Explorar el Código

minimal convert

Bruce MacDonald hace 2 meses
padre
commit
e65cf9dc94
Se han modificado 3 ficheros con 32 adiciones y 111 borrados
  1. 5 0
      convert/convert.go
  2. 26 107
      convert/convert_mistral.go
  3. 1 4
      model/models/mistral/model.go

+ 5 - 0
convert/convert.go

@@ -248,5 +248,10 @@ func ConvertModel(fsys fs.FS, ws io.WriteSeeker) error {
 		return err
 	}
 
+	// iterate through all ts and print the name
+	for _, t := range ts {
+		fmt.Print(t.Name(), "\n")
+	}
+
 	return conv.writeFile(ws, conv.KV(t), conv.Tensors(ts))
 }

+ 26 - 107
convert/convert_mistral.go

@@ -3,7 +3,6 @@ package convert
 import (
 	"cmp"
 	"fmt"
-	"math"
 	"strings"
 
 	"github.com/pdevine/tensor"
@@ -14,34 +13,15 @@ import (
 
 type mistralModel struct {
 	ModelParameters
-	NLayers               uint32  `json:"n_layers"`
 	NumHiddenLayers       uint32  `json:"num_hidden_layers"`
-	NLayer                uint32  `json:"n_layer"`
 	MaxPositionEmbeddings uint32  `json:"max_position_embeddings"`
-	NCtx                  uint32  `json:"n_ctx"`
 	HiddenSize            uint32  `json:"hidden_size"`
-	NEmbd                 uint32  `json:"n_embd"`
 	IntermediateSize      uint32  `json:"intermediate_size"`
-	NInner                uint32  `json:"n_inner"`
 	NumAttentionHeads     uint32  `json:"num_attention_heads"`
-	NHead                 uint32  `json:"n_head"`
 	NumKeyValueHeads      uint32  `json:"num_key_value_heads"`
 	RopeTheta             float32 `json:"rope_theta"`
-	RopeScaling           struct {
-		Type                            string  `json:"type"`
-		RopeType                        string  `json:"rope_type"`
-		Factor                          float32 `json:"factor"`
-		LowFrequencyFactor              float32 `json:"low_freq_factor"`
-		HighFrequencyFactor             float32 `json:"high_freq_factor"`
-		OriginalMaxPositionalEmbeddings uint32  `json:"original_max_positional_embeddings"`
-
-		factors ropeFactor
-	} `json:"rope_scaling"`
-	RMSNormEPS       float32 `json:"rms_norm_eps"`
-	LayerNormEPS     float32 `json:"layer_norm_eps"`
-	LayerNormEpsilon float32 `json:"layer_norm_epsilon"`
-	NormEpsilon      float32 `json:"norm_epsilon"`
-	HeadDim          uint32  `json:"head_dim"`
+	RMSNormEPS            float32 `json:"rms_norm_eps"`
+	HeadDim               uint32  `json:"head_dim"`
 }
 
 func (p *mistralModel) KV(t *Tokenizer) ggml.KV {
@@ -49,69 +29,17 @@ func (p *mistralModel) KV(t *Tokenizer) ggml.KV {
 	kv["general.architecture"] = "mistral"
 	kv["mistral.vocab_size"] = p.VocabSize
 
-	kv["mistral.block_count"] = cmp.Or(p.NLayers, p.NumHiddenLayers, p.NLayer)
-
-	if contextLength := cmp.Or(p.MaxPositionEmbeddings, p.NCtx); contextLength > 0 {
-		kv["mistral.context_length"] = contextLength
-	}
-
-	if embeddingLength := cmp.Or(p.HiddenSize, p.NEmbd); embeddingLength > 0 {
-		kv["mistral.embedding_length"] = cmp.Or(p.HiddenSize, p.NEmbd)
-	}
-
-	if feedForwardLength := cmp.Or(p.IntermediateSize, p.NInner); feedForwardLength > 0 {
-		kv["mistral.feed_forward_length"] = cmp.Or(p.IntermediateSize, p.NInner)
-	}
-
-	kv["mistral.attention.head_count"] = cmp.Or(p.NumAttentionHeads, p.NHead)
-	kv["mistral.rope.dimension_count"] = p.HiddenSize / cmp.Or(p.NLayers, p.NumHiddenLayers, p.NLayer)
-
-	if p.RopeTheta > 0 {
-		kv["mistral.rope.freq_base"] = p.RopeTheta
-	}
-
-	if p.RopeScaling.Type == "linear" {
-		kv["mistral.rope.scaling.type"] = p.RopeScaling.Type
-		kv["mistral.rope.scaling.factor"] = p.RopeScaling.Factor
-	} else if p.RopeScaling.RopeType == "llama3" {
-		dim := p.HiddenSize / p.NumAttentionHeads
-		for i := uint32(0); i < dim; i += 2 {
-			factor := cmp.Or(p.RopeScaling.Factor, 8.0)
-			factorLow := cmp.Or(p.RopeScaling.LowFrequencyFactor, 1.0)
-			factorHigh := cmp.Or(p.RopeScaling.HighFrequencyFactor, 4.0)
-
-			original := cmp.Or(p.RopeScaling.OriginalMaxPositionalEmbeddings, 8192)
-			lambdaLow := float32(original) / factorLow
-			lambdaHigh := float32(original) / factorHigh
-
-			lambda := 2 * math.Pi * math.Pow(float64(p.RopeTheta), float64(i)/float64(dim))
-			if lambda < float64(lambdaHigh) {
-				p.RopeScaling.factors = append(p.RopeScaling.factors, 1.0)
-			} else if lambda > float64(lambdaLow) {
-				p.RopeScaling.factors = append(p.RopeScaling.factors, factor)
-			} else {
-				smooth := (float32(original)/float32(lambda) - factorLow) / (factorHigh - factorLow)
-				p.RopeScaling.factors = append(p.RopeScaling.factors, 1.0/((1-smooth)/factor+smooth))
-			}
-		}
-	}
-
-	if p.NumKeyValueHeads > 0 {
-		kv["mistral.attention.head_count_kv"] = p.NumKeyValueHeads
-	}
-
-	if p.RMSNormEPS > 0 {
-		kv["mistral.attention.layer_norm_rms_epsilon"] = p.RMSNormEPS
-	}
-
-	if layerNormEpsilon := cmp.Or(p.LayerNormEPS, p.LayerNormEpsilon, p.NormEpsilon); layerNormEpsilon > 0 {
-		kv["mistral.attention.layer_norm_epsilon"] = layerNormEpsilon
-	}
-
-	if p.HeadDim > 0 {
-		kv["mistral.attention.key_length"] = p.HeadDim
-		kv["mistral.attention.value_length"] = p.HeadDim
-	}
+	kv["mistral.block_count"] = p.NumHiddenLayers
+	kv["mistral.context_length"] = p.MaxPositionEmbeddings
+	kv["mistral.embedding_length"] = cmp.Or(p.HiddenSize)
+	kv["mistral.feed_forward_length"] = cmp.Or(p.IntermediateSize)
+	kv["mistral.attention.head_count"] = cmp.Or(p.NumAttentionHeads)
+	kv["mistral.rope.dimension_count"] = p.HiddenSize / p.NumHiddenLayers
+	kv["mistral.rope.freq_base"] = p.RopeTheta
+	kv["mistral.attention.head_count_kv"] = p.NumKeyValueHeads
+	kv["mistral.attention.layer_norm_rms_epsilon"] = p.RMSNormEPS
+	kv["mistral.attention.key_length"] = p.HeadDim
+	kv["mistral.attention.value_length"] = p.HeadDim
 
 	return kv
 }
@@ -119,15 +47,6 @@ func (p *mistralModel) KV(t *Tokenizer) ggml.KV {
 func (p *mistralModel) Tensors(ts []Tensor) []ggml.Tensor {
 	var out []ggml.Tensor
 
-	if p.RopeScaling.factors != nil {
-		out = append(out, ggml.Tensor{
-			Name:     "rope_freqs.weight",
-			Kind:     0,
-			Shape:    []uint64{uint64(len(p.RopeScaling.factors))},
-			WriterTo: p.RopeScaling.factors,
-		})
-	}
-
 	for _, t := range ts {
 		if strings.HasSuffix(t.Name(), "attn_q.weight") ||
 			strings.HasSuffix(t.Name(), "attn_k.weight") {
@@ -154,19 +73,19 @@ func (p *mistralModel) Tensors(ts []Tensor) []ggml.Tensor {
 
 func (p *mistralModel) Replacements() []string {
 	return []string{
-		"tok_embeddings", "token_embd",
-		"norm", "output_norm",
-		"layers", "blk",
-		"attention_norm", "attn_norm",
-		"attention.wq", "attn_q",
-		"attention.wk", "attn_k",
-		"attention.wv", "attn_v",
-		"attention.wo", "attn_output",
-		"feed_forward.w1", "ffn_gate",
-		"feed_forward.w2", "ffn_down",
-		"feed_forward.w3", "ffn_up",
-		"ffn_norm", "ffn_norm",
-		"output", "output",
+		"model.layers", "blk",
+		"input_layernorm", "attn_norm",
+		"post_attention_layernorm", "ffn_norm",
+		"lm_head", "output",
+		"model.embed_tokens.weight", "token_embd.weight",
+		"model.norm.weight", "output_norm.weight",
+		"self_attn.q_proj", "attn_q",
+		"self_attn.k_proj", "attn_k",
+		"self_attn.v_proj", "attn_v",
+		"self_attn.o_proj", "attn_output",
+		"mlp.down_proj", "ffn_down",
+		"mlp.gate_proj", "ffn_gate",
+		"mlp.up_proj", "ffn_up",
 	}
 }
 

+ 1 - 4
model/models/mistral/model.go

@@ -37,10 +37,7 @@ func New(c ml.Config) (model.Model, error) {
 
 	m := Model{
 		BytePairEncoding: model.NewBytePairEncoding(
-			// TODO: need to set this in the conversion for mistral:
-			// tokenizer.ggml.pretokenizer = [^\r\n\p{L}\p{N}]?[\p{Lu}\p{Lt}\p{Lm}\p{Lo}\p{M}]*[\p{Ll}\p{Lm}\p{Lo}\p{M}]+|[^\r\n\p{L}\p{N}]?[\p{Lu}\p{Lt}\p{Lm}\p{Lo}\p{M}]+[\p{Ll}\p{Lm}\p{Lo}\p{M}]*|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n/]*|\s*[\r\n]+|\s+(?!\S)|\s+
-			c.String("tokenizer.ggml.pretokenizer", `(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`),
-			// c.String("tokenizer.ggml.pretokenizer", `[^\r\n\p{L}\p{N}]?[\p{Lu}\p{Lt}\p{Lm}\p{Lo}\p{M}]*[\p{Ll}\p{Lm}\p{Lo}\p{M}]+|[^\r\n\p{L}\p{N}]?[\p{Lu}\p{Lt}\p{Lm}\p{Lo}\p{M}]+[\p{Ll}\p{Lm}\p{Lo}\p{M}]*|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n/]*|\s*[\r\n]+|\s+(?!\S)|\s+`),
+			c.String("tokenizer.ggml.pretokenizer", `[^\r\n\p{L}\p{N}]?[\p{Lu}\p{Lt}\p{Lm}\p{Lo}\p{M}]*[\p{Ll}\p{Lm}\p{Lo}\p{M}]+|[^\r\n\p{L}\p{N}]?[\p{Lu}\p{Lt}\p{Lm}\p{Lo}\p{M}]+[\p{Ll}\p{Lm}\p{Lo}\p{M}]*|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n/]*|\s*[\r\n]+|\s+(?!\S)|\s+`),
 			&model.Vocabulary{
 				Values: c.Strings("tokenizer.ggml.tokens"),
 				Types:  c.Uints("tokenizer.ggml.token_type"),