main.py 46 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342
  1. # TODO: Merge this with the webui_app and make it a single app
  2. import json
  3. import logging
  4. import mimetypes
  5. import os
  6. import shutil
  7. import uuid
  8. from datetime import datetime
  9. from pathlib import Path
  10. from typing import Iterator, Optional, Sequence, Union
  11. from fastapi import Depends, FastAPI, File, Form, HTTPException, UploadFile, status
  12. from fastapi.middleware.cors import CORSMiddleware
  13. from pydantic import BaseModel
  14. import tiktoken
  15. from open_webui.storage.provider import Storage
  16. from open_webui.apps.webui.models.knowledge import Knowledges
  17. from open_webui.apps.retrieval.vector.connector import VECTOR_DB_CLIENT
  18. # Document loaders
  19. from open_webui.apps.retrieval.loaders.main import Loader
  20. # Web search engines
  21. from open_webui.apps.retrieval.web.main import SearchResult
  22. from open_webui.apps.retrieval.web.utils import get_web_loader
  23. from open_webui.apps.retrieval.web.brave import search_brave
  24. from open_webui.apps.retrieval.web.duckduckgo import search_duckduckgo
  25. from open_webui.apps.retrieval.web.google_pse import search_google_pse
  26. from open_webui.apps.retrieval.web.jina_search import search_jina
  27. from open_webui.apps.retrieval.web.searchapi import search_searchapi
  28. from open_webui.apps.retrieval.web.searxng import search_searxng
  29. from open_webui.apps.retrieval.web.serper import search_serper
  30. from open_webui.apps.retrieval.web.serply import search_serply
  31. from open_webui.apps.retrieval.web.serpstack import search_serpstack
  32. from open_webui.apps.retrieval.web.tavily import search_tavily
  33. from open_webui.apps.retrieval.web.bing import search_bing
  34. from open_webui.apps.retrieval.utils import (
  35. get_embedding_function,
  36. get_model_path,
  37. query_collection,
  38. query_collection_with_hybrid_search,
  39. query_doc,
  40. query_doc_with_hybrid_search,
  41. )
  42. from open_webui.apps.webui.models.files import Files
  43. from open_webui.config import (
  44. BRAVE_SEARCH_API_KEY,
  45. TIKTOKEN_ENCODING_NAME,
  46. RAG_TEXT_SPLITTER,
  47. CHUNK_OVERLAP,
  48. CHUNK_SIZE,
  49. CONTENT_EXTRACTION_ENGINE,
  50. CORS_ALLOW_ORIGIN,
  51. ENABLE_RAG_HYBRID_SEARCH,
  52. ENABLE_RAG_LOCAL_WEB_FETCH,
  53. ENABLE_RAG_WEB_LOADER_SSL_VERIFICATION,
  54. ENABLE_RAG_WEB_SEARCH,
  55. ENV,
  56. GOOGLE_PSE_API_KEY,
  57. GOOGLE_PSE_ENGINE_ID,
  58. PDF_EXTRACT_IMAGES,
  59. RAG_EMBEDDING_ENGINE,
  60. RAG_EMBEDDING_MODEL,
  61. RAG_EMBEDDING_MODEL_AUTO_UPDATE,
  62. RAG_EMBEDDING_MODEL_TRUST_REMOTE_CODE,
  63. RAG_EMBEDDING_BATCH_SIZE,
  64. RAG_FILE_MAX_COUNT,
  65. RAG_FILE_MAX_SIZE,
  66. RAG_OPENAI_API_BASE_URL,
  67. RAG_OPENAI_API_KEY,
  68. RAG_RELEVANCE_THRESHOLD,
  69. RAG_RERANKING_MODEL,
  70. RAG_RERANKING_MODEL_AUTO_UPDATE,
  71. RAG_RERANKING_MODEL_TRUST_REMOTE_CODE,
  72. DEFAULT_RAG_TEMPLATE,
  73. RAG_TEMPLATE,
  74. RAG_TOP_K,
  75. RAG_WEB_SEARCH_CONCURRENT_REQUESTS,
  76. RAG_WEB_SEARCH_DOMAIN_FILTER_LIST,
  77. RAG_WEB_SEARCH_ENGINE,
  78. RAG_WEB_SEARCH_RESULT_COUNT,
  79. SEARCHAPI_API_KEY,
  80. SEARCHAPI_ENGINE,
  81. SEARXNG_QUERY_URL,
  82. SERPER_API_KEY,
  83. SERPLY_API_KEY,
  84. SERPSTACK_API_KEY,
  85. SERPSTACK_HTTPS,
  86. TAVILY_API_KEY,
  87. TIKA_SERVER_URL,
  88. UPLOAD_DIR,
  89. YOUTUBE_LOADER_LANGUAGE,
  90. DEFAULT_LOCALE,
  91. AppConfig,
  92. )
  93. from open_webui.constants import ERROR_MESSAGES
  94. from open_webui.env import SRC_LOG_LEVELS, DEVICE_TYPE, DOCKER, BING_SEARCH_V7_ENDPOINT, BING_SEARCH_V7_SUBSCRIPTION_KEY
  95. from open_webui.utils.misc import (
  96. calculate_sha256,
  97. calculate_sha256_string,
  98. extract_folders_after_data_docs,
  99. sanitize_filename,
  100. )
  101. from open_webui.utils.utils import get_admin_user, get_verified_user
  102. from langchain.text_splitter import RecursiveCharacterTextSplitter, TokenTextSplitter
  103. from langchain_community.document_loaders import (
  104. YoutubeLoader,
  105. )
  106. from langchain_core.documents import Document
  107. log = logging.getLogger(__name__)
  108. log.setLevel(SRC_LOG_LEVELS["RAG"])
  109. app = FastAPI()
  110. app.state.config = AppConfig()
  111. app.state.config.TOP_K = RAG_TOP_K
  112. app.state.config.RELEVANCE_THRESHOLD = RAG_RELEVANCE_THRESHOLD
  113. app.state.config.FILE_MAX_SIZE = RAG_FILE_MAX_SIZE
  114. app.state.config.FILE_MAX_COUNT = RAG_FILE_MAX_COUNT
  115. app.state.config.ENABLE_RAG_HYBRID_SEARCH = ENABLE_RAG_HYBRID_SEARCH
  116. app.state.config.ENABLE_RAG_WEB_LOADER_SSL_VERIFICATION = (
  117. ENABLE_RAG_WEB_LOADER_SSL_VERIFICATION
  118. )
  119. app.state.config.CONTENT_EXTRACTION_ENGINE = CONTENT_EXTRACTION_ENGINE
  120. app.state.config.TIKA_SERVER_URL = TIKA_SERVER_URL
  121. app.state.config.TEXT_SPLITTER = RAG_TEXT_SPLITTER
  122. app.state.config.TIKTOKEN_ENCODING_NAME = TIKTOKEN_ENCODING_NAME
  123. app.state.config.CHUNK_SIZE = CHUNK_SIZE
  124. app.state.config.CHUNK_OVERLAP = CHUNK_OVERLAP
  125. app.state.config.RAG_EMBEDDING_ENGINE = RAG_EMBEDDING_ENGINE
  126. app.state.config.RAG_EMBEDDING_MODEL = RAG_EMBEDDING_MODEL
  127. app.state.config.RAG_EMBEDDING_BATCH_SIZE = RAG_EMBEDDING_BATCH_SIZE
  128. app.state.config.RAG_RERANKING_MODEL = RAG_RERANKING_MODEL
  129. app.state.config.RAG_TEMPLATE = RAG_TEMPLATE
  130. app.state.config.OPENAI_API_BASE_URL = RAG_OPENAI_API_BASE_URL
  131. app.state.config.OPENAI_API_KEY = RAG_OPENAI_API_KEY
  132. app.state.config.PDF_EXTRACT_IMAGES = PDF_EXTRACT_IMAGES
  133. app.state.config.YOUTUBE_LOADER_LANGUAGE = YOUTUBE_LOADER_LANGUAGE
  134. app.state.YOUTUBE_LOADER_TRANSLATION = None
  135. app.state.config.ENABLE_RAG_WEB_SEARCH = ENABLE_RAG_WEB_SEARCH
  136. app.state.config.RAG_WEB_SEARCH_ENGINE = RAG_WEB_SEARCH_ENGINE
  137. app.state.config.RAG_WEB_SEARCH_DOMAIN_FILTER_LIST = RAG_WEB_SEARCH_DOMAIN_FILTER_LIST
  138. app.state.config.SEARXNG_QUERY_URL = SEARXNG_QUERY_URL
  139. app.state.config.GOOGLE_PSE_API_KEY = GOOGLE_PSE_API_KEY
  140. app.state.config.GOOGLE_PSE_ENGINE_ID = GOOGLE_PSE_ENGINE_ID
  141. app.state.config.BRAVE_SEARCH_API_KEY = BRAVE_SEARCH_API_KEY
  142. app.state.config.SERPSTACK_API_KEY = SERPSTACK_API_KEY
  143. app.state.config.SERPSTACK_HTTPS = SERPSTACK_HTTPS
  144. app.state.config.SERPER_API_KEY = SERPER_API_KEY
  145. app.state.config.SERPLY_API_KEY = SERPLY_API_KEY
  146. app.state.config.TAVILY_API_KEY = TAVILY_API_KEY
  147. app.state.config.SEARCHAPI_API_KEY = SEARCHAPI_API_KEY
  148. app.state.config.SEARCHAPI_ENGINE = SEARCHAPI_ENGINE
  149. app.state.config.RAG_WEB_SEARCH_RESULT_COUNT = RAG_WEB_SEARCH_RESULT_COUNT
  150. app.state.config.RAG_WEB_SEARCH_CONCURRENT_REQUESTS = RAG_WEB_SEARCH_CONCURRENT_REQUESTS
  151. def update_embedding_model(
  152. embedding_model: str,
  153. auto_update: bool = False,
  154. ):
  155. if embedding_model and app.state.config.RAG_EMBEDDING_ENGINE == "":
  156. from sentence_transformers import SentenceTransformer
  157. app.state.sentence_transformer_ef = SentenceTransformer(
  158. get_model_path(embedding_model, auto_update),
  159. device=DEVICE_TYPE,
  160. trust_remote_code=RAG_EMBEDDING_MODEL_TRUST_REMOTE_CODE,
  161. )
  162. else:
  163. app.state.sentence_transformer_ef = None
  164. def update_reranking_model(
  165. reranking_model: str,
  166. auto_update: bool = False,
  167. ):
  168. if reranking_model:
  169. if any(model in reranking_model for model in ["jinaai/jina-colbert-v2"]):
  170. try:
  171. from open_webui.apps.retrieval.models.colbert import ColBERT
  172. app.state.sentence_transformer_rf = ColBERT(
  173. get_model_path(reranking_model, auto_update),
  174. env="docker" if DOCKER else None,
  175. )
  176. except Exception as e:
  177. log.error(f"ColBERT: {e}")
  178. app.state.sentence_transformer_rf = None
  179. app.state.config.ENABLE_RAG_HYBRID_SEARCH = False
  180. else:
  181. import sentence_transformers
  182. try:
  183. app.state.sentence_transformer_rf = sentence_transformers.CrossEncoder(
  184. get_model_path(reranking_model, auto_update),
  185. device=DEVICE_TYPE,
  186. trust_remote_code=RAG_RERANKING_MODEL_TRUST_REMOTE_CODE,
  187. )
  188. except:
  189. log.error("CrossEncoder error")
  190. app.state.sentence_transformer_rf = None
  191. app.state.config.ENABLE_RAG_HYBRID_SEARCH = False
  192. else:
  193. app.state.sentence_transformer_rf = None
  194. update_embedding_model(
  195. app.state.config.RAG_EMBEDDING_MODEL,
  196. RAG_EMBEDDING_MODEL_AUTO_UPDATE,
  197. )
  198. update_reranking_model(
  199. app.state.config.RAG_RERANKING_MODEL,
  200. RAG_RERANKING_MODEL_AUTO_UPDATE,
  201. )
  202. app.state.EMBEDDING_FUNCTION = get_embedding_function(
  203. app.state.config.RAG_EMBEDDING_ENGINE,
  204. app.state.config.RAG_EMBEDDING_MODEL,
  205. app.state.sentence_transformer_ef,
  206. app.state.config.OPENAI_API_KEY,
  207. app.state.config.OPENAI_API_BASE_URL,
  208. app.state.config.RAG_EMBEDDING_BATCH_SIZE,
  209. )
  210. app.add_middleware(
  211. CORSMiddleware,
  212. allow_origins=CORS_ALLOW_ORIGIN,
  213. allow_credentials=True,
  214. allow_methods=["*"],
  215. allow_headers=["*"],
  216. )
  217. class CollectionNameForm(BaseModel):
  218. collection_name: Optional[str] = None
  219. class ProcessUrlForm(CollectionNameForm):
  220. url: str
  221. class SearchForm(CollectionNameForm):
  222. query: str
  223. @app.get("/")
  224. async def get_status():
  225. return {
  226. "status": True,
  227. "chunk_size": app.state.config.CHUNK_SIZE,
  228. "chunk_overlap": app.state.config.CHUNK_OVERLAP,
  229. "template": app.state.config.RAG_TEMPLATE,
  230. "embedding_engine": app.state.config.RAG_EMBEDDING_ENGINE,
  231. "embedding_model": app.state.config.RAG_EMBEDDING_MODEL,
  232. "reranking_model": app.state.config.RAG_RERANKING_MODEL,
  233. "embedding_batch_size": app.state.config.RAG_EMBEDDING_BATCH_SIZE,
  234. }
  235. @app.get("/embedding")
  236. async def get_embedding_config(user=Depends(get_admin_user)):
  237. return {
  238. "status": True,
  239. "embedding_engine": app.state.config.RAG_EMBEDDING_ENGINE,
  240. "embedding_model": app.state.config.RAG_EMBEDDING_MODEL,
  241. "embedding_batch_size": app.state.config.RAG_EMBEDDING_BATCH_SIZE,
  242. "openai_config": {
  243. "url": app.state.config.OPENAI_API_BASE_URL,
  244. "key": app.state.config.OPENAI_API_KEY,
  245. },
  246. }
  247. @app.get("/reranking")
  248. async def get_reraanking_config(user=Depends(get_admin_user)):
  249. return {
  250. "status": True,
  251. "reranking_model": app.state.config.RAG_RERANKING_MODEL,
  252. }
  253. class OpenAIConfigForm(BaseModel):
  254. url: str
  255. key: str
  256. class EmbeddingModelUpdateForm(BaseModel):
  257. openai_config: Optional[OpenAIConfigForm] = None
  258. embedding_engine: str
  259. embedding_model: str
  260. embedding_batch_size: Optional[int] = 1
  261. @app.post("/embedding/update")
  262. async def update_embedding_config(
  263. form_data: EmbeddingModelUpdateForm, user=Depends(get_admin_user)
  264. ):
  265. log.info(
  266. f"Updating embedding model: {app.state.config.RAG_EMBEDDING_MODEL} to {form_data.embedding_model}"
  267. )
  268. try:
  269. app.state.config.RAG_EMBEDDING_ENGINE = form_data.embedding_engine
  270. app.state.config.RAG_EMBEDDING_MODEL = form_data.embedding_model
  271. if app.state.config.RAG_EMBEDDING_ENGINE in ["ollama", "openai"]:
  272. if form_data.openai_config is not None:
  273. app.state.config.OPENAI_API_BASE_URL = form_data.openai_config.url
  274. app.state.config.OPENAI_API_KEY = form_data.openai_config.key
  275. app.state.config.RAG_EMBEDDING_BATCH_SIZE = form_data.embedding_batch_size
  276. update_embedding_model(app.state.config.RAG_EMBEDDING_MODEL)
  277. app.state.EMBEDDING_FUNCTION = get_embedding_function(
  278. app.state.config.RAG_EMBEDDING_ENGINE,
  279. app.state.config.RAG_EMBEDDING_MODEL,
  280. app.state.sentence_transformer_ef,
  281. app.state.config.OPENAI_API_KEY,
  282. app.state.config.OPENAI_API_BASE_URL,
  283. app.state.config.RAG_EMBEDDING_BATCH_SIZE,
  284. )
  285. return {
  286. "status": True,
  287. "embedding_engine": app.state.config.RAG_EMBEDDING_ENGINE,
  288. "embedding_model": app.state.config.RAG_EMBEDDING_MODEL,
  289. "embedding_batch_size": app.state.config.RAG_EMBEDDING_BATCH_SIZE,
  290. "openai_config": {
  291. "url": app.state.config.OPENAI_API_BASE_URL,
  292. "key": app.state.config.OPENAI_API_KEY,
  293. },
  294. }
  295. except Exception as e:
  296. log.exception(f"Problem updating embedding model: {e}")
  297. raise HTTPException(
  298. status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
  299. detail=ERROR_MESSAGES.DEFAULT(e),
  300. )
  301. class RerankingModelUpdateForm(BaseModel):
  302. reranking_model: str
  303. @app.post("/reranking/update")
  304. async def update_reranking_config(
  305. form_data: RerankingModelUpdateForm, user=Depends(get_admin_user)
  306. ):
  307. log.info(
  308. f"Updating reranking model: {app.state.config.RAG_RERANKING_MODEL} to {form_data.reranking_model}"
  309. )
  310. try:
  311. app.state.config.RAG_RERANKING_MODEL = form_data.reranking_model
  312. update_reranking_model(app.state.config.RAG_RERANKING_MODEL, True)
  313. return {
  314. "status": True,
  315. "reranking_model": app.state.config.RAG_RERANKING_MODEL,
  316. }
  317. except Exception as e:
  318. log.exception(f"Problem updating reranking model: {e}")
  319. raise HTTPException(
  320. status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
  321. detail=ERROR_MESSAGES.DEFAULT(e),
  322. )
  323. @app.get("/config")
  324. async def get_rag_config(user=Depends(get_admin_user)):
  325. return {
  326. "status": True,
  327. "pdf_extract_images": app.state.config.PDF_EXTRACT_IMAGES,
  328. "content_extraction": {
  329. "engine": app.state.config.CONTENT_EXTRACTION_ENGINE,
  330. "tika_server_url": app.state.config.TIKA_SERVER_URL,
  331. },
  332. "chunk": {
  333. "text_splitter": app.state.config.TEXT_SPLITTER,
  334. "chunk_size": app.state.config.CHUNK_SIZE,
  335. "chunk_overlap": app.state.config.CHUNK_OVERLAP,
  336. },
  337. "file": {
  338. "max_size": app.state.config.FILE_MAX_SIZE,
  339. "max_count": app.state.config.FILE_MAX_COUNT,
  340. },
  341. "youtube": {
  342. "language": app.state.config.YOUTUBE_LOADER_LANGUAGE,
  343. "translation": app.state.YOUTUBE_LOADER_TRANSLATION,
  344. },
  345. "web": {
  346. "ssl_verification": app.state.config.ENABLE_RAG_WEB_LOADER_SSL_VERIFICATION,
  347. "search": {
  348. "enabled": app.state.config.ENABLE_RAG_WEB_SEARCH,
  349. "engine": app.state.config.RAG_WEB_SEARCH_ENGINE,
  350. "searxng_query_url": app.state.config.SEARXNG_QUERY_URL,
  351. "google_pse_api_key": app.state.config.GOOGLE_PSE_API_KEY,
  352. "google_pse_engine_id": app.state.config.GOOGLE_PSE_ENGINE_ID,
  353. "brave_search_api_key": app.state.config.BRAVE_SEARCH_API_KEY,
  354. "serpstack_api_key": app.state.config.SERPSTACK_API_KEY,
  355. "serpstack_https": app.state.config.SERPSTACK_HTTPS,
  356. "serper_api_key": app.state.config.SERPER_API_KEY,
  357. "serply_api_key": app.state.config.SERPLY_API_KEY,
  358. "tavily_api_key": app.state.config.TAVILY_API_KEY,
  359. "searchapi_api_key": app.state.config.SEARCHAPI_API_KEY,
  360. "seaarchapi_engine": app.state.config.SEARCHAPI_ENGINE,
  361. "result_count": app.state.config.RAG_WEB_SEARCH_RESULT_COUNT,
  362. "concurrent_requests": app.state.config.RAG_WEB_SEARCH_CONCURRENT_REQUESTS,
  363. },
  364. },
  365. }
  366. class FileConfig(BaseModel):
  367. max_size: Optional[int] = None
  368. max_count: Optional[int] = None
  369. class ContentExtractionConfig(BaseModel):
  370. engine: str = ""
  371. tika_server_url: Optional[str] = None
  372. class ChunkParamUpdateForm(BaseModel):
  373. text_splitter: Optional[str] = None
  374. chunk_size: int
  375. chunk_overlap: int
  376. class YoutubeLoaderConfig(BaseModel):
  377. language: list[str]
  378. translation: Optional[str] = None
  379. class WebSearchConfig(BaseModel):
  380. enabled: bool
  381. engine: Optional[str] = None
  382. searxng_query_url: Optional[str] = None
  383. google_pse_api_key: Optional[str] = None
  384. google_pse_engine_id: Optional[str] = None
  385. brave_search_api_key: Optional[str] = None
  386. serpstack_api_key: Optional[str] = None
  387. serpstack_https: Optional[bool] = None
  388. serper_api_key: Optional[str] = None
  389. serply_api_key: Optional[str] = None
  390. tavily_api_key: Optional[str] = None
  391. searchapi_api_key: Optional[str] = None
  392. searchapi_engine: Optional[str] = None
  393. result_count: Optional[int] = None
  394. concurrent_requests: Optional[int] = None
  395. class WebConfig(BaseModel):
  396. search: WebSearchConfig
  397. web_loader_ssl_verification: Optional[bool] = None
  398. class ConfigUpdateForm(BaseModel):
  399. pdf_extract_images: Optional[bool] = None
  400. file: Optional[FileConfig] = None
  401. content_extraction: Optional[ContentExtractionConfig] = None
  402. chunk: Optional[ChunkParamUpdateForm] = None
  403. youtube: Optional[YoutubeLoaderConfig] = None
  404. web: Optional[WebConfig] = None
  405. @app.post("/config/update")
  406. async def update_rag_config(form_data: ConfigUpdateForm, user=Depends(get_admin_user)):
  407. app.state.config.PDF_EXTRACT_IMAGES = (
  408. form_data.pdf_extract_images
  409. if form_data.pdf_extract_images is not None
  410. else app.state.config.PDF_EXTRACT_IMAGES
  411. )
  412. if form_data.file is not None:
  413. app.state.config.FILE_MAX_SIZE = form_data.file.max_size
  414. app.state.config.FILE_MAX_COUNT = form_data.file.max_count
  415. if form_data.content_extraction is not None:
  416. log.info(f"Updating text settings: {form_data.content_extraction}")
  417. app.state.config.CONTENT_EXTRACTION_ENGINE = form_data.content_extraction.engine
  418. app.state.config.TIKA_SERVER_URL = form_data.content_extraction.tika_server_url
  419. if form_data.chunk is not None:
  420. app.state.config.TEXT_SPLITTER = form_data.chunk.text_splitter
  421. app.state.config.CHUNK_SIZE = form_data.chunk.chunk_size
  422. app.state.config.CHUNK_OVERLAP = form_data.chunk.chunk_overlap
  423. if form_data.youtube is not None:
  424. app.state.config.YOUTUBE_LOADER_LANGUAGE = form_data.youtube.language
  425. app.state.YOUTUBE_LOADER_TRANSLATION = form_data.youtube.translation
  426. if form_data.web is not None:
  427. app.state.config.ENABLE_RAG_WEB_LOADER_SSL_VERIFICATION = (
  428. form_data.web.web_loader_ssl_verification
  429. )
  430. app.state.config.ENABLE_RAG_WEB_SEARCH = form_data.web.search.enabled
  431. app.state.config.RAG_WEB_SEARCH_ENGINE = form_data.web.search.engine
  432. app.state.config.SEARXNG_QUERY_URL = form_data.web.search.searxng_query_url
  433. app.state.config.GOOGLE_PSE_API_KEY = form_data.web.search.google_pse_api_key
  434. app.state.config.GOOGLE_PSE_ENGINE_ID = (
  435. form_data.web.search.google_pse_engine_id
  436. )
  437. app.state.config.BRAVE_SEARCH_API_KEY = (
  438. form_data.web.search.brave_search_api_key
  439. )
  440. app.state.config.SERPSTACK_API_KEY = form_data.web.search.serpstack_api_key
  441. app.state.config.SERPSTACK_HTTPS = form_data.web.search.serpstack_https
  442. app.state.config.SERPER_API_KEY = form_data.web.search.serper_api_key
  443. app.state.config.SERPLY_API_KEY = form_data.web.search.serply_api_key
  444. app.state.config.TAVILY_API_KEY = form_data.web.search.tavily_api_key
  445. app.state.config.SEARCHAPI_API_KEY = form_data.web.search.searchapi_api_key
  446. app.state.config.SEARCHAPI_ENGINE = form_data.web.search.searchapi_engine
  447. app.state.config.RAG_WEB_SEARCH_RESULT_COUNT = form_data.web.search.result_count
  448. app.state.config.RAG_WEB_SEARCH_CONCURRENT_REQUESTS = (
  449. form_data.web.search.concurrent_requests
  450. )
  451. return {
  452. "status": True,
  453. "pdf_extract_images": app.state.config.PDF_EXTRACT_IMAGES,
  454. "file": {
  455. "max_size": app.state.config.FILE_MAX_SIZE,
  456. "max_count": app.state.config.FILE_MAX_COUNT,
  457. },
  458. "content_extraction": {
  459. "engine": app.state.config.CONTENT_EXTRACTION_ENGINE,
  460. "tika_server_url": app.state.config.TIKA_SERVER_URL,
  461. },
  462. "chunk": {
  463. "text_splitter": app.state.config.TEXT_SPLITTER,
  464. "chunk_size": app.state.config.CHUNK_SIZE,
  465. "chunk_overlap": app.state.config.CHUNK_OVERLAP,
  466. },
  467. "youtube": {
  468. "language": app.state.config.YOUTUBE_LOADER_LANGUAGE,
  469. "translation": app.state.YOUTUBE_LOADER_TRANSLATION,
  470. },
  471. "web": {
  472. "ssl_verification": app.state.config.ENABLE_RAG_WEB_LOADER_SSL_VERIFICATION,
  473. "search": {
  474. "enabled": app.state.config.ENABLE_RAG_WEB_SEARCH,
  475. "engine": app.state.config.RAG_WEB_SEARCH_ENGINE,
  476. "searxng_query_url": app.state.config.SEARXNG_QUERY_URL,
  477. "google_pse_api_key": app.state.config.GOOGLE_PSE_API_KEY,
  478. "google_pse_engine_id": app.state.config.GOOGLE_PSE_ENGINE_ID,
  479. "brave_search_api_key": app.state.config.BRAVE_SEARCH_API_KEY,
  480. "serpstack_api_key": app.state.config.SERPSTACK_API_KEY,
  481. "serpstack_https": app.state.config.SERPSTACK_HTTPS,
  482. "serper_api_key": app.state.config.SERPER_API_KEY,
  483. "serply_api_key": app.state.config.SERPLY_API_KEY,
  484. "serachapi_api_key": app.state.config.SEARCHAPI_API_KEY,
  485. "searchapi_engine": app.state.config.SEARCHAPI_ENGINE,
  486. "tavily_api_key": app.state.config.TAVILY_API_KEY,
  487. "result_count": app.state.config.RAG_WEB_SEARCH_RESULT_COUNT,
  488. "concurrent_requests": app.state.config.RAG_WEB_SEARCH_CONCURRENT_REQUESTS,
  489. },
  490. },
  491. }
  492. @app.get("/template")
  493. async def get_rag_template(user=Depends(get_verified_user)):
  494. return {
  495. "status": True,
  496. "template": app.state.config.RAG_TEMPLATE,
  497. }
  498. @app.get("/query/settings")
  499. async def get_query_settings(user=Depends(get_admin_user)):
  500. return {
  501. "status": True,
  502. "template": app.state.config.RAG_TEMPLATE,
  503. "k": app.state.config.TOP_K,
  504. "r": app.state.config.RELEVANCE_THRESHOLD,
  505. "hybrid": app.state.config.ENABLE_RAG_HYBRID_SEARCH,
  506. }
  507. class QuerySettingsForm(BaseModel):
  508. k: Optional[int] = None
  509. r: Optional[float] = None
  510. template: Optional[str] = None
  511. hybrid: Optional[bool] = None
  512. @app.post("/query/settings/update")
  513. async def update_query_settings(
  514. form_data: QuerySettingsForm, user=Depends(get_admin_user)
  515. ):
  516. app.state.config.RAG_TEMPLATE = form_data.template
  517. app.state.config.TOP_K = form_data.k if form_data.k else 4
  518. app.state.config.RELEVANCE_THRESHOLD = form_data.r if form_data.r else 0.0
  519. app.state.config.ENABLE_RAG_HYBRID_SEARCH = (
  520. form_data.hybrid if form_data.hybrid else False
  521. )
  522. return {
  523. "status": True,
  524. "template": app.state.config.RAG_TEMPLATE,
  525. "k": app.state.config.TOP_K,
  526. "r": app.state.config.RELEVANCE_THRESHOLD,
  527. "hybrid": app.state.config.ENABLE_RAG_HYBRID_SEARCH,
  528. }
  529. ####################################
  530. #
  531. # Document process and retrieval
  532. #
  533. ####################################
  534. def save_docs_to_vector_db(
  535. docs,
  536. collection_name,
  537. metadata: Optional[dict] = None,
  538. overwrite: bool = False,
  539. split: bool = True,
  540. add: bool = False,
  541. ) -> bool:
  542. log.info(f"save_docs_to_vector_db {docs} {collection_name}")
  543. # Check if entries with the same hash (metadata.hash) already exist
  544. if metadata and "hash" in metadata:
  545. result = VECTOR_DB_CLIENT.query(
  546. collection_name=collection_name,
  547. filter={"hash": metadata["hash"]},
  548. )
  549. if result is not None:
  550. existing_doc_ids = result.ids[0]
  551. if existing_doc_ids:
  552. log.info(f"Document with hash {metadata['hash']} already exists")
  553. raise ValueError(ERROR_MESSAGES.DUPLICATE_CONTENT)
  554. if split:
  555. if app.state.config.TEXT_SPLITTER in ["", "character"]:
  556. text_splitter = RecursiveCharacterTextSplitter(
  557. chunk_size=app.state.config.CHUNK_SIZE,
  558. chunk_overlap=app.state.config.CHUNK_OVERLAP,
  559. add_start_index=True,
  560. )
  561. elif app.state.config.TEXT_SPLITTER == "token":
  562. log.info(
  563. f"Using token text splitter: {app.state.config.TIKTOKEN_ENCODING_NAME}"
  564. )
  565. tiktoken.get_encoding(str(app.state.config.TIKTOKEN_ENCODING_NAME))
  566. text_splitter = TokenTextSplitter(
  567. encoding_name=str(app.state.config.TIKTOKEN_ENCODING_NAME),
  568. chunk_size=app.state.config.CHUNK_SIZE,
  569. chunk_overlap=app.state.config.CHUNK_OVERLAP,
  570. add_start_index=True,
  571. )
  572. else:
  573. raise ValueError(ERROR_MESSAGES.DEFAULT("Invalid text splitter"))
  574. docs = text_splitter.split_documents(docs)
  575. if len(docs) == 0:
  576. raise ValueError(ERROR_MESSAGES.EMPTY_CONTENT)
  577. texts = [doc.page_content for doc in docs]
  578. metadatas = [
  579. {
  580. **doc.metadata,
  581. **(metadata if metadata else {}),
  582. "embedding_config": json.dumps(
  583. {
  584. "engine": app.state.config.RAG_EMBEDDING_ENGINE,
  585. "model": app.state.config.RAG_EMBEDDING_MODEL,
  586. }
  587. ),
  588. }
  589. for doc in docs
  590. ]
  591. # ChromaDB does not like datetime formats
  592. # for meta-data so convert them to string.
  593. for metadata in metadatas:
  594. for key, value in metadata.items():
  595. if isinstance(value, datetime):
  596. metadata[key] = str(value)
  597. try:
  598. if VECTOR_DB_CLIENT.has_collection(collection_name=collection_name):
  599. log.info(f"collection {collection_name} already exists")
  600. if overwrite:
  601. VECTOR_DB_CLIENT.delete_collection(collection_name=collection_name)
  602. log.info(f"deleting existing collection {collection_name}")
  603. elif add is False:
  604. log.info(
  605. f"collection {collection_name} already exists, overwrite is False and add is False"
  606. )
  607. return True
  608. log.info(f"adding to collection {collection_name}")
  609. embedding_function = get_embedding_function(
  610. app.state.config.RAG_EMBEDDING_ENGINE,
  611. app.state.config.RAG_EMBEDDING_MODEL,
  612. app.state.sentence_transformer_ef,
  613. app.state.config.OPENAI_API_KEY,
  614. app.state.config.OPENAI_API_BASE_URL,
  615. app.state.config.RAG_EMBEDDING_BATCH_SIZE,
  616. )
  617. embeddings = embedding_function(
  618. list(map(lambda x: x.replace("\n", " "), texts))
  619. )
  620. items = [
  621. {
  622. "id": str(uuid.uuid4()),
  623. "text": text,
  624. "vector": embeddings[idx],
  625. "metadata": metadatas[idx],
  626. }
  627. for idx, text in enumerate(texts)
  628. ]
  629. VECTOR_DB_CLIENT.insert(
  630. collection_name=collection_name,
  631. items=items,
  632. )
  633. return True
  634. except Exception as e:
  635. log.exception(e)
  636. return False
  637. class ProcessFileForm(BaseModel):
  638. file_id: str
  639. content: Optional[str] = None
  640. collection_name: Optional[str] = None
  641. @app.post("/process/file")
  642. def process_file(
  643. form_data: ProcessFileForm,
  644. user=Depends(get_verified_user),
  645. ):
  646. try:
  647. file = Files.get_file_by_id(form_data.file_id)
  648. collection_name = form_data.collection_name
  649. if collection_name is None:
  650. collection_name = f"file-{file.id}"
  651. if form_data.content:
  652. # Update the content in the file
  653. # Usage: /files/{file_id}/data/content/update
  654. VECTOR_DB_CLIENT.delete(
  655. collection_name=f"file-{file.id}",
  656. filter={"file_id": file.id},
  657. )
  658. docs = [
  659. Document(
  660. page_content=form_data.content,
  661. metadata={
  662. "name": file.meta.get("name", file.filename),
  663. "created_by": file.user_id,
  664. "file_id": file.id,
  665. **file.meta,
  666. },
  667. )
  668. ]
  669. text_content = form_data.content
  670. elif form_data.collection_name:
  671. # Check if the file has already been processed and save the content
  672. # Usage: /knowledge/{id}/file/add, /knowledge/{id}/file/update
  673. result = VECTOR_DB_CLIENT.query(
  674. collection_name=f"file-{file.id}", filter={"file_id": file.id}
  675. )
  676. if result is not None and len(result.ids[0]) > 0:
  677. docs = [
  678. Document(
  679. page_content=result.documents[0][idx],
  680. metadata=result.metadatas[0][idx],
  681. )
  682. for idx, id in enumerate(result.ids[0])
  683. ]
  684. else:
  685. docs = [
  686. Document(
  687. page_content=file.data.get("content", ""),
  688. metadata={
  689. "name": file.meta.get("name", file.filename),
  690. "created_by": file.user_id,
  691. "file_id": file.id,
  692. **file.meta,
  693. },
  694. )
  695. ]
  696. text_content = file.data.get("content", "")
  697. else:
  698. # Process the file and save the content
  699. # Usage: /files/
  700. file_path = file.path
  701. if file_path:
  702. file_path = Storage.get_file(file_path)
  703. loader = Loader(
  704. engine=app.state.config.CONTENT_EXTRACTION_ENGINE,
  705. TIKA_SERVER_URL=app.state.config.TIKA_SERVER_URL,
  706. PDF_EXTRACT_IMAGES=app.state.config.PDF_EXTRACT_IMAGES,
  707. )
  708. docs = loader.load(
  709. file.filename, file.meta.get("content_type"), file_path
  710. )
  711. else:
  712. docs = [
  713. Document(
  714. page_content=file.data.get("content", ""),
  715. metadata={
  716. "name": file.filename,
  717. "created_by": file.user_id,
  718. "file_id": file.id,
  719. **file.meta,
  720. },
  721. )
  722. ]
  723. text_content = " ".join([doc.page_content for doc in docs])
  724. log.debug(f"text_content: {text_content}")
  725. Files.update_file_data_by_id(
  726. file.id,
  727. {"content": text_content},
  728. )
  729. hash = calculate_sha256_string(text_content)
  730. Files.update_file_hash_by_id(file.id, hash)
  731. try:
  732. result = save_docs_to_vector_db(
  733. docs=docs,
  734. collection_name=collection_name,
  735. metadata={
  736. "file_id": file.id,
  737. "name": file.meta.get("name", file.filename),
  738. "hash": hash,
  739. },
  740. add=(True if form_data.collection_name else False),
  741. )
  742. if result:
  743. Files.update_file_metadata_by_id(
  744. file.id,
  745. {
  746. "collection_name": collection_name,
  747. },
  748. )
  749. return {
  750. "status": True,
  751. "collection_name": collection_name,
  752. "filename": file.meta.get("name", file.filename),
  753. "content": text_content,
  754. }
  755. except Exception as e:
  756. raise e
  757. except Exception as e:
  758. log.exception(e)
  759. if "No pandoc was found" in str(e):
  760. raise HTTPException(
  761. status_code=status.HTTP_400_BAD_REQUEST,
  762. detail=ERROR_MESSAGES.PANDOC_NOT_INSTALLED,
  763. )
  764. else:
  765. raise HTTPException(
  766. status_code=status.HTTP_400_BAD_REQUEST,
  767. detail=str(e),
  768. )
  769. class ProcessTextForm(BaseModel):
  770. name: str
  771. content: str
  772. collection_name: Optional[str] = None
  773. @app.post("/process/text")
  774. def process_text(
  775. form_data: ProcessTextForm,
  776. user=Depends(get_verified_user),
  777. ):
  778. collection_name = form_data.collection_name
  779. if collection_name is None:
  780. collection_name = calculate_sha256_string(form_data.content)
  781. docs = [
  782. Document(
  783. page_content=form_data.content,
  784. metadata={"name": form_data.name, "created_by": user.id},
  785. )
  786. ]
  787. text_content = form_data.content
  788. log.debug(f"text_content: {text_content}")
  789. result = save_docs_to_vector_db(docs, collection_name)
  790. if result:
  791. return {
  792. "status": True,
  793. "collection_name": collection_name,
  794. "content": text_content,
  795. }
  796. else:
  797. raise HTTPException(
  798. status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
  799. detail=ERROR_MESSAGES.DEFAULT(),
  800. )
  801. @app.post("/process/youtube")
  802. def process_youtube_video(form_data: ProcessUrlForm, user=Depends(get_verified_user)):
  803. try:
  804. collection_name = form_data.collection_name
  805. if not collection_name:
  806. collection_name = calculate_sha256_string(form_data.url)[:63]
  807. loader = YoutubeLoader.from_youtube_url(
  808. form_data.url,
  809. add_video_info=True,
  810. language=app.state.config.YOUTUBE_LOADER_LANGUAGE,
  811. translation=app.state.YOUTUBE_LOADER_TRANSLATION,
  812. )
  813. docs = loader.load()
  814. content = " ".join([doc.page_content for doc in docs])
  815. log.debug(f"text_content: {content}")
  816. save_docs_to_vector_db(docs, collection_name, overwrite=True)
  817. return {
  818. "status": True,
  819. "collection_name": collection_name,
  820. "filename": form_data.url,
  821. "file": {
  822. "data": {
  823. "content": content,
  824. },
  825. "meta": {
  826. "name": form_data.url,
  827. },
  828. },
  829. }
  830. except Exception as e:
  831. log.exception(e)
  832. raise HTTPException(
  833. status_code=status.HTTP_400_BAD_REQUEST,
  834. detail=ERROR_MESSAGES.DEFAULT(e),
  835. )
  836. @app.post("/process/web")
  837. def process_web(form_data: ProcessUrlForm, user=Depends(get_verified_user)):
  838. try:
  839. collection_name = form_data.collection_name
  840. if not collection_name:
  841. collection_name = calculate_sha256_string(form_data.url)[:63]
  842. loader = get_web_loader(
  843. form_data.url,
  844. verify_ssl=app.state.config.ENABLE_RAG_WEB_LOADER_SSL_VERIFICATION,
  845. requests_per_second=app.state.config.RAG_WEB_SEARCH_CONCURRENT_REQUESTS,
  846. )
  847. docs = loader.load()
  848. content = " ".join([doc.page_content for doc in docs])
  849. log.debug(f"text_content: {content}")
  850. save_docs_to_vector_db(docs, collection_name, overwrite=True)
  851. return {
  852. "status": True,
  853. "collection_name": collection_name,
  854. "filename": form_data.url,
  855. "file": {
  856. "data": {
  857. "content": content,
  858. },
  859. "meta": {
  860. "name": form_data.url,
  861. },
  862. },
  863. }
  864. except Exception as e:
  865. log.exception(e)
  866. raise HTTPException(
  867. status_code=status.HTTP_400_BAD_REQUEST,
  868. detail=ERROR_MESSAGES.DEFAULT(e),
  869. )
  870. def search_web(engine: str, query: str) -> list[SearchResult]:
  871. """Search the web using a search engine and return the results as a list of SearchResult objects.
  872. Will look for a search engine API key in environment variables in the following order:
  873. - SEARXNG_QUERY_URL
  874. - GOOGLE_PSE_API_KEY + GOOGLE_PSE_ENGINE_ID
  875. - BRAVE_SEARCH_API_KEY
  876. - SERPSTACK_API_KEY
  877. - SERPER_API_KEY
  878. - SERPLY_API_KEY
  879. - TAVILY_API_KEY
  880. - SEARCHAPI_API_KEY + SEARCHAPI_ENGINE (by default `google`)
  881. Args:
  882. query (str): The query to search for
  883. """
  884. # TODO: add playwright to search the web
  885. if engine == "searxng":
  886. if app.state.config.SEARXNG_QUERY_URL:
  887. return search_searxng(
  888. app.state.config.SEARXNG_QUERY_URL,
  889. query,
  890. app.state.config.RAG_WEB_SEARCH_RESULT_COUNT,
  891. app.state.config.RAG_WEB_SEARCH_DOMAIN_FILTER_LIST,
  892. )
  893. else:
  894. raise Exception("No SEARXNG_QUERY_URL found in environment variables")
  895. elif engine == "google_pse":
  896. if (
  897. app.state.config.GOOGLE_PSE_API_KEY
  898. and app.state.config.GOOGLE_PSE_ENGINE_ID
  899. ):
  900. return search_google_pse(
  901. app.state.config.GOOGLE_PSE_API_KEY,
  902. app.state.config.GOOGLE_PSE_ENGINE_ID,
  903. query,
  904. app.state.config.RAG_WEB_SEARCH_RESULT_COUNT,
  905. app.state.config.RAG_WEB_SEARCH_DOMAIN_FILTER_LIST,
  906. )
  907. else:
  908. raise Exception(
  909. "No GOOGLE_PSE_API_KEY or GOOGLE_PSE_ENGINE_ID found in environment variables"
  910. )
  911. elif engine == "brave":
  912. if app.state.config.BRAVE_SEARCH_API_KEY:
  913. return search_brave(
  914. app.state.config.BRAVE_SEARCH_API_KEY,
  915. query,
  916. app.state.config.RAG_WEB_SEARCH_RESULT_COUNT,
  917. app.state.config.RAG_WEB_SEARCH_DOMAIN_FILTER_LIST,
  918. )
  919. else:
  920. raise Exception("No BRAVE_SEARCH_API_KEY found in environment variables")
  921. elif engine == "serpstack":
  922. if app.state.config.SERPSTACK_API_KEY:
  923. return search_serpstack(
  924. app.state.config.SERPSTACK_API_KEY,
  925. query,
  926. app.state.config.RAG_WEB_SEARCH_RESULT_COUNT,
  927. app.state.config.RAG_WEB_SEARCH_DOMAIN_FILTER_LIST,
  928. https_enabled=app.state.config.SERPSTACK_HTTPS,
  929. )
  930. else:
  931. raise Exception("No SERPSTACK_API_KEY found in environment variables")
  932. elif engine == "serper":
  933. if app.state.config.SERPER_API_KEY:
  934. return search_serper(
  935. app.state.config.SERPER_API_KEY,
  936. query,
  937. app.state.config.RAG_WEB_SEARCH_RESULT_COUNT,
  938. app.state.config.RAG_WEB_SEARCH_DOMAIN_FILTER_LIST,
  939. )
  940. else:
  941. raise Exception("No SERPER_API_KEY found in environment variables")
  942. elif engine == "serply":
  943. if app.state.config.SERPLY_API_KEY:
  944. return search_serply(
  945. app.state.config.SERPLY_API_KEY,
  946. query,
  947. app.state.config.RAG_WEB_SEARCH_RESULT_COUNT,
  948. app.state.config.RAG_WEB_SEARCH_DOMAIN_FILTER_LIST,
  949. )
  950. else:
  951. raise Exception("No SERPLY_API_KEY found in environment variables")
  952. elif engine == "duckduckgo":
  953. return search_duckduckgo(
  954. query,
  955. app.state.config.RAG_WEB_SEARCH_RESULT_COUNT,
  956. app.state.config.RAG_WEB_SEARCH_DOMAIN_FILTER_LIST,
  957. )
  958. elif engine == "tavily":
  959. if app.state.config.TAVILY_API_KEY:
  960. return search_tavily(
  961. app.state.config.TAVILY_API_KEY,
  962. query,
  963. app.state.config.RAG_WEB_SEARCH_RESULT_COUNT,
  964. )
  965. else:
  966. raise Exception("No TAVILY_API_KEY found in environment variables")
  967. elif engine == "searchapi":
  968. if app.state.config.SEARCHAPI_API_KEY:
  969. return search_searchapi(
  970. app.state.config.SEARCHAPI_API_KEY,
  971. app.state.config.SEARCHAPI_ENGINE,
  972. query,
  973. app.state.config.RAG_WEB_SEARCH_RESULT_COUNT,
  974. app.state.config.RAG_WEB_SEARCH_DOMAIN_FILTER_LIST,
  975. )
  976. else:
  977. raise Exception("No SEARCHAPI_API_KEY found in environment variables")
  978. elif engine == "jina":
  979. return search_jina(query, app.state.config.RAG_WEB_SEARCH_RESULT_COUNT)
  980. elif engine == "bing":
  981. return search_bing(
  982. BING_SEARCH_V7_SUBSCRIPTION_KEY,
  983. BING_SEARCH_V7_ENDPOINT,
  984. str(DEFAULT_LOCALE),
  985. query,
  986. app.state.config.RAG_WEB_SEARCH_RESULT_COUNT,
  987. app.state.config.RAG_WEB_SEARCH_DOMAIN_FILTER_LIST,
  988. )
  989. else:
  990. raise Exception("No search engine API key found in environment variables")
  991. @app.post("/process/web/search")
  992. def process_web_search(form_data: SearchForm, user=Depends(get_verified_user)):
  993. try:
  994. logging.info(
  995. f"trying to web search with {app.state.config.RAG_WEB_SEARCH_ENGINE, form_data.query}"
  996. )
  997. web_results = search_web(
  998. app.state.config.RAG_WEB_SEARCH_ENGINE, form_data.query
  999. )
  1000. except Exception as e:
  1001. log.exception(e)
  1002. print(e)
  1003. raise HTTPException(
  1004. status_code=status.HTTP_400_BAD_REQUEST,
  1005. detail=ERROR_MESSAGES.WEB_SEARCH_ERROR(e),
  1006. )
  1007. try:
  1008. collection_name = form_data.collection_name
  1009. if collection_name == "":
  1010. collection_name = calculate_sha256_string(form_data.query)[:63]
  1011. urls = [result.link for result in web_results]
  1012. loader = get_web_loader(urls)
  1013. docs = loader.load()
  1014. save_docs_to_vector_db(docs, collection_name, overwrite=True)
  1015. return {
  1016. "status": True,
  1017. "collection_name": collection_name,
  1018. "filenames": urls,
  1019. }
  1020. except Exception as e:
  1021. log.exception(e)
  1022. raise HTTPException(
  1023. status_code=status.HTTP_400_BAD_REQUEST,
  1024. detail=ERROR_MESSAGES.DEFAULT(e),
  1025. )
  1026. class QueryDocForm(BaseModel):
  1027. collection_name: str
  1028. query: str
  1029. k: Optional[int] = None
  1030. r: Optional[float] = None
  1031. hybrid: Optional[bool] = None
  1032. @app.post("/query/doc")
  1033. def query_doc_handler(
  1034. form_data: QueryDocForm,
  1035. user=Depends(get_verified_user),
  1036. ):
  1037. try:
  1038. if app.state.config.ENABLE_RAG_HYBRID_SEARCH:
  1039. return query_doc_with_hybrid_search(
  1040. collection_name=form_data.collection_name,
  1041. query=form_data.query,
  1042. embedding_function=app.state.EMBEDDING_FUNCTION,
  1043. k=form_data.k if form_data.k else app.state.config.TOP_K,
  1044. reranking_function=app.state.sentence_transformer_rf,
  1045. r=(
  1046. form_data.r if form_data.r else app.state.config.RELEVANCE_THRESHOLD
  1047. ),
  1048. )
  1049. else:
  1050. return query_doc(
  1051. collection_name=form_data.collection_name,
  1052. query=form_data.query,
  1053. embedding_function=app.state.EMBEDDING_FUNCTION,
  1054. k=form_data.k if form_data.k else app.state.config.TOP_K,
  1055. )
  1056. except Exception as e:
  1057. log.exception(e)
  1058. raise HTTPException(
  1059. status_code=status.HTTP_400_BAD_REQUEST,
  1060. detail=ERROR_MESSAGES.DEFAULT(e),
  1061. )
  1062. class QueryCollectionsForm(BaseModel):
  1063. collection_names: list[str]
  1064. query: str
  1065. k: Optional[int] = None
  1066. r: Optional[float] = None
  1067. hybrid: Optional[bool] = None
  1068. @app.post("/query/collection")
  1069. def query_collection_handler(
  1070. form_data: QueryCollectionsForm,
  1071. user=Depends(get_verified_user),
  1072. ):
  1073. try:
  1074. if app.state.config.ENABLE_RAG_HYBRID_SEARCH:
  1075. return query_collection_with_hybrid_search(
  1076. collection_names=form_data.collection_names,
  1077. query=form_data.query,
  1078. embedding_function=app.state.EMBEDDING_FUNCTION,
  1079. k=form_data.k if form_data.k else app.state.config.TOP_K,
  1080. reranking_function=app.state.sentence_transformer_rf,
  1081. r=(
  1082. form_data.r if form_data.r else app.state.config.RELEVANCE_THRESHOLD
  1083. ),
  1084. )
  1085. else:
  1086. return query_collection(
  1087. collection_names=form_data.collection_names,
  1088. query=form_data.query,
  1089. embedding_function=app.state.EMBEDDING_FUNCTION,
  1090. k=form_data.k if form_data.k else app.state.config.TOP_K,
  1091. )
  1092. except Exception as e:
  1093. log.exception(e)
  1094. raise HTTPException(
  1095. status_code=status.HTTP_400_BAD_REQUEST,
  1096. detail=ERROR_MESSAGES.DEFAULT(e),
  1097. )
  1098. ####################################
  1099. #
  1100. # Vector DB operations
  1101. #
  1102. ####################################
  1103. class DeleteForm(BaseModel):
  1104. collection_name: str
  1105. file_id: str
  1106. @app.post("/delete")
  1107. def delete_entries_from_collection(form_data: DeleteForm, user=Depends(get_admin_user)):
  1108. try:
  1109. if VECTOR_DB_CLIENT.has_collection(collection_name=form_data.collection_name):
  1110. file = Files.get_file_by_id(form_data.file_id)
  1111. hash = file.hash
  1112. VECTOR_DB_CLIENT.delete(
  1113. collection_name=form_data.collection_name,
  1114. metadata={"hash": hash},
  1115. )
  1116. return {"status": True}
  1117. else:
  1118. return {"status": False}
  1119. except Exception as e:
  1120. log.exception(e)
  1121. return {"status": False}
  1122. @app.post("/reset/db")
  1123. def reset_vector_db(user=Depends(get_admin_user)):
  1124. VECTOR_DB_CLIENT.reset()
  1125. Knowledges.delete_all_knowledge()
  1126. @app.post("/reset/uploads")
  1127. def reset_upload_dir(user=Depends(get_admin_user)) -> bool:
  1128. folder = f"{UPLOAD_DIR}"
  1129. try:
  1130. # Check if the directory exists
  1131. if os.path.exists(folder):
  1132. # Iterate over all the files and directories in the specified directory
  1133. for filename in os.listdir(folder):
  1134. file_path = os.path.join(folder, filename)
  1135. try:
  1136. if os.path.isfile(file_path) or os.path.islink(file_path):
  1137. os.unlink(file_path) # Remove the file or link
  1138. elif os.path.isdir(file_path):
  1139. shutil.rmtree(file_path) # Remove the directory
  1140. except Exception as e:
  1141. print(f"Failed to delete {file_path}. Reason: {e}")
  1142. else:
  1143. print(f"The directory {folder} does not exist")
  1144. except Exception as e:
  1145. print(f"Failed to process the directory {folder}. Reason: {e}")
  1146. return True
  1147. if ENV == "dev":
  1148. @app.get("/ef")
  1149. async def get_embeddings():
  1150. return {"result": app.state.EMBEDDING_FUNCTION("hello world")}
  1151. @app.get("/ef/{text}")
  1152. async def get_embeddings_text(text: str):
  1153. return {"result": app.state.EMBEDDING_FUNCTION(text)}