opensearch.py 5.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150
  1. from opensearchpy import OpenSearch
  2. from typing import Optional
  3. from open_webui.apps.rag.vector.main import VectorItem, SearchResult, GetResult
  4. from open_webui.config import (
  5. OPENSEARCH_URI, # Assuming you define OPENSEARCH_URI in config
  6. )
  7. class OpenSearchClient:
  8. def __init__(self):
  9. self.index_prefix = "open_webui"
  10. self.client = OpenSearch(
  11. hosts=[config["OPENSEARCH_URI"]],
  12. use_ssl=OPENSEARCH_SSL,
  13. verify_certs=OPENSEARCH_CERT_VERIFY,
  14. http_auth=(OPENSEARCH_USERNAME,OPENSEARCH_PASSWORD),
  15. )
  16. def _result_to_get_result(self, result) -> GetResult:
  17. ids = []
  18. documents = []
  19. metadatas = []
  20. for hit in result['hits']['hits']:
  21. ids.append(hit['_id'])
  22. documents.append(hit['_source'].get("text"))
  23. metadatas.append(hit['_source'].get("metadata"))
  24. return GetResult(ids=ids, documents=documents, metadatas=metadatas)
  25. def _result_to_search_result(self, result) -> SearchResult:
  26. ids = []
  27. distances = []
  28. documents = []
  29. metadatas = []
  30. for hit in result['hits']['hits']:
  31. ids.append(hit['_id'])
  32. distances.append(hit['_score'])
  33. documents.append(hit['_source'].get("text"))
  34. metadatas.append(hit['_source'].get("metadata"))
  35. return SearchResult(ids=ids, distances=distances, documents=documents, metadatas=metadatas)
  36. def _create_index(self, index_name: str, dimension: int):
  37. body = {
  38. "mappings": {
  39. "properties": {
  40. "id": {"type": "keyword"},
  41. "vector": {
  42. "type": "dense_vector",
  43. "dims": dimension, # Adjust based on your vector dimensions
  44. "index": true,
  45. "similarity": "faiss",
  46. "method": {
  47. "name": "hnsw",
  48. "space_type": "ip", # Use inner product to approximate cosine similarity
  49. "engine": "faiss",
  50. "ef_construction": 128,
  51. "m": 16
  52. }
  53. },
  54. "text": {"type": "text"},
  55. "metadata": {"type": "object"}
  56. }
  57. }
  58. }
  59. self.client.indices.create(index=f"{self.index_prefix}_{index_name}", body=body)
  60. def _create_batches(self, items: list[VectorItem], batch_size=100):
  61. for i in range(0, len(items), batch_size):
  62. yield items[i:i + batch_size]
  63. def has_collection(self, index_name: str) -> bool:
  64. # has_collection here means has index.
  65. # We are simply adapting to the norms of the other DBs.
  66. return self.client.indices.exists(index=f"{self.index_prefix}_{index_name}")
  67. def delete_colleciton(self, index_name: str):
  68. # delete_collection here means delete index.
  69. # We are simply adapting to the norms of the other DBs.
  70. self.client.indices.delete(index=f"{self.index_prefix}_{index_name}")
  71. def search(self, index_name: str, vectors: list[list[float]], limit: int) -> Optional[SearchResult]:
  72. query = {
  73. "size": limit,
  74. "_source": ["text", "metadata"],
  75. "query": {
  76. "script_score": {
  77. "query": {"match_all": {}},
  78. "script": {
  79. "source": "cosineSimilarity(params.vector, 'vector') + 1.0",
  80. "params": {"vector": vectors[0]} # Assuming single query vector
  81. }
  82. }
  83. }
  84. }
  85. result = self.client.search(
  86. index=f"{self.index_prefix}_{index_name}",
  87. body=query
  88. )
  89. return self._result_to_search_result(result)
  90. def get_or_create_index(self, index_name: str, dimension: int):
  91. if not self.has_index(index_name):
  92. self._create_index(index_name, dimension)
  93. def get(self, index_name: str) -> Optional[GetResult]:
  94. query = {
  95. "query": {"match_all": {}},
  96. "_source": ["text", "metadata"]
  97. }
  98. result = self.client.search(index=f"{self.index_prefix}_{index_name}", body=query)
  99. return self._result_to_get_result(result)
  100. def insert(self, index_name: str, items: list[VectorItem]):
  101. if not self.has_index(index_name):
  102. self._create_index(index_name, dimension=len(items[0]["vector"]))
  103. for batch in self._create_batches(items):
  104. actions = [
  105. {"index": {"_id": item["id"], "_source": {"vector": item["vector"], "text": item["text"], "metadata": item["metadata"]}}}
  106. for item in batch
  107. ]
  108. self.client.bulk(actions)
  109. def upsert(self, index_name: str, items: list[VectorItem]):
  110. if not self.has_index(index_name):
  111. self._create_index(index_name, dimension=len(items[0]["vector"]))
  112. for batch in self._create_batches(items):
  113. actions = [
  114. {"index": {"_id": item["id"], "_source": {"vector": item["vector"], "text": item["text"], "metadata": item["metadata"]}}}
  115. for item in batch
  116. ]
  117. self.client.bulk(actions)
  118. def delete(self, index_name: str, ids: list[str]):
  119. actions = [{"delete": {"_index": f"{self.index_prefix}_{index_name}", "_id": id}} for id in ids]
  120. self.client.bulk(body=actions)
  121. def reset(self):
  122. indices = self.client.indices.get(index=f"{self.index_prefix}_*")
  123. for index in indices:
  124. self.client.indices.delete(index=index)