|
@@ -10,74 +10,195 @@ import "C"
|
|
|
|
|
|
import (
|
|
|
"bytes"
|
|
|
+ "encoding/binary"
|
|
|
"fmt"
|
|
|
"io"
|
|
|
"log/slog"
|
|
|
"os"
|
|
|
+ "path/filepath"
|
|
|
+ "runtime"
|
|
|
+ "strings"
|
|
|
+ "sync"
|
|
|
"unsafe"
|
|
|
|
|
|
- "golang.org/x/sync/errgroup"
|
|
|
-
|
|
|
"github.com/ollama/ollama/format"
|
|
|
"github.com/ollama/ollama/fs/ggml"
|
|
|
"github.com/ollama/ollama/ml"
|
|
|
+ "golang.org/x/sync/errgroup"
|
|
|
|
|
|
- _ "github.com/ollama/ollama/ml/backend/ggml/ggml"
|
|
|
+ _ "github.com/ollama/ollama/ml/backend/ggml/ggml/src"
|
|
|
)
|
|
|
|
|
|
-func newCPUBackend() *C.struct_ggml_backend {
|
|
|
- return C.ggml_backend_cpu_init()
|
|
|
+type device struct {
|
|
|
+ d *C.struct_ggml_backend_device
|
|
|
}
|
|
|
|
|
|
-type Backend struct {
|
|
|
- c *C.struct_ggml_context
|
|
|
- b *C.struct_ggml_backend
|
|
|
- bb *C.struct_ggml_backend_buffer
|
|
|
+func (d device) name() string {
|
|
|
+ return C.GoString(C.ggml_backend_dev_name(d.d))
|
|
|
+}
|
|
|
+
|
|
|
+func (d device) kind() string {
|
|
|
+ switch C.ggml_backend_dev_type(d.d) {
|
|
|
+ case C.GGML_BACKEND_DEVICE_TYPE_CPU:
|
|
|
+ return "cpu"
|
|
|
+ case C.GGML_BACKEND_DEVICE_TYPE_GPU:
|
|
|
+ return "gpu"
|
|
|
+ case C.GGML_BACKEND_DEVICE_TYPE_ACCEL:
|
|
|
+ return "accel"
|
|
|
+ default:
|
|
|
+ return "unknown"
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+func (d device) memory() (total uint64, free uint64) {
|
|
|
+ C.ggml_backend_dev_memory(d.d, (*C.size_t)(&free), (*C.size_t)(&total))
|
|
|
+ return
|
|
|
+}
|
|
|
+
|
|
|
+func (d device) LogValue() slog.Value {
|
|
|
+ free, total := d.memory()
|
|
|
+ return slog.GroupValue(
|
|
|
+ slog.String("name", C.GoString(C.ggml_backend_dev_name(d.d))),
|
|
|
+ slog.String("description", C.GoString(C.ggml_backend_dev_description(d.d))),
|
|
|
+ slog.String("kind", d.kind()),
|
|
|
+ slog.String("free", format.HumanBytes2(free)),
|
|
|
+ slog.String("total", format.HumanBytes2(total)),
|
|
|
+ )
|
|
|
+}
|
|
|
+
|
|
|
+var devices = sync.OnceValue(func() []device {
|
|
|
+ var lib struct{ name, pattern, defaultValue string }
|
|
|
+ if runtime.GOOS == "windows" {
|
|
|
+ lib.name = "PATH"
|
|
|
+ lib.pattern = "ggml-*.dll"
|
|
|
+ lib.defaultValue = "."
|
|
|
+ } else if runtime.GOOS == "linux" {
|
|
|
+ lib.name = "LD_LIBRARY_PATH"
|
|
|
+ lib.pattern = "libggml-*.so"
|
|
|
+ lib.defaultValue = "/usr/local/lib:/usr/lib"
|
|
|
+ }
|
|
|
+
|
|
|
+ if lib.name != "" {
|
|
|
+ paths, ok := os.LookupEnv(lib.name)
|
|
|
+ if !ok {
|
|
|
+ paths = lib.defaultValue
|
|
|
+ }
|
|
|
+
|
|
|
+ for _, path := range filepath.SplitList(paths) {
|
|
|
+ matches, err := filepath.Glob(filepath.Join(path, lib.pattern))
|
|
|
+ if err != nil {
|
|
|
+ slog.Error("failed to glob", "path", path, "error", err)
|
|
|
+ continue
|
|
|
+ }
|
|
|
+
|
|
|
+ for _, match := range matches {
|
|
|
+ if base := filepath.Base(match); strings.HasPrefix(base, "ggml-base") ||
|
|
|
+ strings.HasPrefix(base, "libggml-base") {
|
|
|
+ continue
|
|
|
+ }
|
|
|
+
|
|
|
+ func() {
|
|
|
+ cmatch := C.CString(match)
|
|
|
+ defer C.free(unsafe.Pointer(cmatch))
|
|
|
|
|
|
- ggml.KV
|
|
|
- ggml.Tensors
|
|
|
+ C.ggml_backend_load(cmatch)
|
|
|
+ }()
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ s := make([]device, C.ggml_backend_dev_count())
|
|
|
+ for i := range s {
|
|
|
+ s[i] = device{C.ggml_backend_dev_get(C.size_t(i))}
|
|
|
+ }
|
|
|
+
|
|
|
+ return s
|
|
|
+})
|
|
|
+
|
|
|
+type Backend struct {
|
|
|
+ meta *ggml.GGML
|
|
|
+ cpus, gpus []Context
|
|
|
+ tensors map[string]*Context
|
|
|
}
|
|
|
|
|
|
func New(r *os.File) (ml.Backend, error) {
|
|
|
- f, _, err := ggml.Decode(r, -1)
|
|
|
+ meta, n, err := ggml.Decode(r, -1)
|
|
|
if err != nil {
|
|
|
return nil, err
|
|
|
}
|
|
|
|
|
|
slog.Info(
|
|
|
"",
|
|
|
- "architecture", f.KV().Architecture(),
|
|
|
- "file_type", f.KV().FileType(),
|
|
|
- "name", f.KV().String("general.name"),
|
|
|
- "description", f.KV().String("general.description"),
|
|
|
- "num_tensors", len(f.Tensors().Items),
|
|
|
- "num_key_values", len(f.KV()),
|
|
|
+ "architecture", meta.KV().Architecture(),
|
|
|
+ "file_type", meta.KV().FileType(),
|
|
|
+ "name", meta.KV().String("general.name"),
|
|
|
+ "description", meta.KV().String("general.description"),
|
|
|
+ "num_tensors", len(meta.Tensors().Items()),
|
|
|
+ "num_key_values", len(meta.KV()),
|
|
|
)
|
|
|
|
|
|
- c := C.ggml_init(C.struct_ggml_init_params{
|
|
|
- mem_size: C.size_t(len(f.Tensors().Items)) * C.ggml_tensor_overhead(),
|
|
|
- mem_buffer: nil,
|
|
|
- no_alloc: true,
|
|
|
- })
|
|
|
+ var cpus, gpus []Context
|
|
|
+ for _, d := range devices() {
|
|
|
+ switch C.ggml_backend_dev_type(d.d) {
|
|
|
+ case C.GGML_BACKEND_DEVICE_TYPE_CPU,
|
|
|
+ C.GGML_BACKEND_DEVICE_TYPE_ACCEL:
|
|
|
+ slog.Info("cpu", "device", d)
|
|
|
+ cpus = append(cpus, Context{
|
|
|
+ ctx: C.ggml_init(C.struct_ggml_init_params{
|
|
|
+ mem_size: C.size_t(int(C.ggml_tensor_overhead()) * (len(meta.Tensors().Items()) + 1 + int(meta.KV().BlockCount())*2)),
|
|
|
+ no_alloc: true,
|
|
|
+ }),
|
|
|
+ backend: C.ggml_backend_dev_init(d.d, nil),
|
|
|
+ })
|
|
|
+ case C.GGML_BACKEND_DEVICE_TYPE_GPU:
|
|
|
+ slog.Info("gpu", "device", d)
|
|
|
+ gpus = append(gpus, Context{
|
|
|
+ ctx: C.ggml_init(C.struct_ggml_init_params{
|
|
|
+ mem_size: C.size_t(int(C.ggml_tensor_overhead()) * (len(meta.Tensors().Items()) + 1 + int(meta.KV().BlockCount())*2)),
|
|
|
+ no_alloc: true,
|
|
|
+ }),
|
|
|
+ backend: C.ggml_backend_dev_init(d.d, nil),
|
|
|
+ })
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ ctxFunc := func(s []Context) (*Context, error) {
|
|
|
+ for _, e := range s {
|
|
|
+ return &e, nil
|
|
|
+ }
|
|
|
+
|
|
|
+ return nil, fmt.Errorf("no devices available")
|
|
|
+ }
|
|
|
+
|
|
|
+ tensors := make(map[*ggml.Tensor]*Context, len(meta.Tensors().Items()))
|
|
|
+ for _, t := range meta.Tensors().Items() {
|
|
|
+ c, err := ctxFunc(append(gpus, cpus...))
|
|
|
+ if err != nil {
|
|
|
+ return nil, err
|
|
|
+ }
|
|
|
|
|
|
- for _, t := range f.Tensors().Items {
|
|
|
func() {
|
|
|
+ tt := C.ggml_new_tensor(c.ctx, t.Kind, C.int(len(t.Shape)), (*C.int64_t)(unsafe.Pointer(&t.Shape[0])))
|
|
|
+
|
|
|
cname := C.CString(t.Name)
|
|
|
defer C.free(unsafe.Pointer(cname))
|
|
|
-
|
|
|
- tt := C.ggml_new_tensor(c, t.Kind, C.int(len(t.Shape)), (*C.int64_t)(unsafe.Pointer(&t.Shape[0])))
|
|
|
C.ggml_set_name(tt, cname)
|
|
|
+
|
|
|
+ tensors[t] = c
|
|
|
}()
|
|
|
}
|
|
|
|
|
|
- b := newBackend()
|
|
|
- bb := C.ggml_backend_alloc_ctx_tensors(c, b)
|
|
|
+ for _, b := range append(gpus, cpus...) {
|
|
|
+ C.ggml_backend_alloc_ctx_tensors(b.ctx, b.backend)
|
|
|
+ }
|
|
|
+
|
|
|
+ sr := io.NewSectionReader(r, int64(meta.Tensors().Offset), n-int64(meta.Tensors().Offset))
|
|
|
|
|
|
var g errgroup.Group
|
|
|
- for _, t := range f.Tensors().Items {
|
|
|
+ for t, c := range tensors {
|
|
|
g.Go(func() error {
|
|
|
var b bytes.Buffer
|
|
|
- n, err := io.Copy(&b, io.NewSectionReader(r, int64(f.Tensors().Offset+t.Offset), int64(t.Size())))
|
|
|
+ n, err := io.Copy(&b, io.NewSectionReader(sr, int64(t.Offset), int64(t.Size())))
|
|
|
if err != nil {
|
|
|
return err
|
|
|
}
|
|
@@ -89,10 +210,12 @@ func New(r *os.File) (ml.Backend, error) {
|
|
|
cname := C.CString(t.Name)
|
|
|
defer C.free(unsafe.Pointer(cname))
|
|
|
|
|
|
+ tt := C.ggml_get_tensor(c.ctx, cname)
|
|
|
+
|
|
|
cbytes := C.CBytes(b.Bytes())
|
|
|
defer C.free(cbytes)
|
|
|
|
|
|
- C.ggml_backend_tensor_set(C.ggml_get_tensor(c, cname), cbytes, 0, C.size_t(n))
|
|
|
+ C.ggml_backend_tensor_set(tt, cbytes, 0, C.size_t(n))
|
|
|
return nil
|
|
|
})
|
|
|
}
|
|
@@ -101,7 +224,11 @@ func New(r *os.File) (ml.Backend, error) {
|
|
|
return nil, err
|
|
|
}
|
|
|
|
|
|
- return &Backend{c, b, bb, f.KV(), f.Tensors()}, nil
|
|
|
+ return &Backend{
|
|
|
+ meta: meta,
|
|
|
+ cpus: cpus,
|
|
|
+ gpus: gpus,
|
|
|
+ }, nil
|
|
|
}
|
|
|
|
|
|
func init() {
|
|
@@ -109,55 +236,78 @@ func init() {
|
|
|
}
|
|
|
|
|
|
func (b *Backend) Config() ml.Config {
|
|
|
- return b.KV
|
|
|
+ return b.meta.KV()
|
|
|
}
|
|
|
|
|
|
func (b *Backend) Get(name string) ml.Tensor {
|
|
|
cname := C.CString(name)
|
|
|
defer C.free(unsafe.Pointer(cname))
|
|
|
- if t := C.ggml_get_tensor(b.c, cname); t != nil {
|
|
|
- return &Tensor{t}
|
|
|
+
|
|
|
+ for _, c := range append(b.gpus, b.cpus...) {
|
|
|
+ if t := C.ggml_get_tensor(c.ctx, cname); t != nil {
|
|
|
+ return &Tensor{t: t}
|
|
|
+ }
|
|
|
}
|
|
|
|
|
|
return nil
|
|
|
}
|
|
|
|
|
|
func (b *Backend) NewContext() ml.Context {
|
|
|
- n := max(8192, len(b.Tensors.Items)*5)
|
|
|
- bts := make([]byte, C.size_t(n)*C.ggml_tensor_overhead()+C.ggml_graph_overhead_custom(C.size_t(n), false))
|
|
|
+ nodes := max(8192, len(b.meta.Tensors().Items())*5)
|
|
|
+ bts := make([]byte, C.size_t(nodes)*C.ggml_tensor_overhead()+C.ggml_graph_overhead_custom(C.size_t(nodes), false))
|
|
|
c := C.ggml_init(C.struct_ggml_init_params{
|
|
|
mem_buffer: unsafe.Pointer(&bts[0]),
|
|
|
mem_size: C.size_t(len(bts)),
|
|
|
no_alloc: true,
|
|
|
})
|
|
|
+
|
|
|
+ backends := make([]*C.struct_ggml_backend, len(b.gpus)+len(b.cpus))
|
|
|
+ bufts := make([]*C.struct_ggml_backend_buffer_type, len(b.gpus)+len(b.cpus))
|
|
|
+ for i, c := range append(b.gpus, b.cpus...) {
|
|
|
+ backends[i] = c.backend
|
|
|
+ bufts[i] = C.ggml_backend_get_default_buffer_type(c.backend)
|
|
|
+ }
|
|
|
+
|
|
|
return &Context{
|
|
|
- b: b.b,
|
|
|
- c: c,
|
|
|
- g: C.ggml_new_graph_custom(c, C.size_t(n), false),
|
|
|
+ ctx: c,
|
|
|
+ backend: backends[0],
|
|
|
+ nodes: nodes,
|
|
|
+ sched: C.ggml_backend_sched_new(
|
|
|
+ (*C.ggml_backend_t)(unsafe.Pointer(&backends[0])),
|
|
|
+ (*C.ggml_backend_buffer_type_t)(unsafe.Pointer(&bufts[0])),
|
|
|
+ C.int(len(backends)),
|
|
|
+ C.size_t(nodes),
|
|
|
+ true,
|
|
|
+ ),
|
|
|
}
|
|
|
}
|
|
|
|
|
|
type Context struct {
|
|
|
- b *C.struct_ggml_backend
|
|
|
- c *C.struct_ggml_context
|
|
|
- g *C.struct_ggml_cgraph
|
|
|
+ ctx *C.struct_ggml_context
|
|
|
+ backend *C.struct_ggml_backend
|
|
|
+
|
|
|
+ sched *C.struct_ggml_backend_sched
|
|
|
+ graph *C.struct_ggml_cgraph
|
|
|
+ nodes int
|
|
|
}
|
|
|
|
|
|
func (c *Context) Forward(t ml.Tensor) {
|
|
|
- C.ggml_build_forward_expand(c.g, t.(*Tensor).t)
|
|
|
+ if c.graph == nil {
|
|
|
+ c.graph = C.ggml_new_graph_custom(c.ctx, C.size_t(c.nodes), false)
|
|
|
+ }
|
|
|
+
|
|
|
+ C.ggml_build_forward_expand(c.graph, t.(*Tensor).t)
|
|
|
}
|
|
|
|
|
|
func (c *Context) Compute(t ml.Tensor) ml.Tensor {
|
|
|
c.Forward(t)
|
|
|
+ C.ggml_backend_sched_graph_compute_async(c.sched, c.graph)
|
|
|
|
|
|
- a := C.ggml_gallocr_new(C.ggml_backend_get_default_buffer_type(c.b))
|
|
|
- C.ggml_gallocr_alloc_graph(a, c.g)
|
|
|
- slog.Debug("compute graph memory", "require", format.HumanBytes2(uint64(C.ggml_gallocr_get_buffer_size(a, 0))))
|
|
|
+ backend := C.ggml_backend_sched_get_tensor_backend(c.sched, t.(*Tensor).t)
|
|
|
|
|
|
- C.ggml_backend_graph_compute(c.b, c.g)
|
|
|
- return &Tensor{
|
|
|
- C.ggml_graph_node(c.g, C.ggml_graph_n_nodes(c.g)-1),
|
|
|
- }
|
|
|
+ t.(*Tensor).data = make([]byte, C.ggml_nbytes(t.(*Tensor).t))
|
|
|
+ C.ggml_backend_tensor_get_async(backend, t.(*Tensor).t, unsafe.Pointer(&t.(*Tensor).data[0]), 0, C.ggml_nbytes(t.(*Tensor).t))
|
|
|
+ return t
|
|
|
}
|
|
|
|
|
|
func (c Context) Zeros(dtype ml.DType, shape ...int) ml.Tensor {
|
|
@@ -174,17 +324,17 @@ func (c Context) Zeros(dtype ml.DType, shape ...int) ml.Tensor {
|
|
|
var t *C.struct_ggml_tensor
|
|
|
switch dtype {
|
|
|
case ml.DTypeF32:
|
|
|
- t = C.ggml_new_tensor(c.c, C.GGML_TYPE_F32, C.int(len(shape)), (*C.int64_t)(unsafe.Pointer(&shape[0])))
|
|
|
+ t = C.ggml_new_tensor(c.ctx, C.GGML_TYPE_F32, C.int(len(shape)), (*C.int64_t)(unsafe.Pointer(&shape[0])))
|
|
|
case ml.DTypeI32:
|
|
|
- t = C.ggml_new_tensor(c.c, C.GGML_TYPE_I32, C.int(len(shape)), (*C.int64_t)(unsafe.Pointer(&shape[0])))
|
|
|
+ t = C.ggml_new_tensor(c.ctx, C.GGML_TYPE_I32, C.int(len(shape)), (*C.int64_t)(unsafe.Pointer(&shape[0])))
|
|
|
default:
|
|
|
panic("unsupported dtype")
|
|
|
}
|
|
|
|
|
|
- b := C.ggml_backend_alloc_buffer(c.b, C.ggml_nbytes(t))
|
|
|
+ b := C.ggml_backend_alloc_buffer(c.backend, C.ggml_nbytes(t))
|
|
|
C.ggml_backend_tensor_alloc(b, t, C.ggml_backend_buffer_get_base(b))
|
|
|
- C.ggml_set_f32(t, 0.)
|
|
|
- return &Tensor{t}
|
|
|
+ C.ggml_set_zero(t)
|
|
|
+ return &Tensor{t: t}
|
|
|
}
|
|
|
|
|
|
func fromSlice[S ~[]E, E float32 | int32](ctx Context, s S, shape []int, dtype uint32) (ml.Tensor, error) {
|
|
@@ -197,11 +347,11 @@ func fromSlice[S ~[]E, E float32 | int32](ctx Context, s S, shape []int, dtype u
|
|
|
return nil, fmt.Errorf("invalid shape %v for %d elements", shape, len(s))
|
|
|
}
|
|
|
|
|
|
- t := C.ggml_new_tensor(ctx.c, dtype, C.int(len(shape)), (*C.int64_t)(unsafe.Pointer(&shape[0])))
|
|
|
- b := C.ggml_backend_alloc_buffer(ctx.b, C.ggml_nbytes(t))
|
|
|
+ t := C.ggml_new_tensor(ctx.ctx, dtype, C.int(len(shape)), (*C.int64_t)(unsafe.Pointer(&shape[0])))
|
|
|
+ b := C.ggml_backend_alloc_buffer(ctx.backend, C.ggml_nbytes(t))
|
|
|
C.ggml_backend_tensor_alloc(b, t, C.ggml_backend_buffer_get_base(b))
|
|
|
C.ggml_backend_tensor_set(t, unsafe.Pointer(&s[0]), 0, C.ggml_nbytes(t))
|
|
|
- return &Tensor{t}, nil
|
|
|
+ return &Tensor{t: t}, nil
|
|
|
}
|
|
|
|
|
|
func (c Context) FromFloatSlice(s []float32, shape ...int) (ml.Tensor, error) {
|
|
@@ -213,12 +363,14 @@ func (c Context) FromIntSlice(s []int32, shape ...int) (ml.Tensor, error) {
|
|
|
}
|
|
|
|
|
|
func (c *Context) Close() error {
|
|
|
- C.ggml_free(c.c)
|
|
|
+ C.ggml_backend_sched_free(c.sched)
|
|
|
+ C.ggml_free(c.ctx)
|
|
|
return nil
|
|
|
}
|
|
|
|
|
|
type Tensor struct {
|
|
|
- t *C.struct_ggml_tensor
|
|
|
+ t *C.struct_ggml_tensor
|
|
|
+ data []byte
|
|
|
}
|
|
|
|
|
|
func (t *Tensor) LogValue() slog.Value {
|
|
@@ -254,17 +406,13 @@ func (t *Tensor) Bytes() []byte {
|
|
|
return nil
|
|
|
}
|
|
|
|
|
|
-func (t *Tensor) Floats() []float32 {
|
|
|
- if s := C.ggml_get_data_f32(t.t); s != nil {
|
|
|
- f32s := make([]float32, C.ggml_nelements(t.t))
|
|
|
- for i, v := range unsafe.Slice(s, C.ggml_nelements(t.t)) {
|
|
|
- f32s[i] = float32(v)
|
|
|
- }
|
|
|
-
|
|
|
- return f32s
|
|
|
+func (t *Tensor) Floats() (f32s []float32) {
|
|
|
+ if t.data != nil {
|
|
|
+ f32s = make([]float32, C.ggml_nelements(t.t))
|
|
|
+ _ = binary.Read(bytes.NewReader(t.data), binary.LittleEndian, f32s)
|
|
|
}
|
|
|
|
|
|
- return nil
|
|
|
+ return
|
|
|
}
|
|
|
|
|
|
func (t *Tensor) DType() ml.DType {
|
|
@@ -280,7 +428,7 @@ func (t *Tensor) DType() ml.DType {
|
|
|
|
|
|
func (t *Tensor) Add(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
|
|
|
return &Tensor{
|
|
|
- C.ggml_add(ctx.(*Context).c, t.t, t2.(*Tensor).t),
|
|
|
+ t: C.ggml_add(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
|
|
|
}
|
|
|
}
|
|
|
|
|
@@ -294,37 +442,37 @@ func (t *Tensor) Stack(ctx ml.Context, dim int, s ...ml.Tensor) ml.Tensor {
|
|
|
|
|
|
func (t *Tensor) Concat(ctx ml.Context, t2 ml.Tensor, dim int) ml.Tensor {
|
|
|
return &Tensor{
|
|
|
- C.ggml_concat(ctx.(*Context).c, t.t, t2.(*Tensor).t, C.int(dim)),
|
|
|
+ t: C.ggml_concat(ctx.(*Context).ctx, t.t, t2.(*Tensor).t, C.int(dim)),
|
|
|
}
|
|
|
}
|
|
|
|
|
|
func (t *Tensor) Contiguous(ctx ml.Context) ml.Tensor {
|
|
|
return &Tensor{
|
|
|
- C.ggml_cont(ctx.(*Context).c, t.t),
|
|
|
+ t: C.ggml_cont(ctx.(*Context).ctx, t.t),
|
|
|
}
|
|
|
}
|
|
|
|
|
|
func (t *Tensor) Mul(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
|
|
|
return &Tensor{
|
|
|
- C.ggml_mul(ctx.(*Context).c, t.t, t2.(*Tensor).t),
|
|
|
+ t: C.ggml_mul(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
|
|
|
}
|
|
|
}
|
|
|
|
|
|
func (t *Tensor) Mulmat(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
|
|
|
return &Tensor{
|
|
|
- C.ggml_mul_mat(ctx.(*Context).c, t.t, t2.(*Tensor).t),
|
|
|
+ t: C.ggml_mul_mat(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
|
|
|
}
|
|
|
}
|
|
|
|
|
|
func (t *Tensor) Norm(ctx ml.Context, eps float32) ml.Tensor {
|
|
|
return &Tensor{
|
|
|
- C.ggml_norm(ctx.(*Context).c, t.t, (C.float)(eps)),
|
|
|
+ t: C.ggml_norm(ctx.(*Context).ctx, t.t, (C.float)(eps)),
|
|
|
}
|
|
|
}
|
|
|
|
|
|
func (t *Tensor) RMSNorm(ctx ml.Context, eps float32) ml.Tensor {
|
|
|
return &Tensor{
|
|
|
- C.ggml_rms_norm(ctx.(*Context).c, t.t, C.float(eps)),
|
|
|
+ t: C.ggml_rms_norm(ctx.(*Context).ctx, t.t, C.float(eps)),
|
|
|
}
|
|
|
}
|
|
|
|
|
@@ -334,7 +482,7 @@ func (t *Tensor) Pad(ctx ml.Context, shape ...int64) ml.Tensor {
|
|
|
}
|
|
|
|
|
|
return &Tensor{
|
|
|
- C.ggml_pad(ctx.(*Context).c, t.t, C.int(shape[0]), C.int(shape[1]), C.int(shape[2]), C.int(shape[3])),
|
|
|
+ t: C.ggml_pad(ctx.(*Context).ctx, t.t, C.int(shape[0]), C.int(shape[1]), C.int(shape[2]), C.int(shape[3])),
|
|
|
}
|
|
|
}
|
|
|
|
|
@@ -344,19 +492,19 @@ func (t *Tensor) Permute(ctx ml.Context, shape ...int) ml.Tensor {
|
|
|
}
|
|
|
|
|
|
return &Tensor{
|
|
|
- C.ggml_permute(ctx.(*Context).c, t.t, C.int(shape[0]), C.int(shape[1]), C.int(shape[2]), C.int(shape[3])),
|
|
|
+ t: C.ggml_permute(ctx.(*Context).ctx, t.t, C.int(shape[0]), C.int(shape[1]), C.int(shape[2]), C.int(shape[3])),
|
|
|
}
|
|
|
}
|
|
|
|
|
|
func (t *Tensor) Rows(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
|
|
|
return &Tensor{
|
|
|
- C.ggml_get_rows(ctx.(*Context).c, t.t, t2.(*Tensor).t),
|
|
|
+ t: C.ggml_get_rows(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
|
|
|
}
|
|
|
}
|
|
|
|
|
|
func (t *Tensor) Copy(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
|
|
|
return &Tensor{
|
|
|
- C.ggml_cpy(ctx.(*Context).c, t.t, t2.(*Tensor).t),
|
|
|
+ t: C.ggml_cpy(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
|
|
|
}
|
|
|
}
|
|
|
|
|
@@ -364,19 +512,19 @@ func (t *Tensor) Reshape(ctx ml.Context, shape ...int64) ml.Tensor {
|
|
|
switch len(shape) {
|
|
|
case 1:
|
|
|
return &Tensor{
|
|
|
- C.ggml_reshape_1d(ctx.(*Context).c, t.t, C.int64_t(shape[0])),
|
|
|
+ t: C.ggml_reshape_1d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0])),
|
|
|
}
|
|
|
case 2:
|
|
|
return &Tensor{
|
|
|
- C.ggml_reshape_2d(ctx.(*Context).c, t.t, C.int64_t(shape[0]), C.int64_t(shape[1])),
|
|
|
+ t: C.ggml_reshape_2d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.int64_t(shape[1])),
|
|
|
}
|
|
|
case 3:
|
|
|
return &Tensor{
|
|
|
- C.ggml_reshape_3d(ctx.(*Context).c, t.t, C.int64_t(shape[0]), C.int64_t(shape[1]), C.int64_t(shape[2])),
|
|
|
+ t: C.ggml_reshape_3d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.int64_t(shape[1]), C.int64_t(shape[2])),
|
|
|
}
|
|
|
case 4:
|
|
|
return &Tensor{
|
|
|
- C.ggml_reshape_4d(ctx.(*Context).c, t.t, C.int64_t(shape[0]), C.int64_t(shape[1]), C.int64_t(shape[2]), C.int64_t(shape[3])),
|
|
|
+ t: C.ggml_reshape_4d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.int64_t(shape[1]), C.int64_t(shape[2]), C.int64_t(shape[3])),
|
|
|
}
|
|
|
default:
|
|
|
panic("unsupported number of dimensions")
|
|
@@ -385,19 +533,19 @@ func (t *Tensor) Reshape(ctx ml.Context, shape ...int64) ml.Tensor {
|
|
|
|
|
|
func (t *Tensor) Scale(ctx ml.Context, s float64) ml.Tensor {
|
|
|
return &Tensor{
|
|
|
- C.ggml_scale(ctx.(*Context).c, t.t, (C.float)(s)),
|
|
|
+ t: C.ggml_scale(ctx.(*Context).ctx, t.t, (C.float)(s)),
|
|
|
}
|
|
|
}
|
|
|
|
|
|
func (t *Tensor) Softmax(ctx ml.Context) ml.Tensor {
|
|
|
return &Tensor{
|
|
|
- C.ggml_soft_max(ctx.(*Context).c, t.t),
|
|
|
+ t: C.ggml_soft_max(ctx.(*Context).ctx, t.t),
|
|
|
}
|
|
|
}
|
|
|
|
|
|
func (t *Tensor) Tanh(ctx ml.Context) ml.Tensor {
|
|
|
return &Tensor{
|
|
|
- C.ggml_tanh_inplace(ctx.(*Context).c, t.t),
|
|
|
+ t: C.ggml_tanh_inplace(ctx.(*Context).ctx, t.t),
|
|
|
}
|
|
|
}
|
|
|
|
|
@@ -407,7 +555,7 @@ func (t *Tensor) Unpad(ctx ml.Context, shape ...int64) ml.Tensor {
|
|
|
}
|
|
|
|
|
|
return &Tensor{
|
|
|
- C.ggml_unpad(ctx.(*Context).c, t.t, C.int(shape[0]), C.int(shape[1]), C.int(shape[2]), C.int(shape[3])),
|
|
|
+ t: C.ggml_unpad(ctx.(*Context).ctx, t.t, C.int(shape[0]), C.int(shape[1]), C.int(shape[2]), C.int(shape[3])),
|
|
|
}
|
|
|
}
|
|
|
|
|
@@ -415,25 +563,25 @@ func (t *Tensor) View(ctx ml.Context, offset int, shape ...int) ml.Tensor {
|
|
|
switch len(shape) {
|
|
|
case 1:
|
|
|
return &Tensor{
|
|
|
- C.ggml_view_1d(ctx.(*Context).c, t.t, C.int64_t(shape[0]), C.size_t(offset)),
|
|
|
+ t: C.ggml_view_1d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.size_t(offset)),
|
|
|
}
|
|
|
case 3:
|
|
|
return &Tensor{
|
|
|
- C.ggml_view_2d(ctx.(*Context).c, t.t,
|
|
|
+ t: C.ggml_view_2d(ctx.(*Context).ctx, t.t,
|
|
|
C.int64_t(shape[0]), C.int64_t(shape[2]),
|
|
|
C.size_t(shape[1]),
|
|
|
C.size_t(offset)),
|
|
|
}
|
|
|
case 5:
|
|
|
return &Tensor{
|
|
|
- C.ggml_view_3d(ctx.(*Context).c, t.t,
|
|
|
+ t: C.ggml_view_3d(ctx.(*Context).ctx, t.t,
|
|
|
C.int64_t(shape[0]), C.int64_t(shape[2]), C.int64_t(shape[4]),
|
|
|
C.size_t(shape[1]), C.size_t(shape[3]),
|
|
|
C.size_t(offset)),
|
|
|
}
|
|
|
case 7:
|
|
|
return &Tensor{
|
|
|
- C.ggml_view_4d(ctx.(*Context).c, t.t,
|
|
|
+ t: C.ggml_view_4d(ctx.(*Context).ctx, t.t,
|
|
|
C.int64_t(shape[0]), C.int64_t(shape[2]), C.int64_t(shape[4]), C.int64_t(shape[6]),
|
|
|
C.size_t(shape[1]), C.size_t(shape[3]), C.size_t(shape[5]),
|
|
|
C.size_t(offset)),
|
|
@@ -449,8 +597,8 @@ const (
|
|
|
|
|
|
func (t *Tensor) Rope(ctx ml.Context, positionIDs, ropeFactors ml.Tensor, ropeDim uint32, ropeBase, ropeScale float32) ml.Tensor {
|
|
|
return &Tensor{
|
|
|
- C.ggml_rope_ext(
|
|
|
- ctx.(*Context).c, t.t, positionIDs.(*Tensor).t, ropeFactors.(*Tensor).t,
|
|
|
+ t: C.ggml_rope_ext(
|
|
|
+ ctx.(*Context).ctx, t.t, positionIDs.(*Tensor).t, ropeFactors.(*Tensor).t,
|
|
|
C.int(ropeDim),
|
|
|
131072, // YaRN n_ctx_train
|
|
|
ropeTypeNorm, // ROPE_TYPE_NORM
|
|
@@ -466,18 +614,18 @@ func (t *Tensor) Rope(ctx ml.Context, positionIDs, ropeFactors ml.Tensor, ropeDi
|
|
|
|
|
|
func (t *Tensor) GELU(ctx ml.Context) ml.Tensor {
|
|
|
return &Tensor{
|
|
|
- C.ggml_gelu_inplace(ctx.(*Context).c, t.t),
|
|
|
+ t: C.ggml_gelu_inplace(ctx.(*Context).ctx, t.t),
|
|
|
}
|
|
|
}
|
|
|
|
|
|
func (t *Tensor) SILU(ctx ml.Context) ml.Tensor {
|
|
|
return &Tensor{
|
|
|
- C.ggml_silu_inplace(ctx.(*Context).c, t.t),
|
|
|
+ t: C.ggml_silu_inplace(ctx.(*Context).ctx, t.t),
|
|
|
}
|
|
|
}
|
|
|
|
|
|
func (t *Tensor) Conv2D(ctx ml.Context, t2 ml.Tensor, s0, s1, p0, p1, d0, d1 int) ml.Tensor {
|
|
|
return &Tensor{
|
|
|
- C.ggml_conv_2d(ctx.(*Context).c, t.t, t2.(*Tensor).t, C.int(s0), C.int(s1), C.int(p0), C.int(p1), C.int(d0), C.int(d1)),
|
|
|
+ t: C.ggml_conv_2d(ctx.(*Context).ctx, t.t, t2.(*Tensor).t, C.int(s0), C.int(s1), C.int(p0), C.int(p1), C.int(d0), C.int(d1)),
|
|
|
}
|
|
|
}
|