main.py 8.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267
  1. import requests
  2. import logging
  3. import ftfy
  4. import sys
  5. from langchain_community.document_loaders import (
  6. AzureAIDocumentIntelligenceLoader,
  7. BSHTMLLoader,
  8. CSVLoader,
  9. Docx2txtLoader,
  10. OutlookMessageLoader,
  11. PyPDFLoader,
  12. TextLoader,
  13. UnstructuredEPubLoader,
  14. UnstructuredExcelLoader,
  15. UnstructuredMarkdownLoader,
  16. UnstructuredPowerPointLoader,
  17. UnstructuredRSTLoader,
  18. UnstructuredXMLLoader,
  19. YoutubeLoader,
  20. )
  21. from langchain_core.documents import Document
  22. from open_webui.env import SRC_LOG_LEVELS, GLOBAL_LOG_LEVEL
  23. logging.basicConfig(stream=sys.stdout, level=GLOBAL_LOG_LEVEL)
  24. log = logging.getLogger(__name__)
  25. log.setLevel(SRC_LOG_LEVELS["RAG"])
  26. known_source_ext = [
  27. "go",
  28. "py",
  29. "java",
  30. "sh",
  31. "bat",
  32. "ps1",
  33. "cmd",
  34. "js",
  35. "ts",
  36. "css",
  37. "cpp",
  38. "hpp",
  39. "h",
  40. "c",
  41. "cs",
  42. "sql",
  43. "log",
  44. "ini",
  45. "pl",
  46. "pm",
  47. "r",
  48. "dart",
  49. "dockerfile",
  50. "env",
  51. "php",
  52. "hs",
  53. "hsc",
  54. "lua",
  55. "nginxconf",
  56. "conf",
  57. "m",
  58. "mm",
  59. "plsql",
  60. "perl",
  61. "rb",
  62. "rs",
  63. "db2",
  64. "scala",
  65. "bash",
  66. "swift",
  67. "vue",
  68. "svelte",
  69. "msg",
  70. "ex",
  71. "exs",
  72. "erl",
  73. "tsx",
  74. "jsx",
  75. "hs",
  76. "lhs",
  77. "json",
  78. ]
  79. class TikaLoader:
  80. def __init__(self, url, file_path, mime_type=None):
  81. self.url = url
  82. self.file_path = file_path
  83. self.mime_type = mime_type
  84. def load(self) -> list[Document]:
  85. with open(self.file_path, "rb") as f:
  86. data = f.read()
  87. if self.mime_type is not None:
  88. headers = {"Content-Type": self.mime_type}
  89. else:
  90. headers = {}
  91. endpoint = self.url
  92. if not endpoint.endswith("/"):
  93. endpoint += "/"
  94. endpoint += "tika/text"
  95. r = requests.put(endpoint, data=data, headers=headers)
  96. if r.ok:
  97. raw_metadata = r.json()
  98. text = raw_metadata.get("X-TIKA:content", "<No text content found>")
  99. if "Content-Type" in raw_metadata:
  100. headers["Content-Type"] = raw_metadata["Content-Type"]
  101. log.debug("Tika extracted text: %s", text)
  102. return [Document(page_content=text, metadata=headers)]
  103. else:
  104. raise Exception(f"Error calling Tika: {r.reason}")
  105. class DoclingLoader:
  106. def __init__(self, url, file_path=None, mime_type=None):
  107. self.url = url.rstrip("/")
  108. self.file_path = file_path
  109. self.mime_type = mime_type
  110. def load(self) -> list[Document]:
  111. with open(self.file_path, "rb") as f:
  112. files = {
  113. "files": (
  114. self.file_path,
  115. f,
  116. self.mime_type or "application/octet-stream",
  117. )
  118. }
  119. params = {
  120. "image_export_mode": "placeholder",
  121. "table_mode": "accurate",
  122. }
  123. endpoint = f"{self.url}/v1alpha/convert/file"
  124. r = requests.post(endpoint, files=files, data=params)
  125. if r.ok:
  126. result = r.json()
  127. document_data = result.get("document", {})
  128. text = document_data.get("md_content", "<No text content found>")
  129. metadata = {"Content-Type": self.mime_type} if self.mime_type else {}
  130. log.debug("Docling extracted text: %s", text)
  131. return [Document(page_content=text, metadata=metadata)]
  132. else:
  133. error_msg = f"Error calling Docling API: {r.reason}"
  134. if r.text:
  135. try:
  136. error_data = r.json()
  137. if "detail" in error_data:
  138. error_msg += f" - {error_data['detail']}"
  139. except Exception:
  140. error_msg += f" - {r.text}"
  141. raise Exception(f"Error calling Docling: {error_msg}")
  142. class Loader:
  143. def __init__(self, engine: str = "", **kwargs):
  144. self.engine = engine
  145. self.kwargs = kwargs
  146. def load(
  147. self, filename: str, file_content_type: str, file_path: str
  148. ) -> list[Document]:
  149. loader = self._get_loader(filename, file_content_type, file_path)
  150. docs = loader.load()
  151. return [
  152. Document(
  153. page_content=ftfy.fix_text(doc.page_content), metadata=doc.metadata
  154. )
  155. for doc in docs
  156. ]
  157. def _get_loader(self, filename: str, file_content_type: str, file_path: str):
  158. file_ext = filename.split(".")[-1].lower()
  159. if self.engine == "tika" and self.kwargs.get("TIKA_SERVER_URL"):
  160. if file_ext in known_source_ext or (
  161. file_content_type and file_content_type.find("text/") >= 0
  162. ):
  163. loader = TextLoader(file_path, autodetect_encoding=True)
  164. else:
  165. loader = TikaLoader(
  166. url=self.kwargs.get("TIKA_SERVER_URL"),
  167. file_path=file_path,
  168. mime_type=file_content_type,
  169. )
  170. elif self.engine == "docling" and self.kwargs.get("DOCLING_SERVER_URL"):
  171. loader = DoclingLoader(
  172. url=self.kwargs.get("DOCLING_SERVER_URL"),
  173. file_path=file_path,
  174. mime_type=file_content_type,
  175. )
  176. elif (
  177. self.engine == "document_intelligence"
  178. and self.kwargs.get("DOCUMENT_INTELLIGENCE_ENDPOINT") != ""
  179. and self.kwargs.get("DOCUMENT_INTELLIGENCE_KEY") != ""
  180. and (
  181. file_ext in ["pdf", "xls", "xlsx", "docx", "ppt", "pptx"]
  182. or file_content_type
  183. in [
  184. "application/vnd.ms-excel",
  185. "application/vnd.openxmlformats-officedocument.spreadsheetml.sheet",
  186. "application/vnd.openxmlformats-officedocument.wordprocessingml.document",
  187. "application/vnd.ms-powerpoint",
  188. "application/vnd.openxmlformats-officedocument.presentationml.presentation",
  189. ]
  190. )
  191. ):
  192. loader = AzureAIDocumentIntelligenceLoader(
  193. file_path=file_path,
  194. api_endpoint=self.kwargs.get("DOCUMENT_INTELLIGENCE_ENDPOINT"),
  195. api_key=self.kwargs.get("DOCUMENT_INTELLIGENCE_KEY"),
  196. )
  197. else:
  198. if file_ext == "pdf":
  199. loader = PyPDFLoader(
  200. file_path, extract_images=self.kwargs.get("PDF_EXTRACT_IMAGES")
  201. )
  202. elif file_ext == "csv":
  203. loader = CSVLoader(file_path)
  204. elif file_ext == "rst":
  205. loader = UnstructuredRSTLoader(file_path, mode="elements")
  206. elif file_ext == "xml":
  207. loader = UnstructuredXMLLoader(file_path)
  208. elif file_ext in ["htm", "html"]:
  209. loader = BSHTMLLoader(file_path, open_encoding="unicode_escape")
  210. elif file_ext == "md":
  211. loader = TextLoader(file_path, autodetect_encoding=True)
  212. elif file_content_type == "application/epub+zip":
  213. loader = UnstructuredEPubLoader(file_path)
  214. elif (
  215. file_content_type
  216. == "application/vnd.openxmlformats-officedocument.wordprocessingml.document"
  217. or file_ext == "docx"
  218. ):
  219. loader = Docx2txtLoader(file_path)
  220. elif file_content_type in [
  221. "application/vnd.ms-excel",
  222. "application/vnd.openxmlformats-officedocument.spreadsheetml.sheet",
  223. ] or file_ext in ["xls", "xlsx"]:
  224. loader = UnstructuredExcelLoader(file_path)
  225. elif file_content_type in [
  226. "application/vnd.ms-powerpoint",
  227. "application/vnd.openxmlformats-officedocument.presentationml.presentation",
  228. ] or file_ext in ["ppt", "pptx"]:
  229. loader = UnstructuredPowerPointLoader(file_path)
  230. elif file_ext == "msg":
  231. loader = OutlookMessageLoader(file_path)
  232. elif file_ext in known_source_ext or (
  233. file_content_type and file_content_type.find("text/") >= 0
  234. ):
  235. loader = TextLoader(file_path, autodetect_encoding=True)
  236. else:
  237. loader = TextLoader(file_path, autodetect_encoding=True)
  238. return loader