123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176 |
- # syntax=docker/dockerfile:1
- # Initialize device type args
- # use build args in the docker build command with --build-arg="BUILDARG=true"
- ARG USE_CUDA=false
- ARG USE_OLLAMA=false
- # Tested with cu117 for CUDA 11 and cu121 for CUDA 12 (default)
- ARG USE_CUDA_VER=cu121
- # any sentence transformer model; models to use can be found at https://huggingface.co/models?library=sentence-transformers
- # Leaderboard: https://huggingface.co/spaces/mteb/leaderboard
- # for better performance and multilangauge support use "intfloat/multilingual-e5-large" (~2.5GB) or "intfloat/multilingual-e5-base" (~1.5GB)
- # IMPORTANT: If you change the embedding model (sentence-transformers/all-MiniLM-L6-v2) and vice versa, you aren't able to use RAG Chat with your previous documents loaded in the WebUI! You need to re-embed them.
- ARG USE_EMBEDDING_MODEL=sentence-transformers/all-MiniLM-L6-v2
- ARG USE_RERANKING_MODEL=""
- # Tiktoken encoding name; models to use can be found at https://huggingface.co/models?library=tiktoken
- ARG USE_TIKTOKEN_ENCODING_NAME="cl100k_base"
- ARG BUILD_HASH=dev-build
- # Override at your own risk - non-root configurations are untested
- ARG UID=0
- ARG GID=0
- ######## WebUI frontend ########
- FROM --platform=$BUILDPLATFORM node:22-alpine3.20 AS build
- ARG BUILD_HASH
- WORKDIR /app
- COPY package.json package-lock.json ./
- RUN npm ci
- COPY . .
- ENV APP_BUILD_HASH=${BUILD_HASH}
- RUN npm run build
- ######## WebUI backend ########
- FROM python:3.11-slim-bookworm AS base
- # Use args
- ARG USE_CUDA
- ARG USE_OLLAMA
- ARG USE_CUDA_VER
- ARG USE_EMBEDDING_MODEL
- ARG USE_RERANKING_MODEL
- ARG UID
- ARG GID
- ## Basis ##
- ENV ENV=prod \
- PORT=8080 \
- # pass build args to the build
- USE_OLLAMA_DOCKER=${USE_OLLAMA} \
- USE_CUDA_DOCKER=${USE_CUDA} \
- USE_CUDA_DOCKER_VER=${USE_CUDA_VER} \
- USE_EMBEDDING_MODEL_DOCKER=${USE_EMBEDDING_MODEL} \
- USE_RERANKING_MODEL_DOCKER=${USE_RERANKING_MODEL}
- ## Basis URL Config ##
- ENV OLLAMA_BASE_URL="/ollama" \
- OPENAI_API_BASE_URL=""
- ## API Key and Security Config ##
- ENV OPENAI_API_KEY="" \
- WEBUI_SECRET_KEY="" \
- SCARF_NO_ANALYTICS=true \
- DO_NOT_TRACK=true \
- ANONYMIZED_TELEMETRY=false
- #### Other models #########################################################
- ## whisper TTS model settings ##
- ENV WHISPER_MODEL="base" \
- WHISPER_MODEL_DIR="/app/backend/data/cache/whisper/models"
- ## RAG Embedding model settings ##
- ENV RAG_EMBEDDING_MODEL="$USE_EMBEDDING_MODEL_DOCKER" \
- RAG_RERANKING_MODEL="$USE_RERANKING_MODEL_DOCKER" \
- SENTENCE_TRANSFORMERS_HOME="/app/backend/data/cache/embedding/models"
- ## Tiktoken model settings ##
- ENV TIKTOKEN_ENCODING_NAME="cl100k_base" \
- TIKTOKEN_CACHE_DIR="/app/backend/data/cache/tiktoken"
- ## Hugging Face download cache ##
- ENV HF_HOME="/app/backend/data/cache/embedding/models"
- ## Torch Extensions ##
- # ENV TORCH_EXTENSIONS_DIR="/.cache/torch_extensions"
- #### Other models ##########################################################
- WORKDIR /app/backend
- ENV HOME=/root
- # Create user and group if not root
- RUN if [ $UID -ne 0 ]; then \
- if [ $GID -ne 0 ]; then \
- addgroup --gid $GID app; \
- fi; \
- adduser --uid $UID --gid $GID --home $HOME --disabled-password --no-create-home app; \
- fi
- RUN mkdir -p $HOME/.cache/chroma
- RUN echo -n 00000000-0000-0000-0000-000000000000 > $HOME/.cache/chroma/telemetry_user_id
- # Make sure the user has access to the app and root directory
- RUN chown -R $UID:$GID /app $HOME
- RUN if [ "$USE_OLLAMA" = "true" ]; then \
- apt-get update && \
- # Install pandoc and netcat
- apt-get install -y --no-install-recommends git build-essential pandoc netcat-openbsd curl && \
- apt-get install -y --no-install-recommends gcc python3-dev && \
- # for RAG OCR
- apt-get install -y --no-install-recommends ffmpeg libsm6 libxext6 && \
- # install helper tools
- apt-get install -y --no-install-recommends curl jq && \
- # install ollama
- curl -fsSL https://ollama.com/install.sh | sh && \
- # cleanup
- rm -rf /var/lib/apt/lists/*; \
- else \
- apt-get update && \
- # Install pandoc, netcat and gcc
- apt-get install -y --no-install-recommends git build-essential pandoc gcc netcat-openbsd curl jq && \
- apt-get install -y --no-install-recommends gcc python3-dev && \
- # for RAG OCR
- apt-get install -y --no-install-recommends ffmpeg libsm6 libxext6 && \
- # cleanup
- rm -rf /var/lib/apt/lists/*; \
- fi
- # install python dependencies
- COPY --chown=$UID:$GID ./backend/requirements.txt ./requirements.txt
- RUN pip3 install uv && \
- if [ "$USE_CUDA" = "true" ]; then \
- # If you use CUDA the whisper and embedding model will be downloaded on first use
- pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/$USE_CUDA_DOCKER_VER --no-cache-dir && \
- uv pip install --system -r requirements.txt --no-cache-dir && \
- python -c "import os; from sentence_transformers import SentenceTransformer; SentenceTransformer(os.environ['RAG_EMBEDDING_MODEL'], device='cpu')" && \
- python -c "import os; from faster_whisper import WhisperModel; WhisperModel(os.environ['WHISPER_MODEL'], device='cpu', compute_type='int8', download_root=os.environ['WHISPER_MODEL_DIR'])"; \
- python -c "import os; import tiktoken; tiktoken.get_encoding(os.environ['TIKTOKEN_ENCODING_NAME'])"; \
- else \
- pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cpu --no-cache-dir && \
- uv pip install --system -r requirements.txt --no-cache-dir && \
- python -c "import os; from sentence_transformers import SentenceTransformer; SentenceTransformer(os.environ['RAG_EMBEDDING_MODEL'], device='cpu')" && \
- python -c "import os; from faster_whisper import WhisperModel; WhisperModel(os.environ['WHISPER_MODEL'], device='cpu', compute_type='int8', download_root=os.environ['WHISPER_MODEL_DIR'])"; \
- python -c "import os; import tiktoken; tiktoken.get_encoding(os.environ['TIKTOKEN_ENCODING_NAME'])"; \
- fi; \
- chown -R $UID:$GID /app/backend/data/
- # copy embedding weight from build
- # RUN mkdir -p /root/.cache/chroma/onnx_models/all-MiniLM-L6-v2
- # COPY --from=build /app/onnx /root/.cache/chroma/onnx_models/all-MiniLM-L6-v2/onnx
- # copy built frontend files
- COPY --chown=$UID:$GID --from=build /app/build /app/build
- COPY --chown=$UID:$GID --from=build /app/CHANGELOG.md /app/CHANGELOG.md
- COPY --chown=$UID:$GID --from=build /app/package.json /app/package.json
- # copy backend files
- COPY --chown=$UID:$GID ./backend .
- EXPOSE 8080
- HEALTHCHECK CMD curl --silent --fail http://localhost:${PORT:-8080}/health | jq -ne 'input.status == true' || exit 1
- USER $UID:$GID
- ARG BUILD_HASH
- ENV WEBUI_BUILD_VERSION=${BUILD_HASH}
- ENV DOCKER=true
- CMD [ "bash", "start.sh"]
|