. metadata=result.metadatas[0][idx],
  679. )
  680. for idx, id in enumerate(result.ids[0])
  681. ]
  682. else:
  683. docs = [
  684. Document(
  685. page_content=file.data.get("content", ""),
  686. metadata={
  687. "name": file.meta.get("name", file.filename),
  688. "created_by": file.user_id,
  689. "file_id": file.id,
  690. **file.meta,
  691. },
  692. )
  693. ]
  694. text_content = file.data.get("content", "")
  695. else:
  696. # Process the file and save the content
  697. # Usage: /files/
  698. file_path = file.path
  699. if file_path:
  700. file_path = Storage.get_file(file_path)
  701. loader = Loader(
  702. engine=app.state.config.CONTENT_EXTRACTION_ENGINE,
  703. TIKA_SERVER_URL=app.state.config.TIKA_SERVER_URL,
  704. PDF_EXTRACT_IMAGES=app.state.config.PDF_EXTRACT_IMAGES,
  705. )
  706. docs = loader.load(
  707. file.filename, file.meta.get("content_type"), file_path
  708. )
  709. else:
  710. docs = [
  711. Document(
  712. page_content=file.data.get("content", ""),
  713. metadata={
  714. "name": file.filename,
  715. "created_by": file.user_id,
  716. "file_id": file.id,
  717. **file.meta,
  718. },
  719. )
  720. ]
  721. text_content = " ".join([doc.page_content for doc in docs])
  722. log.debug(f"text_content: {text_content}")
  723. Files.update_file_data_by_id(
  724. file.id,
  725. {"content": text_content},
  726. )
  727. hash = calculate_sha256_string(text_content)
  728. Files.update_file_hash_by_id(file.id, hash)
  729. try:
  730. result = save_docs_to_vector_db(
  731. docs=docs,
  732. collection_name=collection_name,
  733. metadata={
  734. "file_id": file.id,
  735. "name": file.meta.get("name", file.filename),
  736. "hash": hash,
  737. },
  738. add=(True if form_data.collection_name else False),
  739. )
  740. if result:
  741. Files.update_file_metadata_by_id(
  742. file.id,
  743. {
  744. "collection_name": collection_name,
  745. },
  746. )
  747. return {
  748. "status": True,
  749. "collection_name": collection_name,
  750. "filename": file.meta.get("name", file.filename),
  751. "content": text_content,
  752. }
  753. except Exception as e:
  754. raise e
  755. except Exception as e:
  756. log.exception(e)
  757. if "No pandoc was found" in str(e):
  758. raise HTTPException(
  759. status_code=status.HTTP_400_BAD_REQUEST,
  760. detail=ERROR_MESSAGES.PANDOC_NOT_INSTALLED,
  761. )
  762. else:
  763. raise HTTPException(
  764. status_code=status.HTTP_400_BAD_REQUEST,
  765. detail=str(e),
  766. )
  767. class ProcessTextForm(BaseModel):
  768. name: str
  769. content: str
  770. collection_name: Optional[str] = None
  771. @app.post("/process/text")
  772. def process_text(
  773. form_data: ProcessTextForm,
  774. user=Depends(get_verified_user),
  775. ):
  776. collection_name = form_data.collection_name
  777. if collection_name is None:
  778. collection_name = calculate_sha256_string(form_data.content)
  779. docs = [
  780. Document(
  781. page_content=form_data.content,
  782. metadata={"name": form_data.name, "created_by": user.id},
  783. )
  784. ]
  785. text_content = form_data.content
  786. log.debug(f"text_content: {text_content}")
  787. result = save_docs_to_vector_db(docs, collection_name)
  788. if result:
  789. return {
  790. "status": True,
  791. "collection_name": collection_name,
  792. "content": text_content,
  793. }
  794. else:
  795. raise HTTPException(
  796. status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
  797. detail=ERROR_MESSAGES.DEFAULT(),
  798. )
  799. @app.post("/process/youtube")
  800. def process_youtube_video(form_data: ProcessUrlForm, user=Depends(get_verified_user)):
  801. try:
  802. collection_name = form_data.collection_name
  803. if not collection_name:
  804. collection_name = calculate_sha256_string(form_data.url)[:63]
  805. loader = YoutubeLoader.from_youtube_url(
  806. form_data.url,
  807. add_video_info=True,
  808. language=app.state.config.YOUTUBE_LOADER_LANGUAGE,
  809. translation=app.state.YOUTUBE_LOADER_TRANSLATION,
  810. )
  811. docs = loader.load()
  812. content = " ".join([doc.page_content for doc in docs])
  813. log.debug(f"text_content: {content}")
  814. save_docs_to_vector_db(docs, collection_name, overwrite=True)
  815. return {
  816. "status": True,
  817. "collection_name": collection_name,
  818. "filename": form_data.url,
  819. "file": {
  820. "data": {
  821. "content": content,
  822. },
  823. "meta": {
  824. "name": form_data.url,
  825. },
  826. },
  827. }
  828. except Exception as e:
  829. log.exception(e)
  830. raise HTTPException(
  831. status_code=status.HTTP_400_BAD_REQUEST,
  832. detail=ERROR_MESSAGES.DEFAULT(e),
  833. )
  834. @app.post("/process/web")
  835. def process_web(form_data: ProcessUrlForm, user=Depends(get_verified_user)):
  836. try:
  837. collection_name = form_data.collection_name
  838. if not collection_name:
  839. collection_name = calculate_sha256_string(form_data.url)[:63]
  840. loader = get_web_loader(
  841. form_data.url,
  842. verify_ssl=app.state.config.ENABLE_RAG_WEB_LOADER_SSL_VERIFICATION,
  843. requests_per_second=app.state.config.RAG_WEB_SEARCH_CONCURRENT_REQUESTS,
  844. )
  845. docs = loader.load()
  846. content = " ".join([doc.page_content for doc in docs])
  847. log.debug(f"text_content: {content}")
  848. save_docs_to_vector_db(docs, collection_name, overwrite=True)
  849. return {
  850. "status": True,
  851. "collection_name": collection_name,
  852. "filename": form_data.url,
  853. "file": {
  854. "data": {
  855. "content": content,
  856. },
  857. "meta": {
  858. "name": form_data.url,
  859. },
  860. },
  861. }
  862. except Exception as e:
  863. log.exception(e)
  864. raise HTTPException(
  865. status_code=status.HTTP_400_BAD_REQUEST,
  866. detail=ERROR_MESSAGES.DEFAULT(e),
  867. )
  868. def search_web(engine: str, query: str) -> list[SearchResult]:
  869. """Search the web using a search engine and return the results as a list of SearchResult objects.
  870. Will look for a search engine API key in environment variables in the following order:
  871. - SEARXNG_QUERY_URL
  872. - GOOGLE_PSE_API_KEY + GOOGLE_PSE_ENGINE_ID
  873. - BRAVE_SEARCH_API_KEY
  874. - SERPSTACK_API_KEY
  875. - SERPER_API_KEY
  876. - SERPLY_API_KEY
  877. - TAVILY_API_KEY
  878. - SEARCHAPI_API_KEY + SEARCHAPI_ENGINE (by default `google`)
  879. Args:
  880. query (str): The query to search for
  881. """
  882. # TODO: add playwright to search the web
  883. if engine == "searxng":
  884. if app.state.config.SEARXNG_QUERY_URL:
  885. return search_searxng(
  886. app.state.config.SEARXNG_QUERY_URL,
  887. query,
  888. app.state.config.RAG_WEB_SEARCH_RESULT_COUNT,
  889. app.state.config.RAG_WEB_SEARCH_DOMAIN_FILTER_LIST,
  890. )
  891. else:
  892. raise Exception("No SEARXNG_QUERY_URL found in environment variables")
  893. elif engine == "google_pse":
  894. if (
  895. app.state.config.GOOGLE_PSE_API_KEY
  896. and app.state.config.GOOGLE_PSE_ENGINE_ID
  897. ):
  898. return search_google_pse(
  899. app.state.config.GOOGLE_PSE_API_KEY,
  900. app.state.config.GOOGLE_PSE_ENGINE_ID,
  901. query,
  902. app.state.config.RAG_WEB_SEARCH_RESULT_COUNT,
  903. app.state.config.RAG_WEB_SEARCH_DOMAIN_FILTER_LIST,
  904. )
  905. else:
  906. raise Exception(
  907. "No GOOGLE_PSE_API_KEY or GOOGLE_PSE_ENGINE_ID found in environment variables"
  908. )
  909. elif engine == "brave":
  910. if app.state.config.BRAVE_SEARCH_API_KEY:
  911. return search_brave(
  912. app.state.config.BRAVE_SEARCH_API_KEY,
  913. query,
  914. app.state.config.RAG_WEB_SEARCH_RESULT_COUNT,
  915. app.state.config.RAG_WEB_SEARCH_DOMAIN_FILTER_LIST,
  916. )
  917. else:
  918. raise Exception("No BRAVE_SEARCH_API_KEY found in environment variables")
  919. elif engine == "serpstack":
  920. if app.state.config.SERPSTACK_API_KEY:
  921. return search_serpstack(
  922. app.state.config.SERPSTACK_API_KEY,
  923. query,
  924. app.state.config.RAG_WEB_SEARCH_RESULT_COUNT,
  925. app.state.config.RAG_WEB_SEARCH_DOMAIN_FILTER_LIST,
  926. https_enabled=app.state.config.SERPSTACK_HTTPS,
  927. )
  928. else:
  929. raise Exception("No SERPSTACK_API_KEY found in environment variables")
  930. elif engine == "serper":
  931. if app.state.config.SERPER_API_KEY:
  932. return search_serper(
  933. app.state.config.SERPER_API_KEY,
  934. query,
  935. app.state.config.RAG_WEB_SEARCH_RESULT_COUNT,
  936. app.state.config.RAG_WEB_SEARCH_DOMAIN_FILTER_LIST,
  937. )
  938. else:
  939. raise Exception("No SERPER_API_KEY found in environment variables")
  940. elif engine == "serply":
  941. if app.state.config.SERPLY_API_KEY:
  942. return search_serply(
  943. app.state.config.SERPLY_API_KEY,
  944. query,
  945. app.state.config.RAG_WEB_SEARCH_RESULT_COUNT,
  946. app.state.config.RAG_WEB_SEARCH_DOMAIN_FILTER_LIST,
  947. )
  948. else:
  949. raise Exception("No SERPLY_API_KEY found in environment variables")
  950. elif engine == "duckduckgo":
  951. return search_duckduckgo(
  952. query,
  953. app.state.config.RAG_WEB_SEARCH_RESULT_COUNT,
  954. app.state.config.RAG_WEB_SEARCH_DOMAIN_FILTER_LIST,
  955. )
  956. elif engine == "tavily":
  957. if app.state.config.TAVILY_API_KEY:
  958. return search_tavily(
  959. app.state.config.TAVILY_API_KEY,
  960. query,
  961. app.state.config.RAG_WEB_SEARCH_RESULT_COUNT,
  962. )
  963. else:
  964. raise Exception("No TAVILY_API_KEY found in environment variables")
  965. elif engine == "searchapi":
  966. if app.state.config.SEARCHAPI_API_KEY:
  967. return search_searchapi(
  968. app.state.config.SEARCHAPI_API_KEY,
  969. app.state.config.SEARCHAPI_ENGINE,
  970. query,
  971. app.state.config.RAG_WEB_SEARCH_RESULT_COUNT,
  972. app.state.config.RAG_WEB_SEARCH_DOMAIN_FILTER_LIST,
  973. )
  974. else:
  975. raise Exception("No SEARCHAPI_API_KEY found in environment variables")
  976. elif engine == "jina":
  977. return search_jina(query, app.state.config.RAG_WEB_SEARCH_RESULT_COUNT)
  978. else:
  979. raise Exception("No search engine API key found in environment variables")
  980. @app.post("/process/web/search")
  981. def process_web_search(form_data: SearchForm, user=Depends(get_verified_user)):
  982. try:
  983. logging.info(
  984. f"trying to web search with {app.state.config.RAG_WEB_SEARCH_ENGINE, form_data.query}"
  985. )
  986. web_results = search_web(
  987. app.state.config.RAG_WEB_SEARCH_ENGINE, form_data.query
  988. )
  989. except Exception as e:
  990. log.exception(e)
  991. print(e)
  992. raise HTTPException(
  993. status_code=status.HTTP_400_BAD_REQUEST,
  994. detail=ERROR_MESSAGES.WEB_SEARCH_ERROR(e),
  995. )
  996. try:
  997. collection_name = form_data.collection_name
  998. if collection_name == "":
  999. collection_name = calculate_sha256_string(form_data.query)[:63]
  1000. urls = [result.link for result in web_results]
  1001. loader = get_web_loader(urls)
  1002. docs = loader.load()
  1003. save_docs_to_vector_db(docs, collection_name, overwrite=True)
  1004. return {
  1005. "status": True,
  1006. "collection_name": collection_name,
  1007. "filenames": urls,
  1008. }
  1009. except Exception as e:
  1010. log.exception(e)
  1011. raise HTTPException(
  1012. status_code=status.HTTP_400_BAD_REQUEST,
  1013. detail=ERROR_MESSAGES.DEFAULT(e),
  1014. )
  1015. class QueryDocForm(BaseModel):
  1016. collection_name: str
  1017. query: str
  1018. k: Optional[int] = None
  1019. r: Optional[float] = None
  1020. hybrid: Optional[bool] = None
  1021. @app.post("/query/doc")
  1022. def query_doc_handler(
  1023. form_data: QueryDocForm,
  1024. user=Depends(get_verified_user),
  1025. ):
  1026. try:
  1027. if app.state.config.ENABLE_RAG_HYBRID_SEARCH:
  1028. return query_doc_with_hybrid_search(
  1029. collection_name=form_data.collection_name,
  1030. query=form_data.query,
  1031. embedding_function=app.state.EMBEDDING_FUNCTION,
  1032. k=form_data.k if form_data.k else app.state.config.TOP_K,
  1033. reranking_function=app.state.sentence_transformer_rf,
  1034. r=(
  1035. form_data.r if form_data.r else app.state.config.RELEVANCE_THRESHOLD
  1036. ),
  1037. )
  1038. else:
  1039. return query_doc(
  1040. collection_name=form_data.collection_name,
  1041. query=form_data.query,
  1042. embedding_function=app.state.EMBEDDING_FUNCTION,
  1043. k=form_data.k if form_data.k else app.state.config.TOP_K,
  1044. )
  1045. except Exception as e:
  1046. log.exception(e)
  1047. raise HTTPException(
  1048. status_code=status.HTTP_400_BAD_REQUEST,
  1049. detail=ERROR_MESSAGES.DEFAULT(e),
  1050. )
  1051. class QueryCollectionsForm(BaseModel):
  1052. collection_names: list[str]
  1053. query: str
  1054. k: Optional[int] = None
  1055. r: Optional[float] = None
  1056. hybrid: Optional[bool] = None
  1057. @app.post("/query/collection")
  1058. def query_collection_handler(
  1059. form_data: QueryCollectionsForm,
  1060. user=Depends(get_verified_user),
  1061. ):
  1062. try:
  1063. if app.state.config.ENABLE_RAG_HYBRID_SEARCH:
  1064. return query_collection_with_hybrid_search(
  1065. collection_names=form_data.collection_names,
  1066. query=form_data.query,
  1067. embedding_function=app.state.EMBEDDING_FUNCTION,
  1068. k=form_data.k if form_data.k else app.state.config.TOP_K,
  1069. reranking_function=app.state.sentence_transformer_rf,
  1070. r=(
  1071. form_data.r if form_data.r else app.state.config.RELEVANCE_THRESHOLD
  1072. ),
  1073. )
  1074. else:
  1075. return query_collection(
  1076. collection_names=form_data.collection_names,
  1077. query=form_data.query,
  1078. embedding_function=app.state.EMBEDDING_FUNCTION,
  1079. k=form_data.k if form_data.k else app.state.config.TOP_K,
  1080. )
  1081. except Exception as e:
  1082. log.exception(e)
  1083. raise HTTPException(
  1084. status_code=status.HTTP_400_BAD_REQUEST,
  1085. detail=ERROR_MESSAGES.DEFAULT(e),
  1086. )
  1087. ####################################
  1088. #
  1089. # Vector DB operations
  1090. #
  1091. ####################################
  1092. class DeleteForm(BaseModel):
  1093. collection_name: str
  1094. file_id: str
  1095. @app.post("/delete")
  1096. def delete_entries_from_collection(form_data: DeleteForm, user=Depends(get_admin_user)):
  1097. try:
  1098. if VECTOR_DB_CLIENT.has_collection(collection_name=form_data.collection_name):
  1099. file = Files.get_file_by_id(form_data.file_id)
  1100. hash = file.hash
  1101. VECTOR_DB_CLIENT.delete(
  1102. collection_name=form_data.collection_name,
  1103. metadata={"hash": hash},
  1104. )
  1105. return {"status": True}
  1106. else:
  1107. return {"status": False}
  1108. except Exception as e:
  1109. log.exception(e)
  1110. return {"status": False}
  1111. @app.post("/reset/db")
  1112. def reset_vector_db(user=Depends(get_admin_user)):
  1113. VECTOR_DB_CLIENT.reset()
  1114. Knowledges.delete_all_knowledge()
  1115. @app.post("/reset/uploads")
  1116. def reset_upload_dir(user=Depends(get_admin_user)) -> bool:
  1117. folder = f"{UPLOAD_DIR}"
  1118. try:
  1119. # Check if the directory exists
  1120. if os.path.exists(folder):
  1121. # Iterate over all the files and directories in the specified directory
  1122. for filename in os.listdir(folder):
  1123. file_path = os.path.join(folder, filename)
  1124. try:
  1125. if os.path.isfile(file_path) or os.path.islink(file_path):
  1126. os.unlink(file_path) # Remove the file or link
  1127. elif os.path.isdir(file_path):
  1128. shutil.rmtree(file_path) # Remove the directory
  1129. except Exception as e:
  1130. print(f"Failed to delete {file_path}. Reason: {e}")
  1131. else:
  1132. print(f"The directory {folder} does not exist")
  1133. except Exception as e:
  1134. print(f"Failed to process the directory {folder}. Reason: {e}")
  1135. return True
  1136. if ENV == "dev":
  1137. @app.get("/ef")
  1138. async def get_embeddings():
  1139. return {"result": app.state.EMBEDDING_FUNCTION("hello world")}
  1140. @app.get("/ef/{text}")
  1141. async def get_embeddings_text(text: str):
  1142. return {"result": app.state.EMBEDDING_FUNCTION(text)}