|
@@ -3,7 +3,6 @@ package convert
|
|
|
import (
|
|
|
"cmp"
|
|
|
"fmt"
|
|
|
- "math"
|
|
|
"strings"
|
|
|
|
|
|
"github.com/pdevine/tensor"
|
|
@@ -14,34 +13,15 @@ import (
|
|
|
|
|
|
type mistralModel struct {
|
|
|
ModelParameters
|
|
|
- NLayers uint32 `json:"n_layers"`
|
|
|
NumHiddenLayers uint32 `json:"num_hidden_layers"`
|
|
|
- NLayer uint32 `json:"n_layer"`
|
|
|
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
|
|
|
- NCtx uint32 `json:"n_ctx"`
|
|
|
HiddenSize uint32 `json:"hidden_size"`
|
|
|
- NEmbd uint32 `json:"n_embd"`
|
|
|
IntermediateSize uint32 `json:"intermediate_size"`
|
|
|
- NInner uint32 `json:"n_inner"`
|
|
|
NumAttentionHeads uint32 `json:"num_attention_heads"`
|
|
|
- NHead uint32 `json:"n_head"`
|
|
|
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
|
|
|
RopeTheta float32 `json:"rope_theta"`
|
|
|
- RopeScaling struct {
|
|
|
- Type string `json:"type"`
|
|
|
- RopeType string `json:"rope_type"`
|
|
|
- Factor float32 `json:"factor"`
|
|
|
- LowFrequencyFactor float32 `json:"low_freq_factor"`
|
|
|
- HighFrequencyFactor float32 `json:"high_freq_factor"`
|
|
|
- OriginalMaxPositionalEmbeddings uint32 `json:"original_max_positional_embeddings"`
|
|
|
-
|
|
|
- factors ropeFactor
|
|
|
- } `json:"rope_scaling"`
|
|
|
- RMSNormEPS float32 `json:"rms_norm_eps"`
|
|
|
- LayerNormEPS float32 `json:"layer_norm_eps"`
|
|
|
- LayerNormEpsilon float32 `json:"layer_norm_epsilon"`
|
|
|
- NormEpsilon float32 `json:"norm_epsilon"`
|
|
|
- HeadDim uint32 `json:"head_dim"`
|
|
|
+ RMSNormEPS float32 `json:"rms_norm_eps"`
|
|
|
+ HeadDim uint32 `json:"head_dim"`
|
|
|
}
|
|
|
|
|
|
func (p *mistralModel) KV(t *Tokenizer) ggml.KV {
|
|
@@ -49,69 +29,17 @@ func (p *mistralModel) KV(t *Tokenizer) ggml.KV {
|
|
|
kv["general.architecture"] = "mistral"
|
|
|
kv["mistral.vocab_size"] = p.VocabSize
|
|
|
|
|
|
- kv["mistral.block_count"] = cmp.Or(p.NLayers, p.NumHiddenLayers, p.NLayer)
|
|
|
-
|
|
|
- if contextLength := cmp.Or(p.MaxPositionEmbeddings, p.NCtx); contextLength > 0 {
|
|
|
- kv["mistral.context_length"] = contextLength
|
|
|
- }
|
|
|
-
|
|
|
- if embeddingLength := cmp.Or(p.HiddenSize, p.NEmbd); embeddingLength > 0 {
|
|
|
- kv["mistral.embedding_length"] = cmp.Or(p.HiddenSize, p.NEmbd)
|
|
|
- }
|
|
|
-
|
|
|
- if feedForwardLength := cmp.Or(p.IntermediateSize, p.NInner); feedForwardLength > 0 {
|
|
|
- kv["mistral.feed_forward_length"] = cmp.Or(p.IntermediateSize, p.NInner)
|
|
|
- }
|
|
|
-
|
|
|
- kv["mistral.attention.head_count"] = cmp.Or(p.NumAttentionHeads, p.NHead)
|
|
|
- kv["mistral.rope.dimension_count"] = p.HiddenSize / cmp.Or(p.NLayers, p.NumHiddenLayers, p.NLayer)
|
|
|
-
|
|
|
- if p.RopeTheta > 0 {
|
|
|
- kv["mistral.rope.freq_base"] = p.RopeTheta
|
|
|
- }
|
|
|
-
|
|
|
- if p.RopeScaling.Type == "linear" {
|
|
|
- kv["mistral.rope.scaling.type"] = p.RopeScaling.Type
|
|
|
- kv["mistral.rope.scaling.factor"] = p.RopeScaling.Factor
|
|
|
- } else if p.RopeScaling.RopeType == "llama3" {
|
|
|
- dim := p.HiddenSize / p.NumAttentionHeads
|
|
|
- for i := uint32(0); i < dim; i += 2 {
|
|
|
- factor := cmp.Or(p.RopeScaling.Factor, 8.0)
|
|
|
- factorLow := cmp.Or(p.RopeScaling.LowFrequencyFactor, 1.0)
|
|
|
- factorHigh := cmp.Or(p.RopeScaling.HighFrequencyFactor, 4.0)
|
|
|
-
|
|
|
- original := cmp.Or(p.RopeScaling.OriginalMaxPositionalEmbeddings, 8192)
|
|
|
- lambdaLow := float32(original) / factorLow
|
|
|
- lambdaHigh := float32(original) / factorHigh
|
|
|
-
|
|
|
- lambda := 2 * math.Pi * math.Pow(float64(p.RopeTheta), float64(i)/float64(dim))
|
|
|
- if lambda < float64(lambdaHigh) {
|
|
|
- p.RopeScaling.factors = append(p.RopeScaling.factors, 1.0)
|
|
|
- } else if lambda > float64(lambdaLow) {
|
|
|
- p.RopeScaling.factors = append(p.RopeScaling.factors, factor)
|
|
|
- } else {
|
|
|
- smooth := (float32(original)/float32(lambda) - factorLow) / (factorHigh - factorLow)
|
|
|
- p.RopeScaling.factors = append(p.RopeScaling.factors, 1.0/((1-smooth)/factor+smooth))
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- if p.NumKeyValueHeads > 0 {
|
|
|
- kv["mistral.attention.head_count_kv"] = p.NumKeyValueHeads
|
|
|
- }
|
|
|
-
|
|
|
- if p.RMSNormEPS > 0 {
|
|
|
- kv["mistral.attention.layer_norm_rms_epsilon"] = p.RMSNormEPS
|
|
|
- }
|
|
|
-
|
|
|
- if layerNormEpsilon := cmp.Or(p.LayerNormEPS, p.LayerNormEpsilon, p.NormEpsilon); layerNormEpsilon > 0 {
|
|
|
- kv["mistral.attention.layer_norm_epsilon"] = layerNormEpsilon
|
|
|
- }
|
|
|
-
|
|
|
- if p.HeadDim > 0 {
|
|
|
- kv["mistral.attention.key_length"] = p.HeadDim
|
|
|
- kv["mistral.attention.value_length"] = p.HeadDim
|
|
|
- }
|
|
|
+ kv["mistral.block_count"] = p.NumHiddenLayers
|
|
|
+ kv["mistral.context_length"] = p.MaxPositionEmbeddings
|
|
|
+ kv["mistral.embedding_length"] = cmp.Or(p.HiddenSize)
|
|
|
+ kv["mistral.feed_forward_length"] = cmp.Or(p.IntermediateSize)
|
|
|
+ kv["mistral.attention.head_count"] = cmp.Or(p.NumAttentionHeads)
|
|
|
+ kv["mistral.rope.dimension_count"] = p.HiddenSize / p.NumHiddenLayers
|
|
|
+ kv["mistral.rope.freq_base"] = p.RopeTheta
|
|
|
+ kv["mistral.attention.head_count_kv"] = p.NumKeyValueHeads
|
|
|
+ kv["mistral.attention.layer_norm_rms_epsilon"] = p.RMSNormEPS
|
|
|
+ kv["mistral.attention.key_length"] = p.HeadDim
|
|
|
+ kv["mistral.attention.value_length"] = p.HeadDim
|
|
|
|
|
|
return kv
|
|
|
}
|
|
@@ -119,15 +47,6 @@ func (p *mistralModel) KV(t *Tokenizer) ggml.KV {
|
|
|
func (p *mistralModel) Tensors(ts []Tensor) []ggml.Tensor {
|
|
|
var out []ggml.Tensor
|
|
|
|
|
|
- if p.RopeScaling.factors != nil {
|
|
|
- out = append(out, ggml.Tensor{
|
|
|
- Name: "rope_freqs.weight",
|
|
|
- Kind: 0,
|
|
|
- Shape: []uint64{uint64(len(p.RopeScaling.factors))},
|
|
|
- WriterTo: p.RopeScaling.factors,
|
|
|
- })
|
|
|
- }
|
|
|
-
|
|
|
for _, t := range ts {
|
|
|
if strings.HasSuffix(t.Name(), "attn_q.weight") ||
|
|
|
strings.HasSuffix(t.Name(), "attn_k.weight") {
|
|
@@ -154,19 +73,19 @@ func (p *mistralModel) Tensors(ts []Tensor) []ggml.Tensor {
|
|
|
|
|
|
func (p *mistralModel) Replacements() []string {
|
|
|
return []string{
|
|
|
- "tok_embeddings", "token_embd",
|
|
|
- "norm", "output_norm",
|
|
|
- "layers", "blk",
|
|
|
- "attention_norm", "attn_norm",
|
|
|
- "attention.wq", "attn_q",
|
|
|
- "attention.wk", "attn_k",
|
|
|
- "attention.wv", "attn_v",
|
|
|
- "attention.wo", "attn_output",
|
|
|
- "feed_forward.w1", "ffn_gate",
|
|
|
- "feed_forward.w2", "ffn_down",
|
|
|
- "feed_forward.w3", "ffn_up",
|
|
|
- "ffn_norm", "ffn_norm",
|
|
|
- "output", "output",
|
|
|
+ "model.layers", "blk",
|
|
|
+ "input_layernorm", "attn_norm",
|
|
|
+ "post_attention_layernorm", "ffn_norm",
|
|
|
+ "lm_head", "output",
|
|
|
+ "model.embed_tokens.weight", "token_embd.weight",
|
|
|
+ "model.norm.weight", "output_norm.weight",
|
|
|
+ "self_attn.q_proj", "attn_q",
|
|
|
+ "self_attn.k_proj", "attn_k",
|
|
|
+ "self_attn.v_proj", "attn_v",
|
|
|
+ "self_attn.o_proj", "attn_output",
|
|
|
+ "mlp.down_proj", "ffn_down",
|
|
|
+ "mlp.gate_proj", "ffn_gate",
|
|
|
+ "mlp.up_proj", "ffn_up",
|
|
|
}
|
|
|
}
|
|
|
|