123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214 |
- package gemma2
- import (
- "math"
- "github.com/ollama/ollama/kvcache"
- "github.com/ollama/ollama/ml"
- "github.com/ollama/ollama/ml/nn"
- "github.com/ollama/ollama/model"
- "github.com/ollama/ollama/model/input"
- )
- type Options struct {
- hiddenSize, numHeads, numKVHeads int
- attnKeyLen, attnValLen int
- eps, ropeBase, ropeScale float32
- attnLogitSoftcap float32
- finalLogitSoftcap float32
- largeModelScaling bool
- }
- type Model struct {
- model.Base
- model.SentencePieceModel
- TokenEmbedding *nn.Embedding `gguf:"token_embd"`
- Layers []Layer `gguf:"blk"`
- OutputNorm *nn.RMSNorm `gguf:"output_norm"`
- Output *nn.Linear `gguf:"output,alt:token_embd"` // just set to token_embd?
- *Options
- }
- const (
- gemma27BLayerCount = 46
- )
- func New(c ml.Config) (model.Model, error) {
- m := Model{
- SentencePieceModel: model.NewSentencePieceModel(
- c.String("tokenizer.ggml.pretokenizer", `(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`),
- &model.Vocabulary{
- Values: c.Strings("tokenizer.ggml.tokens"),
- Scores: c.Floats("tokenizer.ggml.scores"),
- Types: c.Uints("tokenizer.ggml.token_type"),
- BOS: int32(c.Uint("tokenizer.ggml.bos_token_id")),
- EOS: int32(c.Uint("tokenizer.ggml.eos_token_id")),
- },
- ),
- Layers: make([]Layer, c.Uint("block_count")),
- Options: &Options{
- hiddenSize: int(c.Uint("embedding_length")),
- numHeads: int(c.Uint("attention.head_count")),
- numKVHeads: int(c.Uint("attention.head_count_kv")),
- attnKeyLen: int(c.Uint("attention.key_length")),
- attnValLen: int(c.Uint("attention.value_length")),
- eps: c.Float("attention.layer_norm_rms_epsilon"),
- ropeBase: c.Float("rope.freq_base", 10000.0),
- ropeScale: c.Float("rope.freq_scale", 1.0),
- attnLogitSoftcap: c.Float("attn_logit_softcapping"),
- finalLogitSoftcap: c.Float("final_logit_softcapping"),
- },
- }
- slidingWindowLen := int32(c.Uint("attention.sliding_window"))
- m.Cache = kvcache.NewWrapperCache(kvcache.NewSWACache(slidingWindowLen, m.Shift), kvcache.NewCausalCache(m.Shift))
- m.Cache.SetConfig(ml.CacheConfig{})
- return &m, nil
- }
- type SelfAttention struct {
- Query *nn.Linear `gguf:"attn_q"`
- Key *nn.Linear `gguf:"attn_k"`
- Value *nn.Linear `gguf:"attn_v"`
- Output *nn.Linear `gguf:"attn_output"`
- }
- func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positionIDs ml.Tensor, cache kvcache.Cache, opts *Options) ml.Tensor {
- batchSize := hiddenState.Dim(1)
- ropeType := uint32(2)
- q := sa.Query.Forward(ctx, hiddenState)
- q = q.Reshape(ctx, opts.attnKeyLen, opts.numHeads, batchSize)
- q = q.RoPE(ctx, positionIDs, nil, uint32(opts.attnKeyLen), ropeType, opts.ropeBase, opts.ropeScale)
- if opts.largeModelScaling {
- q = q.Scale(ctx, 1.0/math.Sqrt(float64(opts.hiddenSize/opts.numHeads)))
- } else {
- q = q.Scale(ctx, 1.0/math.Sqrt(float64(opts.attnKeyLen)))
- }
- k := sa.Key.Forward(ctx, hiddenState)
- k = k.Reshape(ctx, opts.attnKeyLen, opts.numKVHeads, batchSize)
- k = k.RoPE(ctx, positionIDs, nil, uint32(opts.attnKeyLen), ropeType, opts.ropeBase, opts.ropeScale)
- v := sa.Value.Forward(ctx, hiddenState)
- v = v.Reshape(ctx, opts.attnValLen, opts.numKVHeads, batchSize)
- cache.Put(ctx, k, v)
- k, v, mask := cache.Get(ctx)
- q = q.Permute(ctx, 0, 2, 1, 3)
- k = k.Permute(ctx, 0, 2, 1, 3)
- v = v.Permute(ctx, 1, 2, 0, 3).Contiguous(ctx)
- kq := k.Mulmat(ctx, q)
- // logit softcap
- kq = kq.Scale(ctx, 1.0/float64(opts.attnLogitSoftcap))
- kq = kq.Tanh(ctx)
- kq = kq.Scale(ctx, float64(opts.attnLogitSoftcap))
- kq = kq.Add(ctx, mask)
- kq = kq.Softmax(ctx)
- kqv := v.Mulmat(ctx, kq)
- kqv = kqv.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
- kqv = kqv.Reshape(ctx, opts.attnValLen*opts.numHeads, batchSize)
- return sa.Output.Forward(ctx, kqv)
- }
- func (m *Model) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
- return key.RoPE(ctx, shift, nil, uint32(m.Options.attnKeyLen), uint32(2), m.Options.ropeBase, m.Options.ropeScale), nil
- }
- type MLP struct {
- Up *nn.Linear `gguf:"ffn_up"`
- Down *nn.Linear `gguf:"ffn_down"`
- Gate *nn.Linear `gguf:"ffn_gate"`
- }
- func (mlp *MLP) Forward(ctx ml.Context, hiddenState ml.Tensor, opts *Options) ml.Tensor {
- hiddenState = mlp.Gate.Forward(ctx, hiddenState).GELU(ctx).Mul(ctx, mlp.Up.Forward(ctx, hiddenState))
- return mlp.Down.Forward(ctx, hiddenState)
- }
- type Layer struct {
- AttentionNorm *nn.RMSNorm `gguf:"attn_norm"`
- SelfAttention *SelfAttention
- PostAttentionNorm *nn.RMSNorm `gguf:"post_attention_norm"`
- MLPNorm *nn.RMSNorm `gguf:"ffn_norm"`
- MLP *MLP
- PostMLPNorm *nn.RMSNorm `gguf:"post_ffw_norm"`
- }
- func (l *Layer) Forward(ctx ml.Context, hiddenState, positionIDs, outputs ml.Tensor, cache kvcache.Cache, opts *Options) ml.Tensor {
- residual := hiddenState
- hiddenState = l.AttentionNorm.Forward(ctx, hiddenState, opts.eps)
- hiddenState = l.SelfAttention.Forward(ctx, hiddenState, positionIDs, cache, opts)
- hiddenState = l.PostAttentionNorm.Forward(ctx, hiddenState, opts.eps)
- // In the final layer (outputs != nil), optimize by pruning to just the token positions
- // we need logits for.
- if outputs != nil {
- hiddenState = hiddenState.Rows(ctx, outputs)
- residual = residual.Rows(ctx, outputs)
- }
- hiddenState = hiddenState.Add(ctx, residual)
- residual = hiddenState
- hiddenState = l.MLPNorm.Forward(ctx, hiddenState, opts.eps)
- hiddenState = l.MLP.Forward(ctx, hiddenState, opts)
- hiddenState = l.PostMLPNorm.Forward(ctx, hiddenState, opts.eps)
- return hiddenState.Add(ctx, residual)
- }
- func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
- positions, err := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
- if err != nil {
- return nil, err
- }
- outputs, err := ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs))
- if err != nil {
- return nil, err
- }
- hiddenState := m.TokenEmbedding.Forward(ctx, batch.Inputs)
- hiddenState = hiddenState.Scale(ctx, math.Sqrt(float64(m.Options.hiddenSize)))
- if len(m.Layers) == gemma27BLayerCount {
- m.Options.largeModelScaling = true
- }
- for i, layer := range m.Layers {
- cacheType := i % 2
- m.Cache.SetLayer(i)
- wc := m.Cache.(*kvcache.WrapperCache)
- wc.SetLayerType(cacheType)
- var lastLayerOutputs ml.Tensor
- if i == len(m.Layers)-1 {
- lastLayerOutputs = outputs
- }
- hiddenState = layer.Forward(ctx, hiddenState, positions, lastLayerOutputs, m.Cache, m.Options)
- }
- hiddenState = m.OutputNorm.Forward(ctx, hiddenState, m.eps)
- hiddenState = m.Output.Forward(ctx, hiddenState)
- // final logit softcap
- hiddenState = hiddenState.Scale(ctx, 1.0/float64(m.Options.finalLogitSoftcap))
- hiddenState = hiddenState.Tanh(ctx)
- return hiddenState.Scale(ctx, float64(m.Options.finalLogitSoftcap)), nil
- }
- func init() {
- model.Register("gemma2", New)
- }
|