12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744107451074610747107481074910750107511075210753107541075510756107571075810759107601076110762107631076410765107661076710768107691077010771107721077310774107751077610777107781077910780107811078210783107841078510786107871078810789107901079110792107931079410795107961079710798107991080010801108021080310804108051080610807108081080910810108111081210813108141081510816108171081810819108201082110822108231082410825108261082710828108291083010831108321083310834108351083610837108381083910840108411084210843108441084510846108471084810849108501085110852108531085410855108561085710858108591086010861108621086310864108651086610867108681086910870108711087210873108741087510876108771087810879108801088110882108831088410885108861088710888108891089010891108921089310894108951089610897108981089910900109011090210903109041090510906109071090810909109101091110912109131091410915109161091710918109191092010921109221092310924109251092610927109281092910930109311093210933109341093510936109371093810939109401094110942109431094410945109461094710948109491095010951109521095310954109551095610957109581095910960109611096210963109641096510966109671096810969109701097110972109731097410975109761097710978109791098010981109821098310984109851098610987109881098910990109911099210993109941099510996109971099810999110001100111002110031100411005110061100711008110091101011011110121101311014110151101611017110181101911020110211102211023110241102511026110271102811029110301103111032110331103411035110361103711038110391104011041110421104311044110451104611047110481104911050110511105211053110541105511056110571105811059110601106111062110631106411065110661106711068110691107011071110721107311074110751107611077110781107911080110811108211083110841108511086110871108811089110901109111092110931109411095110961109711098110991110011101111021110311104111051110611107111081110911110111111111211113111141111511116111171111811119111201112111122111231112411125111261112711128111291113011131111321113311134111351113611137111381113911140111411114211143111441114511146111471114811149111501115111152111531115411155111561115711158111591116011161111621116311164111651116611167111681116911170111711117211173111741117511176111771117811179111801118111182111831118411185111861118711188111891119011191111921119311194111951119611197111981119911200112011120211203112041120511206112071120811209112101121111212112131121411215112161121711218112191122011221112221122311224112251122611227112281122911230112311123211233112341123511236112371123811239112401124111242112431124411245112461124711248112491125011251112521125311254112551125611257112581125911260112611126211263112641126511266112671126811269112701127111272112731127411275112761127711278112791128011281112821128311284112851128611287112881128911290112911129211293112941129511296112971129811299113001130111302113031130411305113061130711308113091131011311113121131311314113151131611317113181131911320113211132211323113241132511326113271132811329113301133111332113331133411335113361133711338113391134011341113421134311344113451134611347113481134911350113511135211353113541135511356113571135811359113601136111362113631136411365113661136711368113691137011371113721137311374113751137611377113781137911380113811138211383113841138511386113871138811389113901139111392113931139411395113961139711398113991140011401114021140311404114051140611407114081140911410114111141211413114141141511416114171141811419114201142111422114231142411425114261142711428114291143011431114321143311434114351143611437114381143911440114411144211443114441144511446114471144811449114501145111452114531145411455114561145711458114591146011461114621146311464114651146611467114681146911470114711147211473114741147511476114771147811479114801148111482114831148411485114861148711488114891149011491114921149311494114951149611497114981149911500115011150211503115041150511506115071150811509115101151111512115131151411515115161151711518115191152011521115221152311524115251152611527115281152911530115311153211533115341153511536115371153811539115401154111542115431154411545115461154711548115491155011551115521155311554115551155611557115581155911560115611156211563115641156511566115671156811569115701157111572115731157411575115761157711578115791158011581115821158311584115851158611587115881158911590115911159211593115941159511596115971159811599116001160111602116031160411605116061160711608116091161011611116121161311614116151161611617116181161911620116211162211623116241162511626116271162811629116301163111632116331163411635116361163711638116391164011641116421164311644116451164611647116481164911650116511165211653116541165511656116571165811659116601166111662116631166411665116661166711668116691167011671116721167311674116751167611677116781167911680116811168211683116841168511686116871168811689116901169111692116931169411695116961169711698116991170011701117021170311704117051170611707117081170911710117111171211713117141171511716117171171811719117201172111722117231172411725117261172711728117291173011731117321173311734117351173611737117381173911740117411174211743117441174511746117471174811749117501175111752117531175411755117561175711758117591176011761117621176311764117651176611767117681176911770117711177211773117741177511776117771177811779117801178111782117831178411785117861178711788117891179011791117921179311794117951179611797117981179911800118011180211803118041180511806118071180811809118101181111812118131181411815118161181711818118191182011821118221182311824118251182611827118281182911830118311183211833118341183511836118371183811839118401184111842118431184411845118461184711848118491185011851118521185311854118551185611857118581185911860118611186211863118641186511866118671186811869118701187111872118731187411875118761187711878118791188011881118821188311884118851188611887118881188911890118911189211893118941189511896118971189811899119001190111902119031190411905119061190711908119091191011911119121191311914119151191611917119181191911920119211192211923119241192511926119271192811929119301193111932119331193411935119361193711938119391194011941119421194311944119451194611947119481194911950119511195211953119541195511956119571195811959119601196111962119631196411965119661196711968119691197011971119721197311974119751197611977119781197911980119811198211983119841198511986119871198811989119901199111992119931199411995119961199711998119991200012001120021200312004120051200612007120081200912010120111201212013120141201512016120171201812019120201202112022120231202412025120261202712028120291203012031120321203312034120351203612037120381203912040120411204212043120441204512046120471204812049120501205112052120531205412055120561205712058120591206012061120621206312064120651206612067120681206912070120711207212073120741207512076120771207812079120801208112082120831208412085120861208712088120891209012091120921209312094120951209612097120981209912100121011210212103121041210512106121071210812109121101211112112121131211412115121161211712118121191212012121121221212312124121251212612127121281212912130121311213212133121341213512136121371213812139121401214112142121431214412145121461214712148121491215012151121521215312154121551215612157121581215912160121611216212163121641216512166121671216812169121701217112172121731217412175121761217712178121791218012181121821218312184121851218612187121881218912190121911219212193121941219512196121971219812199122001220112202122031220412205122061220712208122091221012211122121221312214122151221612217122181221912220122211222212223122241222512226122271222812229122301223112232122331223412235122361223712238122391224012241122421224312244122451224612247122481224912250122511225212253122541225512256122571225812259122601226112262122631226412265122661226712268122691227012271122721227312274122751227612277122781227912280122811228212283122841228512286122871228812289122901229112292122931229412295122961229712298122991230012301123021230312304123051230612307123081230912310123111231212313123141231512316123171231812319123201232112322123231232412325123261232712328123291233012331123321233312334123351233612337123381233912340123411234212343123441234512346123471234812349123501235112352123531235412355123561235712358123591236012361123621236312364123651236612367123681236912370123711237212373123741237512376123771237812379123801238112382123831238412385123861238712388123891239012391123921239312394123951239612397123981239912400124011240212403124041240512406124071240812409124101241112412124131241412415124161241712418124191242012421124221242312424124251242612427124281242912430124311243212433124341243512436124371243812439124401244112442124431244412445124461244712448124491245012451124521245312454124551245612457124581245912460124611246212463124641246512466124671246812469124701247112472124731247412475124761247712478124791248012481124821248312484124851248612487124881248912490124911249212493124941249512496124971249812499125001250112502125031250412505125061250712508125091251012511125121251312514125151251612517125181251912520125211252212523125241252512526125271252812529125301253112532125331253412535125361253712538125391254012541125421254312544125451254612547125481254912550125511255212553125541255512556125571255812559125601256112562125631256412565125661256712568125691257012571125721257312574125751257612577125781257912580125811258212583125841258512586125871258812589125901259112592125931259412595125961259712598125991260012601126021260312604126051260612607126081260912610126111261212613126141261512616126171261812619126201262112622126231262412625126261262712628126291263012631126321263312634126351263612637126381263912640126411264212643126441264512646126471264812649126501265112652126531265412655126561265712658126591266012661126621266312664126651266612667126681266912670126711267212673126741267512676126771267812679126801268112682126831268412685126861268712688126891269012691126921269312694126951269612697126981269912700127011270212703127041270512706127071270812709127101271112712127131271412715127161271712718127191272012721127221272312724127251272612727127281272912730127311273212733127341273512736127371273812739127401274112742127431274412745127461274712748127491275012751127521275312754127551275612757127581275912760127611276212763127641276512766127671276812769127701277112772127731277412775127761277712778127791278012781127821278312784127851278612787127881278912790127911279212793127941279512796127971279812799128001280112802128031280412805128061280712808128091281012811128121281312814128151281612817128181281912820128211282212823128241282512826128271282812829128301283112832128331283412835128361283712838128391284012841128421284312844128451284612847128481284912850128511285212853128541285512856128571285812859128601286112862128631286412865128661286712868128691287012871128721287312874128751287612877128781287912880128811288212883128841288512886128871288812889128901289112892128931289412895128961289712898128991290012901129021290312904129051290612907129081290912910129111291212913129141291512916129171291812919129201292112922129231292412925129261292712928129291293012931129321293312934129351293612937129381293912940129411294212943129441294512946129471294812949129501295112952129531295412955129561295712958129591296012961129621296312964129651296612967129681296912970129711297212973129741297512976129771297812979129801298112982129831298412985129861298712988129891299012991129921299312994129951299612997129981299913000130011300213003130041300513006130071300813009130101301113012130131301413015130161301713018130191302013021130221302313024130251302613027130281302913030130311303213033130341303513036130371303813039130401304113042130431304413045130461304713048130491305013051130521305313054130551305613057130581305913060130611306213063130641306513066130671306813069130701307113072130731307413075130761307713078130791308013081130821308313084130851308613087130881308913090130911309213093130941309513096130971309813099131001310113102131031310413105131061310713108131091311013111131121311313114131151311613117131181311913120131211312213123131241312513126131271312813129131301313113132131331313413135131361313713138131391314013141131421314313144131451314613147131481314913150131511315213153131541315513156131571315813159131601316113162131631316413165131661316713168131691317013171131721317313174131751317613177131781317913180131811318213183131841318513186131871318813189131901319113192131931319413195131961319713198131991320013201132021320313204132051320613207132081320913210132111321213213132141321513216132171321813219132201322113222132231322413225132261322713228132291323013231132321323313234132351323613237132381323913240132411324213243132441324513246132471324813249132501325113252132531325413255132561325713258132591326013261132621326313264132651326613267132681326913270132711327213273132741327513276132771327813279132801328113282132831328413285132861328713288132891329013291132921329313294132951329613297132981329913300133011330213303133041330513306133071330813309133101331113312133131331413315133161331713318133191332013321133221332313324133251332613327133281332913330133311333213333133341333513336133371333813339133401334113342133431334413345133461334713348133491335013351133521335313354133551335613357133581335913360133611336213363133641336513366133671336813369133701337113372133731337413375133761337713378133791338013381133821338313384133851338613387133881338913390133911339213393133941339513396133971339813399134001340113402134031340413405134061340713408134091341013411134121341313414134151341613417134181341913420134211342213423134241342513426134271342813429134301343113432134331343413435134361343713438134391344013441134421344313444134451344613447134481344913450134511345213453134541345513456134571345813459134601346113462134631346413465134661346713468134691347013471134721347313474134751347613477134781347913480134811348213483134841348513486134871348813489134901349113492134931349413495134961349713498134991350013501135021350313504135051350613507135081350913510135111351213513135141351513516135171351813519135201352113522135231352413525135261352713528135291353013531135321353313534135351353613537135381353913540135411354213543135441354513546135471354813549135501355113552135531355413555135561355713558135591356013561135621356313564135651356613567135681356913570135711357213573135741357513576135771357813579135801358113582135831358413585135861358713588135891359013591135921359313594135951359613597135981359913600136011360213603136041360513606136071360813609136101361113612136131361413615136161361713618136191362013621136221362313624136251362613627136281362913630136311363213633136341363513636136371363813639136401364113642136431364413645136461364713648136491365013651136521365313654136551365613657136581365913660136611366213663136641366513666136671366813669136701367113672136731367413675136761367713678136791368013681136821368313684136851368613687136881368913690136911369213693136941369513696136971369813699137001370113702137031370413705137061370713708137091371013711137121371313714137151371613717137181371913720137211372213723137241372513726137271372813729137301373113732137331373413735137361373713738137391374013741137421374313744137451374613747137481374913750137511375213753137541375513756137571375813759137601376113762137631376413765137661376713768137691377013771137721377313774137751377613777137781377913780137811378213783137841378513786137871378813789137901379113792137931379413795137961379713798137991380013801138021380313804138051380613807138081380913810138111381213813138141381513816138171381813819138201382113822138231382413825138261382713828138291383013831138321383313834138351383613837138381383913840138411384213843138441384513846138471384813849138501385113852138531385413855138561385713858138591386013861138621386313864138651386613867138681386913870138711387213873138741387513876138771387813879138801388113882138831388413885138861388713888138891389013891138921389313894138951389613897138981389913900139011390213903139041390513906139071390813909139101391113912139131391413915139161391713918139191392013921139221392313924139251392613927139281392913930139311393213933139341393513936139371393813939139401394113942139431394413945139461394713948139491395013951139521395313954139551395613957139581395913960139611396213963139641396513966139671396813969139701397113972139731397413975139761397713978139791398013981139821398313984139851398613987139881398913990139911399213993139941399513996139971399813999140001400114002140031400414005140061400714008140091401014011140121401314014140151401614017140181401914020140211402214023140241402514026140271402814029140301403114032140331403414035140361403714038140391404014041140421404314044140451404614047140481404914050140511405214053140541405514056140571405814059140601406114062140631406414065140661406714068140691407014071140721407314074140751407614077140781407914080140811408214083140841408514086140871408814089140901409114092140931409414095140961409714098140991410014101141021410314104141051410614107141081410914110141111411214113141141411514116141171411814119141201412114122141231412414125141261412714128141291413014131141321413314134141351413614137141381413914140141411414214143141441414514146141471414814149141501415114152141531415414155141561415714158141591416014161141621416314164141651416614167141681416914170141711417214173141741417514176141771417814179141801418114182141831418414185141861418714188141891419014191141921419314194141951419614197141981419914200142011420214203142041420514206142071420814209142101421114212142131421414215142161421714218142191422014221142221422314224142251422614227142281422914230142311423214233142341423514236142371423814239142401424114242142431424414245142461424714248142491425014251142521425314254142551425614257142581425914260142611426214263142641426514266142671426814269142701427114272142731427414275142761427714278142791428014281142821428314284142851428614287142881428914290142911429214293142941429514296142971429814299143001430114302143031430414305143061430714308143091431014311143121431314314143151431614317143181431914320143211432214323143241432514326143271432814329143301433114332143331433414335143361433714338143391434014341143421434314344143451434614347143481434914350143511435214353143541435514356143571435814359143601436114362143631436414365143661436714368143691437014371143721437314374143751437614377143781437914380143811438214383143841438514386143871438814389143901439114392143931439414395143961439714398143991440014401144021440314404144051440614407144081440914410144111441214413144141441514416144171441814419144201442114422144231442414425144261442714428144291443014431144321443314434144351443614437144381443914440144411444214443144441444514446144471444814449144501445114452144531445414455144561445714458144591446014461144621446314464144651446614467144681446914470144711447214473144741447514476144771447814479144801448114482144831448414485144861448714488144891449014491144921449314494144951449614497144981449914500145011450214503145041450514506145071450814509145101451114512145131451414515145161451714518145191452014521145221452314524145251452614527145281452914530145311453214533145341453514536145371453814539145401454114542145431454414545145461454714548145491455014551145521455314554145551455614557145581455914560145611456214563145641456514566145671456814569145701457114572145731457414575145761457714578145791458014581145821458314584145851458614587145881458914590145911459214593145941459514596145971459814599146001460114602146031460414605146061460714608146091461014611146121461314614146151461614617146181461914620146211462214623146241462514626146271462814629146301463114632146331463414635146361463714638146391464014641146421464314644146451464614647146481464914650146511465214653146541465514656146571465814659146601466114662146631466414665146661466714668146691467014671146721467314674146751467614677146781467914680146811468214683146841468514686146871468814689146901469114692146931469414695146961469714698146991470014701147021470314704147051470614707147081470914710147111471214713147141471514716147171471814719147201472114722147231472414725147261472714728147291473014731147321473314734147351473614737147381473914740147411474214743147441474514746147471474814749147501475114752147531475414755147561475714758147591476014761147621476314764147651476614767147681476914770147711477214773147741477514776147771477814779147801478114782147831478414785147861478714788147891479014791147921479314794147951479614797147981479914800148011480214803148041480514806148071480814809148101481114812148131481414815148161481714818148191482014821148221482314824148251482614827148281482914830148311483214833148341483514836148371483814839148401484114842148431484414845148461484714848148491485014851148521485314854148551485614857148581485914860148611486214863148641486514866148671486814869148701487114872148731487414875148761487714878148791488014881148821488314884148851488614887148881488914890148911489214893148941489514896148971489814899149001490114902149031490414905149061490714908149091491014911149121491314914149151491614917149181491914920149211492214923149241492514926149271492814929149301493114932149331493414935149361493714938149391494014941149421494314944149451494614947149481494914950149511495214953149541495514956149571495814959149601496114962149631496414965149661496714968149691497014971149721497314974149751497614977149781497914980149811498214983149841498514986149871498814989149901499114992149931499414995149961499714998149991500015001150021500315004150051500615007150081500915010150111501215013150141501515016150171501815019150201502115022150231502415025150261502715028150291503015031150321503315034150351503615037150381503915040150411504215043150441504515046150471504815049150501505115052150531505415055150561505715058150591506015061150621506315064150651506615067150681506915070150711507215073150741507515076150771507815079150801508115082150831508415085150861508715088150891509015091150921509315094150951509615097150981509915100151011510215103151041510515106151071510815109151101511115112151131511415115151161511715118151191512015121151221512315124151251512615127151281512915130151311513215133151341513515136151371513815139151401514115142151431514415145151461514715148151491515015151151521515315154151551515615157151581515915160151611516215163151641516515166151671516815169151701517115172151731517415175151761517715178151791518015181151821518315184151851518615187151881518915190151911519215193151941519515196151971519815199152001520115202152031520415205152061520715208152091521015211152121521315214152151521615217152181521915220152211522215223152241522515226152271522815229152301523115232152331523415235152361523715238152391524015241152421524315244152451524615247152481524915250152511525215253152541525515256152571525815259152601526115262152631526415265152661526715268152691527015271152721527315274152751527615277152781527915280152811528215283152841528515286152871528815289152901529115292152931529415295152961529715298152991530015301153021530315304153051530615307153081530915310153111531215313153141531515316153171531815319153201532115322153231532415325153261532715328153291533015331153321533315334153351533615337153381533915340153411534215343153441534515346153471534815349153501535115352153531535415355153561535715358153591536015361153621536315364153651536615367153681536915370153711537215373153741537515376153771537815379153801538115382153831538415385153861538715388153891539015391153921539315394153951539615397153981539915400154011540215403154041540515406154071540815409154101541115412154131541415415154161541715418154191542015421154221542315424154251542615427154281542915430154311543215433154341543515436154371543815439154401544115442154431544415445154461544715448154491545015451154521545315454154551545615457154581545915460154611546215463154641546515466154671546815469154701547115472154731547415475154761547715478154791548015481154821548315484154851548615487154881548915490154911549215493154941549515496154971549815499155001550115502155031550415505155061550715508155091551015511155121551315514155151551615517155181551915520155211552215523155241552515526155271552815529155301553115532155331553415535155361553715538155391554015541155421554315544155451554615547155481554915550155511555215553155541555515556155571555815559155601556115562155631556415565155661556715568155691557015571155721557315574155751557615577155781557915580155811558215583155841558515586155871558815589155901559115592155931559415595155961559715598155991560015601156021560315604156051560615607156081560915610156111561215613156141561515616156171561815619156201562115622156231562415625156261562715628156291563015631156321563315634156351563615637156381563915640156411564215643156441564515646156471564815649156501565115652156531565415655156561565715658156591566015661156621566315664156651566615667156681566915670156711567215673156741567515676156771567815679156801568115682156831568415685156861568715688156891569015691156921569315694156951569615697156981569915700157011570215703157041570515706157071570815709157101571115712157131571415715157161571715718157191572015721157221572315724157251572615727157281572915730157311573215733157341573515736157371573815739157401574115742157431574415745157461574715748157491575015751157521575315754157551575615757157581575915760157611576215763157641576515766157671576815769157701577115772157731577415775157761577715778157791578015781157821578315784157851578615787157881578915790157911579215793157941579515796157971579815799158001580115802158031580415805158061580715808158091581015811158121581315814158151581615817158181581915820158211582215823158241582515826158271582815829158301583115832158331583415835158361583715838158391584015841158421584315844158451584615847158481584915850158511585215853158541585515856158571585815859158601586115862158631586415865158661586715868158691587015871158721587315874158751587615877158781587915880158811588215883158841588515886158871588815889158901589115892158931589415895158961589715898158991590015901159021590315904159051590615907159081590915910159111591215913159141591515916159171591815919159201592115922159231592415925159261592715928159291593015931159321593315934159351593615937159381593915940159411594215943159441594515946159471594815949159501595115952159531595415955159561595715958159591596015961159621596315964159651596615967159681596915970159711597215973159741597515976159771597815979159801598115982159831598415985159861598715988159891599015991159921599315994159951599615997159981599916000160011600216003160041600516006160071600816009160101601116012160131601416015160161601716018160191602016021160221602316024160251602616027160281602916030160311603216033160341603516036160371603816039160401604116042160431604416045160461604716048160491605016051160521605316054160551605616057160581605916060160611606216063160641606516066160671606816069160701607116072160731607416075160761607716078160791608016081160821608316084160851608616087160881608916090160911609216093160941609516096160971609816099161001610116102161031610416105161061610716108161091611016111161121611316114161151611616117161181611916120161211612216123161241612516126161271612816129161301613116132161331613416135161361613716138161391614016141161421614316144161451614616147161481614916150161511615216153161541615516156161571615816159161601616116162161631616416165161661616716168161691617016171161721617316174161751617616177161781617916180161811618216183161841618516186161871618816189161901619116192161931619416195161961619716198161991620016201162021620316204162051620616207162081620916210162111621216213162141621516216162171621816219162201622116222162231622416225162261622716228162291623016231162321623316234162351623616237162381623916240162411624216243162441624516246162471624816249162501625116252162531625416255162561625716258162591626016261162621626316264162651626616267162681626916270162711627216273162741627516276162771627816279162801628116282162831628416285162861628716288162891629016291162921629316294162951629616297162981629916300163011630216303163041630516306163071630816309163101631116312163131631416315163161631716318163191632016321163221632316324163251632616327163281632916330163311633216333163341633516336163371633816339163401634116342163431634416345163461634716348163491635016351163521635316354163551635616357163581635916360163611636216363163641636516366163671636816369163701637116372163731637416375163761637716378163791638016381163821638316384163851638616387163881638916390163911639216393163941639516396163971639816399164001640116402164031640416405164061640716408164091641016411164121641316414164151641616417164181641916420164211642216423164241642516426164271642816429164301643116432164331643416435164361643716438164391644016441164421644316444164451644616447164481644916450164511645216453164541645516456164571645816459164601646116462164631646416465164661646716468164691647016471164721647316474164751647616477164781647916480164811648216483164841648516486164871648816489164901649116492164931649416495164961649716498164991650016501165021650316504165051650616507165081650916510165111651216513165141651516516165171651816519165201652116522165231652416525165261652716528165291653016531165321653316534165351653616537165381653916540165411654216543165441654516546165471654816549165501655116552165531655416555165561655716558165591656016561165621656316564165651656616567165681656916570165711657216573165741657516576165771657816579165801658116582165831658416585165861658716588165891659016591165921659316594165951659616597165981659916600166011660216603166041660516606166071660816609166101661116612166131661416615166161661716618166191662016621166221662316624166251662616627166281662916630166311663216633166341663516636166371663816639166401664116642166431664416645166461664716648166491665016651166521665316654166551665616657166581665916660166611666216663166641666516666166671666816669166701667116672166731667416675166761667716678166791668016681166821668316684166851668616687166881668916690166911669216693166941669516696166971669816699167001670116702167031670416705167061670716708167091671016711167121671316714167151671616717167181671916720167211672216723167241672516726167271672816729167301673116732167331673416735167361673716738167391674016741167421674316744167451674616747167481674916750167511675216753167541675516756167571675816759167601676116762167631676416765167661676716768167691677016771167721677316774167751677616777167781677916780167811678216783167841678516786167871678816789167901679116792167931679416795167961679716798167991680016801168021680316804168051680616807168081680916810168111681216813168141681516816168171681816819168201682116822168231682416825168261682716828168291683016831168321683316834168351683616837168381683916840168411684216843168441684516846168471684816849168501685116852168531685416855168561685716858168591686016861168621686316864168651686616867168681686916870168711687216873168741687516876168771687816879168801688116882168831688416885168861688716888168891689016891168921689316894168951689616897168981689916900169011690216903169041690516906169071690816909169101691116912169131691416915169161691716918169191692016921169221692316924169251692616927169281692916930169311693216933169341693516936169371693816939169401694116942169431694416945169461694716948169491695016951169521695316954169551695616957169581695916960169611696216963169641696516966169671696816969169701697116972169731697416975169761697716978169791698016981169821698316984169851698616987169881698916990169911699216993169941699516996169971699816999170001700117002170031700417005170061700717008170091701017011170121701317014170151701617017170181701917020170211702217023170241702517026170271702817029170301703117032170331703417035170361703717038170391704017041170421704317044170451704617047170481704917050170511705217053170541705517056170571705817059170601706117062170631706417065170661706717068170691707017071170721707317074170751707617077170781707917080170811708217083170841708517086170871708817089170901709117092170931709417095170961709717098170991710017101171021710317104171051710617107171081710917110171111711217113171141711517116171171711817119171201712117122171231712417125171261712717128171291713017131171321713317134171351713617137171381713917140171411714217143171441714517146171471714817149171501715117152171531715417155171561715717158171591716017161171621716317164171651716617167171681716917170171711717217173171741717517176171771717817179171801718117182171831718417185171861718717188171891719017191171921719317194171951719617197171981719917200172011720217203172041720517206172071720817209172101721117212172131721417215172161721717218172191722017221172221722317224172251722617227172281722917230172311723217233172341723517236172371723817239172401724117242172431724417245172461724717248172491725017251172521725317254172551725617257172581725917260172611726217263172641726517266172671726817269172701727117272172731727417275172761727717278172791728017281172821728317284172851728617287172881728917290172911729217293172941729517296172971729817299173001730117302173031730417305173061730717308173091731017311173121731317314173151731617317173181731917320173211732217323173241732517326173271732817329173301733117332173331733417335173361733717338173391734017341173421734317344173451734617347173481734917350173511735217353173541735517356173571735817359173601736117362173631736417365173661736717368173691737017371173721737317374173751737617377173781737917380173811738217383173841738517386173871738817389173901739117392173931739417395173961739717398173991740017401174021740317404174051740617407174081740917410174111741217413174141741517416174171741817419174201742117422174231742417425174261742717428174291743017431174321743317434174351743617437174381743917440174411744217443174441744517446174471744817449174501745117452174531745417455174561745717458174591746017461174621746317464174651746617467174681746917470174711747217473174741747517476174771747817479174801748117482174831748417485174861748717488174891749017491174921749317494174951749617497174981749917500175011750217503175041750517506175071750817509175101751117512175131751417515175161751717518175191752017521175221752317524175251752617527175281752917530175311753217533175341753517536175371753817539175401754117542175431754417545175461754717548175491755017551175521755317554175551755617557175581755917560175611756217563175641756517566175671756817569175701757117572175731757417575175761757717578175791758017581175821758317584175851758617587175881758917590175911759217593175941759517596175971759817599176001760117602176031760417605176061760717608176091761017611176121761317614176151761617617176181761917620176211762217623176241762517626176271762817629176301763117632176331763417635176361763717638176391764017641176421764317644176451764617647176481764917650176511765217653176541765517656176571765817659176601766117662176631766417665176661766717668176691767017671176721767317674176751767617677176781767917680176811768217683176841768517686176871768817689176901769117692176931769417695176961769717698176991770017701177021770317704177051770617707177081770917710177111771217713177141771517716177171771817719177201772117722177231772417725177261772717728177291773017731177321773317734177351773617737177381773917740177411774217743177441774517746177471774817749177501775117752177531775417755177561775717758177591776017761177621776317764177651776617767177681776917770177711777217773177741777517776177771777817779177801778117782177831778417785177861778717788177891779017791177921779317794177951779617797177981779917800178011780217803178041780517806178071780817809178101781117812178131781417815178161781717818178191782017821178221782317824178251782617827178281782917830178311783217833178341783517836178371783817839178401784117842178431784417845178461784717848178491785017851178521785317854178551785617857178581785917860178611786217863178641786517866178671786817869178701787117872178731787417875178761787717878178791788017881178821788317884178851788617887178881788917890178911789217893178941789517896178971789817899179001790117902179031790417905179061790717908179091791017911179121791317914179151791617917179181791917920179211792217923179241792517926179271792817929179301793117932179331793417935179361793717938179391794017941179421794317944179451794617947179481794917950179511795217953179541795517956179571795817959179601796117962179631796417965179661796717968179691797017971179721797317974179751797617977179781797917980179811798217983179841798517986179871798817989179901799117992179931799417995179961799717998179991800018001180021800318004180051800618007180081800918010180111801218013180141801518016180171801818019180201802118022180231802418025180261802718028180291803018031180321803318034180351803618037180381803918040180411804218043180441804518046180471804818049180501805118052180531805418055180561805718058180591806018061180621806318064180651806618067180681806918070180711807218073180741807518076180771807818079180801808118082180831808418085180861808718088180891809018091180921809318094180951809618097180981809918100181011810218103181041810518106181071810818109181101811118112181131811418115181161811718118181191812018121181221812318124181251812618127181281812918130181311813218133181341813518136181371813818139181401814118142181431814418145181461814718148181491815018151181521815318154181551815618157181581815918160181611816218163181641816518166181671816818169181701817118172181731817418175181761817718178181791818018181181821818318184181851818618187181881818918190181911819218193181941819518196181971819818199182001820118202182031820418205182061820718208182091821018211182121821318214182151821618217182181821918220182211822218223182241822518226182271822818229182301823118232182331823418235 |
- /**
- * llama.cpp - git 059031b8c40e1f4ba60586842c5b1ed3ddf61842
- *
- * MIT License
- *
- * Copyright (c) 2023-2024 The ggml authors
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to deal
- * in the Software without restriction, including without limitation the rights
- * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- * copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in all
- * copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- * SOFTWARE.
- */
- #define LLAMA_API_INTERNAL
- #include "llama.h"
- #include "unicode.h"
- #include "ggml.h"
- #include "ggml-alloc.h"
- #include "ggml-backend.h"
- #ifdef GGML_USE_RPC
- # include "ggml-rpc.h"
- #endif
- #ifdef GGML_USE_CUDA
- # include "ggml-cuda.h"
- #elif defined(GGML_USE_CLBLAST)
- # include "ggml-opencl.h"
- #elif defined(GGML_USE_VULKAN)
- # include "ggml-vulkan.h"
- #elif defined(GGML_USE_SYCL)
- # include "ggml-sycl.h"
- #elif defined(GGML_USE_KOMPUTE)
- # include "ggml-kompute.h"
- #endif
- #ifdef GGML_USE_METAL
- # include "ggml-metal.h"
- #endif
- #ifdef GGML_USE_MPI
- # include "ggml-mpi.h"
- #endif
- #ifndef QK_K
- # ifdef GGML_QKK_64
- # define QK_K 64
- # else
- # define QK_K 256
- # endif
- #endif
- #ifdef __has_include
- #if __has_include(<unistd.h>)
- #include <unistd.h>
- #if defined(_POSIX_MAPPED_FILES)
- #include <sys/mman.h>
- #include <fcntl.h>
- #endif
- #if defined(_POSIX_MEMLOCK_RANGE)
- #include <sys/resource.h>
- #endif
- #endif
- #endif
- #if defined(_WIN32)
- #define WIN32_LEAN_AND_MEAN
- #ifndef NOMINMAX
- #define NOMINMAX
- #endif
- #include <windows.h>
- #ifndef PATH_MAX
- #define PATH_MAX MAX_PATH
- #endif
- #include <io.h>
- #endif
- #include <algorithm>
- #include <array>
- #include <cassert>
- #include <cctype>
- #include <cfloat>
- #include <cinttypes>
- #include <climits>
- #include <cmath>
- #include <cstdarg>
- #include <cstddef>
- #include <cstdint>
- #include <cstdio>
- #include <cstring>
- #include <ctime>
- #include <forward_list>
- #include <fstream>
- #include <functional>
- #include <future>
- #include <initializer_list>
- #include <locale>
- #include <map>
- #include <memory>
- #include <mutex>
- #include <numeric>
- #include <queue>
- #include <random>
- #include <regex>
- #include <set>
- #include <sstream>
- #include <thread>
- #include <type_traits>
- #include <unordered_map>
- #if defined(_MSC_VER)
- #pragma warning(disable: 4244 4267) // possible loss of data
- #endif
- #ifdef __GNUC__
- #ifdef __MINGW32__
- #define LLAMA_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
- #else
- #define LLAMA_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
- #endif
- #else
- #define LLAMA_ATTRIBUTE_FORMAT(...)
- #endif
- #define LLAMA_MAX_NODES 8192
- #define LLAMA_MAX_EXPERTS 60
- //
- // logging
- //
- LLAMA_ATTRIBUTE_FORMAT(2, 3)
- static void llama_log_internal (ggml_log_level level, const char* format, ...);
- static void llama_log_callback_default(ggml_log_level level, const char * text, void * user_data);
- #define LLAMA_LOG_INFO(...) llama_log_internal(GGML_LOG_LEVEL_INFO , __VA_ARGS__)
- #define LLAMA_LOG_WARN(...) llama_log_internal(GGML_LOG_LEVEL_WARN , __VA_ARGS__)
- #define LLAMA_LOG_ERROR(...) llama_log_internal(GGML_LOG_LEVEL_ERROR, __VA_ARGS__)
- //
- // helpers
- //
- static size_t utf8_len(char src) {
- const size_t lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4 };
- uint8_t highbits = static_cast<uint8_t>(src) >> 4;
- return lookup[highbits];
- }
- static void replace_all(std::string & s, const std::string & search, const std::string & replace) {
- std::string result;
- for (size_t pos = 0; ; pos += search.length()) {
- auto new_pos = s.find(search, pos);
- if (new_pos == std::string::npos) {
- result += s.substr(pos, s.size() - pos);
- break;
- }
- result += s.substr(pos, new_pos - pos) + replace;
- pos = new_pos;
- }
- s = std::move(result);
- }
- static bool is_float_close(float a, float b, float abs_tol) {
- // Check for non-negative tolerance
- if (abs_tol < 0.0) {
- throw std::invalid_argument("Tolerance must be non-negative");
- }
- // Exact equality check
- if (a == b) {
- return true;
- }
- // Check for infinities
- if (std::isinf(a) || std::isinf(b)) {
- return false;
- }
- // Regular comparison using the provided absolute tolerance
- return std::fabs(b - a) <= abs_tol;
- }
- static void zeros(std::ofstream & file, size_t n) {
- char zero = 0;
- for (size_t i = 0; i < n; ++i) {
- file.write(&zero, 1);
- }
- }
- LLAMA_ATTRIBUTE_FORMAT(1, 2)
- static std::string format(const char * fmt, ...) {
- va_list ap;
- va_list ap2;
- va_start(ap, fmt);
- va_copy(ap2, ap);
- int size = vsnprintf(NULL, 0, fmt, ap);
- GGML_ASSERT(size >= 0 && size < INT_MAX); // NOLINT
- std::vector<char> buf(size + 1);
- int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2);
- GGML_ASSERT(size2 == size);
- va_end(ap2);
- va_end(ap);
- return std::string(buf.data(), size);
- }
- //
- // gguf constants (sync with gguf.py)
- //
- enum llm_arch {
- LLM_ARCH_LLAMA,
- LLM_ARCH_FALCON,
- LLM_ARCH_BAICHUAN,
- LLM_ARCH_GROK,
- LLM_ARCH_GPT2,
- LLM_ARCH_GPTJ,
- LLM_ARCH_GPTNEOX,
- LLM_ARCH_MPT,
- LLM_ARCH_STARCODER,
- LLM_ARCH_PERSIMMON,
- LLM_ARCH_REFACT,
- LLM_ARCH_BERT,
- LLM_ARCH_NOMIC_BERT,
- LLM_ARCH_JINA_BERT_V2,
- LLM_ARCH_BLOOM,
- LLM_ARCH_STABLELM,
- LLM_ARCH_QWEN,
- LLM_ARCH_QWEN2,
- LLM_ARCH_QWEN2MOE,
- LLM_ARCH_PHI2,
- LLM_ARCH_PHI3,
- LLM_ARCH_PLAMO,
- LLM_ARCH_CODESHELL,
- LLM_ARCH_ORION,
- LLM_ARCH_INTERNLM2,
- LLM_ARCH_MINICPM,
- LLM_ARCH_GEMMA,
- LLM_ARCH_STARCODER2,
- LLM_ARCH_MAMBA,
- LLM_ARCH_XVERSE,
- LLM_ARCH_COMMAND_R,
- LLM_ARCH_DBRX,
- LLM_ARCH_OLMO,
- LLM_ARCH_UNKNOWN,
- };
- static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
- { LLM_ARCH_LLAMA, "llama" },
- { LLM_ARCH_FALCON, "falcon" },
- { LLM_ARCH_GROK, "grok" },
- { LLM_ARCH_GPT2, "gpt2" },
- { LLM_ARCH_GPTJ, "gptj" },
- { LLM_ARCH_GPTNEOX, "gptneox" },
- { LLM_ARCH_MPT, "mpt" },
- { LLM_ARCH_BAICHUAN, "baichuan" },
- { LLM_ARCH_STARCODER, "starcoder" },
- { LLM_ARCH_PERSIMMON, "persimmon" },
- { LLM_ARCH_REFACT, "refact" },
- { LLM_ARCH_BERT, "bert" },
- { LLM_ARCH_NOMIC_BERT, "nomic-bert" },
- { LLM_ARCH_JINA_BERT_V2, "jina-bert-v2" },
- { LLM_ARCH_BLOOM, "bloom" },
- { LLM_ARCH_STABLELM, "stablelm" },
- { LLM_ARCH_QWEN, "qwen" },
- { LLM_ARCH_QWEN2, "qwen2" },
- { LLM_ARCH_QWEN2MOE, "qwen2moe" },
- { LLM_ARCH_PHI2, "phi2" },
- { LLM_ARCH_PHI3, "phi3" },
- { LLM_ARCH_PLAMO, "plamo" },
- { LLM_ARCH_CODESHELL, "codeshell" },
- { LLM_ARCH_ORION, "orion" },
- { LLM_ARCH_INTERNLM2, "internlm2" },
- { LLM_ARCH_MINICPM, "minicpm" },
- { LLM_ARCH_GEMMA, "gemma" },
- { LLM_ARCH_STARCODER2, "starcoder2" },
- { LLM_ARCH_MAMBA, "mamba" },
- { LLM_ARCH_XVERSE, "xverse" },
- { LLM_ARCH_COMMAND_R, "command-r" },
- { LLM_ARCH_DBRX, "dbrx" },
- { LLM_ARCH_OLMO, "olmo" },
- { LLM_ARCH_UNKNOWN, "(unknown)" },
- };
- enum llm_kv {
- LLM_KV_GENERAL_ARCHITECTURE,
- LLM_KV_GENERAL_QUANTIZATION_VERSION,
- LLM_KV_GENERAL_ALIGNMENT,
- LLM_KV_GENERAL_NAME,
- LLM_KV_GENERAL_AUTHOR,
- LLM_KV_GENERAL_VERSION,
- LLM_KV_GENERAL_URL,
- LLM_KV_GENERAL_DESCRIPTION,
- LLM_KV_GENERAL_LICENSE,
- LLM_KV_GENERAL_SOURCE_URL,
- LLM_KV_GENERAL_SOURCE_HF_REPO,
- LLM_KV_VOCAB_SIZE,
- LLM_KV_CONTEXT_LENGTH,
- LLM_KV_EMBEDDING_LENGTH,
- LLM_KV_BLOCK_COUNT,
- LLM_KV_FEED_FORWARD_LENGTH,
- LLM_KV_USE_PARALLEL_RESIDUAL,
- LLM_KV_TENSOR_DATA_LAYOUT,
- LLM_KV_EXPERT_COUNT,
- LLM_KV_EXPERT_USED_COUNT,
- LLM_KV_POOLING_TYPE,
- LLM_KV_LOGIT_SCALE,
- LLM_KV_ATTENTION_HEAD_COUNT,
- LLM_KV_ATTENTION_HEAD_COUNT_KV,
- LLM_KV_ATTENTION_MAX_ALIBI_BIAS,
- LLM_KV_ATTENTION_CLAMP_KQV,
- LLM_KV_ATTENTION_KEY_LENGTH,
- LLM_KV_ATTENTION_VALUE_LENGTH,
- LLM_KV_ATTENTION_LAYERNORM_EPS,
- LLM_KV_ATTENTION_LAYERNORM_RMS_EPS,
- LLM_KV_ATTENTION_CAUSAL,
- LLM_KV_ROPE_DIMENSION_COUNT,
- LLM_KV_ROPE_FREQ_BASE,
- LLM_KV_ROPE_SCALE_LINEAR,
- LLM_KV_ROPE_SCALING_TYPE,
- LLM_KV_ROPE_SCALING_FACTOR,
- LLM_KV_ROPE_SCALING_ORIG_CTX_LEN,
- LLM_KV_ROPE_SCALING_FINETUNED,
- LLM_KV_SPLIT_NO,
- LLM_KV_SPLIT_COUNT,
- LLM_KV_SPLIT_TENSORS_COUNT,
- LLM_KV_SSM_INNER_SIZE,
- LLM_KV_SSM_CONV_KERNEL,
- LLM_KV_SSM_STATE_SIZE,
- LLM_KV_SSM_TIME_STEP_RANK,
- LLM_KV_TOKENIZER_MODEL,
- LLM_KV_TOKENIZER_PRE,
- LLM_KV_TOKENIZER_LIST,
- LLM_KV_TOKENIZER_TOKEN_TYPE,
- LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT,
- LLM_KV_TOKENIZER_SCORES,
- LLM_KV_TOKENIZER_MERGES,
- LLM_KV_TOKENIZER_BOS_ID,
- LLM_KV_TOKENIZER_EOS_ID,
- LLM_KV_TOKENIZER_UNK_ID,
- LLM_KV_TOKENIZER_SEP_ID,
- LLM_KV_TOKENIZER_PAD_ID,
- LLM_KV_TOKENIZER_CLS_ID,
- LLM_KV_TOKENIZER_MASK_ID,
- LLM_KV_TOKENIZER_ADD_BOS,
- LLM_KV_TOKENIZER_ADD_EOS,
- LLM_KV_TOKENIZER_ADD_PREFIX,
- LLM_KV_TOKENIZER_HF_JSON,
- LLM_KV_TOKENIZER_RWKV,
- LLM_KV_TOKENIZER_PREFIX_ID,
- LLM_KV_TOKENIZER_SUFFIX_ID,
- LLM_KV_TOKENIZER_MIDDLE_ID,
- LLM_KV_TOKENIZER_EOT_ID,
- };
- static const std::map<llm_kv, const char *> LLM_KV_NAMES = {
- { LLM_KV_GENERAL_ARCHITECTURE, "general.architecture" },
- { LLM_KV_GENERAL_QUANTIZATION_VERSION, "general.quantization_version" },
- { LLM_KV_GENERAL_ALIGNMENT, "general.alignment" },
- { LLM_KV_GENERAL_NAME, "general.name" },
- { LLM_KV_GENERAL_AUTHOR, "general.author" },
- { LLM_KV_GENERAL_VERSION, "general.version" },
- { LLM_KV_GENERAL_URL, "general.url" },
- { LLM_KV_GENERAL_DESCRIPTION, "general.description" },
- { LLM_KV_GENERAL_LICENSE, "general.license" },
- { LLM_KV_GENERAL_SOURCE_URL, "general.source.url" },
- { LLM_KV_GENERAL_SOURCE_HF_REPO, "general.source.huggingface.repository" },
- { LLM_KV_VOCAB_SIZE, "%s.vocab_size" },
- { LLM_KV_CONTEXT_LENGTH, "%s.context_length" },
- { LLM_KV_EMBEDDING_LENGTH, "%s.embedding_length" },
- { LLM_KV_BLOCK_COUNT, "%s.block_count" },
- { LLM_KV_FEED_FORWARD_LENGTH, "%s.feed_forward_length" },
- { LLM_KV_USE_PARALLEL_RESIDUAL, "%s.use_parallel_residual" },
- { LLM_KV_TENSOR_DATA_LAYOUT, "%s.tensor_data_layout" },
- { LLM_KV_EXPERT_COUNT, "%s.expert_count" },
- { LLM_KV_EXPERT_USED_COUNT, "%s.expert_used_count" },
- { LLM_KV_POOLING_TYPE , "%s.pooling_type" },
- { LLM_KV_LOGIT_SCALE, "%s.logit_scale" },
- { LLM_KV_ATTENTION_HEAD_COUNT, "%s.attention.head_count" },
- { LLM_KV_ATTENTION_HEAD_COUNT_KV, "%s.attention.head_count_kv" },
- { LLM_KV_ATTENTION_MAX_ALIBI_BIAS, "%s.attention.max_alibi_bias" },
- { LLM_KV_ATTENTION_CLAMP_KQV, "%s.attention.clamp_kqv" },
- { LLM_KV_ATTENTION_KEY_LENGTH, "%s.attention.key_length" },
- { LLM_KV_ATTENTION_VALUE_LENGTH, "%s.attention.value_length" },
- { LLM_KV_ATTENTION_LAYERNORM_EPS, "%s.attention.layer_norm_epsilon" },
- { LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, "%s.attention.layer_norm_rms_epsilon" },
- { LLM_KV_ATTENTION_CAUSAL, "%s.attention.causal" },
- { LLM_KV_ROPE_DIMENSION_COUNT, "%s.rope.dimension_count" },
- { LLM_KV_ROPE_FREQ_BASE, "%s.rope.freq_base" },
- { LLM_KV_ROPE_SCALE_LINEAR, "%s.rope.scale_linear" },
- { LLM_KV_ROPE_SCALING_TYPE, "%s.rope.scaling.type" },
- { LLM_KV_ROPE_SCALING_FACTOR, "%s.rope.scaling.factor" },
- { LLM_KV_ROPE_SCALING_ORIG_CTX_LEN, "%s.rope.scaling.original_context_length" },
- { LLM_KV_ROPE_SCALING_FINETUNED, "%s.rope.scaling.finetuned" },
- { LLM_KV_SPLIT_NO, "split.no" },
- { LLM_KV_SPLIT_COUNT, "split.count" },
- { LLM_KV_SPLIT_TENSORS_COUNT, "split.tensors.count" },
- { LLM_KV_SSM_CONV_KERNEL, "%s.ssm.conv_kernel" },
- { LLM_KV_SSM_INNER_SIZE, "%s.ssm.inner_size" },
- { LLM_KV_SSM_STATE_SIZE, "%s.ssm.state_size" },
- { LLM_KV_SSM_TIME_STEP_RANK, "%s.ssm.time_step_rank" },
- { LLM_KV_TOKENIZER_MODEL, "tokenizer.ggml.model" },
- { LLM_KV_TOKENIZER_PRE, "tokenizer.ggml.pre" },
- { LLM_KV_TOKENIZER_LIST, "tokenizer.ggml.tokens" },
- { LLM_KV_TOKENIZER_TOKEN_TYPE, "tokenizer.ggml.token_type" },
- { LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, "tokenizer.ggml.token_type_count" },
- { LLM_KV_TOKENIZER_SCORES, "tokenizer.ggml.scores" },
- { LLM_KV_TOKENIZER_MERGES, "tokenizer.ggml.merges" },
- { LLM_KV_TOKENIZER_BOS_ID, "tokenizer.ggml.bos_token_id" },
- { LLM_KV_TOKENIZER_EOS_ID, "tokenizer.ggml.eos_token_id" },
- { LLM_KV_TOKENIZER_UNK_ID, "tokenizer.ggml.unknown_token_id" },
- { LLM_KV_TOKENIZER_SEP_ID, "tokenizer.ggml.seperator_token_id" },
- { LLM_KV_TOKENIZER_PAD_ID, "tokenizer.ggml.padding_token_id" },
- { LLM_KV_TOKENIZER_CLS_ID, "tokenizer.ggml.cls_token_id" },
- { LLM_KV_TOKENIZER_MASK_ID, "tokenizer.ggml.mask_token_id" },
- { LLM_KV_TOKENIZER_ADD_BOS, "tokenizer.ggml.add_bos_token" },
- { LLM_KV_TOKENIZER_ADD_EOS, "tokenizer.ggml.add_eos_token" },
- { LLM_KV_TOKENIZER_ADD_PREFIX, "tokenizer.ggml.add_space_prefix" },
- { LLM_KV_TOKENIZER_HF_JSON, "tokenizer.huggingface.json" },
- { LLM_KV_TOKENIZER_RWKV, "tokenizer.rwkv.world" },
- { LLM_KV_TOKENIZER_PREFIX_ID, "tokenizer.ggml.prefix_token_id" },
- { LLM_KV_TOKENIZER_SUFFIX_ID, "tokenizer.ggml.suffix_token_id" },
- { LLM_KV_TOKENIZER_MIDDLE_ID, "tokenizer.ggml.middle_token_id" },
- { LLM_KV_TOKENIZER_EOT_ID, "tokenizer.ggml.eot_token_id" },
- };
- struct LLM_KV {
- LLM_KV(llm_arch arch) : arch(arch) {}
- llm_arch arch;
- std::string operator()(llm_kv kv) const {
- return ::format(LLM_KV_NAMES.at(kv), LLM_ARCH_NAMES.at(arch));
- }
- };
- enum llm_tensor {
- LLM_TENSOR_TOKEN_EMBD,
- LLM_TENSOR_TOKEN_EMBD_NORM,
- LLM_TENSOR_TOKEN_TYPES,
- LLM_TENSOR_POS_EMBD,
- LLM_TENSOR_OUTPUT,
- LLM_TENSOR_OUTPUT_NORM,
- LLM_TENSOR_ROPE_FREQS,
- LLM_TENSOR_ATTN_Q,
- LLM_TENSOR_ATTN_K,
- LLM_TENSOR_ATTN_V,
- LLM_TENSOR_ATTN_QKV,
- LLM_TENSOR_ATTN_OUT,
- LLM_TENSOR_ATTN_NORM,
- LLM_TENSOR_ATTN_NORM_2,
- LLM_TENSOR_ATTN_OUT_NORM,
- LLM_TENSOR_ATTN_ROT_EMBD,
- LLM_TENSOR_FFN_GATE_INP,
- LLM_TENSOR_FFN_GATE_INP_SHEXP,
- LLM_TENSOR_FFN_NORM,
- LLM_TENSOR_FFN_GATE,
- LLM_TENSOR_FFN_DOWN,
- LLM_TENSOR_FFN_UP,
- LLM_TENSOR_FFN_ACT,
- LLM_TENSOR_FFN_DOWN_EXP, // split experts for backward compatibility
- LLM_TENSOR_FFN_GATE_EXP,
- LLM_TENSOR_FFN_UP_EXP,
- LLM_TENSOR_FFN_DOWN_EXPS, // merged experts
- LLM_TENSOR_FFN_GATE_EXPS,
- LLM_TENSOR_FFN_UP_EXPS,
- LLM_TENSOR_FFN_DOWN_SHEXP,
- LLM_TENSOR_FFN_GATE_SHEXP,
- LLM_TENSOR_FFN_UP_SHEXP,
- LLM_TENSOR_ATTN_Q_NORM,
- LLM_TENSOR_ATTN_K_NORM,
- LLM_TENSOR_LAYER_OUT_NORM,
- LLM_TENSOR_SSM_IN,
- LLM_TENSOR_SSM_CONV1D,
- LLM_TENSOR_SSM_X,
- LLM_TENSOR_SSM_DT,
- LLM_TENSOR_SSM_A,
- LLM_TENSOR_SSM_D,
- LLM_TENSOR_SSM_OUT,
- };
- static const std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NAMES = {
- {
- LLM_ARCH_LLAMA,
- {
- { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
- { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
- { LLM_TENSOR_OUTPUT, "output" },
- { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
- { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
- { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
- { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
- { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
- { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
- { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
- { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
- { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
- { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
- { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
- { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
- { LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" },
- { LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" },
- { LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" },
- { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
- { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
- { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
- },
- },
- {
- LLM_ARCH_BAICHUAN,
- {
- { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
- { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
- { LLM_TENSOR_OUTPUT, "output" },
- { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
- { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
- { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
- { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
- { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
- { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
- { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
- { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
- { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
- { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
- { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
- },
- },
- {
- LLM_ARCH_FALCON,
- {
- { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
- { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
- { LLM_TENSOR_OUTPUT, "output" },
- { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
- { LLM_TENSOR_ATTN_NORM_2, "blk.%d.attn_norm_2" },
- { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
- { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
- { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
- { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
- },
- },
- {
- LLM_ARCH_GROK,
- {
- { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
- { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
- { LLM_TENSOR_OUTPUT, "output" },
- { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
- { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
- { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
- { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
- { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
- { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
- { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
- { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
- { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
- { LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" },
- { LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" },
- { LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" },
- { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
- { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
- { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
- { LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" },
- { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
- },
- },
- {
- LLM_ARCH_GPT2,
- {
- { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
- { LLM_TENSOR_POS_EMBD, "position_embd" },
- { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
- { LLM_TENSOR_OUTPUT, "output" },
- { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
- { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
- { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
- { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
- { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
- { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
- },
- },
- {
- LLM_ARCH_GPTJ,
- {
- { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
- },
- },
- {
- LLM_ARCH_GPTNEOX,
- {
- { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
- { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
- { LLM_TENSOR_OUTPUT, "output" },
- { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
- { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
- { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
- { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
- { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
- { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
- },
- },
- {
- LLM_ARCH_PERSIMMON,
- {
- { LLM_TENSOR_TOKEN_EMBD, "token_embd"},
- { LLM_TENSOR_OUTPUT_NORM, "output_norm"},
- { LLM_TENSOR_OUTPUT, "output"},
- { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm"},
- { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv"},
- { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output"},
- { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm"},
- { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm"},
- { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm"},
- { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down"},
- { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up"},
- { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd"},
- },
- },
- {
- LLM_ARCH_MPT,
- {
- { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
- { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
- { LLM_TENSOR_OUTPUT, "output"},
- { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
- { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
- { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
- { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
- { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
- { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
- { LLM_TENSOR_FFN_ACT, "blk.%d.ffn.act" },
- { LLM_TENSOR_POS_EMBD, "position_embd" },
- { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm"},
- { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm"},
- },
- },
- {
- LLM_ARCH_STARCODER,
- {
- { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
- { LLM_TENSOR_POS_EMBD, "position_embd" },
- { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
- { LLM_TENSOR_OUTPUT, "output" },
- { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
- { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
- { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
- { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
- { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
- { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
- },
- },
- {
- LLM_ARCH_REFACT,
- {
- { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
- { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
- { LLM_TENSOR_OUTPUT, "output" },
- { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
- { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
- { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
- { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
- { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
- { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
- { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
- { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
- { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
- },
- },
- {
- LLM_ARCH_BERT,
- {
- { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
- { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
- { LLM_TENSOR_TOKEN_TYPES, "token_types" },
- { LLM_TENSOR_POS_EMBD, "position_embd" },
- { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
- { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
- { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
- { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
- { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
- { LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" },
- { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
- { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
- },
- },
- {
- LLM_ARCH_NOMIC_BERT,
- {
- { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
- { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
- { LLM_TENSOR_TOKEN_TYPES, "token_types" },
- { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
- { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
- { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
- { LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" },
- { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
- { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
- { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
- },
- },
- {
- LLM_ARCH_JINA_BERT_V2,
- {
- { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
- { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
- { LLM_TENSOR_TOKEN_TYPES, "token_types" },
- { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
- { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
- { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" },
- { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
- { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
- { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
- { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
- { LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" },
- { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
- { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
- { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
- },
- },
- {
- LLM_ARCH_BLOOM,
- {
- { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
- { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
- { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
- { LLM_TENSOR_OUTPUT, "output" },
- { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
- { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
- { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
- { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
- { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
- { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
- },
- },
- {
- LLM_ARCH_STABLELM,
- {
- { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
- { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
- { LLM_TENSOR_OUTPUT, "output" },
- { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
- { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
- { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
- { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
- { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
- { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
- { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
- { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
- { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
- { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
- { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" },
- { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
- },
- },
- {
- LLM_ARCH_QWEN,
- {
- { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
- { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
- { LLM_TENSOR_OUTPUT, "output" },
- { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
- { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
- { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
- { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
- { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
- { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
- { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
- { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
- },
- },
- {
- LLM_ARCH_QWEN2,
- {
- { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
- { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
- { LLM_TENSOR_OUTPUT, "output" },
- { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
- { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
- { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
- { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
- { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
- { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
- { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
- { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
- { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
- },
- },
- {
- LLM_ARCH_QWEN2MOE,
- {
- { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
- { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
- { LLM_TENSOR_OUTPUT, "output" },
- { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
- { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
- { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
- { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
- { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
- { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
- { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
- { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
- { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
- { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
- { LLM_TENSOR_FFN_GATE_INP_SHEXP, "blk.%d.ffn_gate_inp_shexp" },
- { LLM_TENSOR_FFN_GATE_SHEXP, "blk.%d.ffn_gate_shexp" },
- { LLM_TENSOR_FFN_DOWN_SHEXP, "blk.%d.ffn_down_shexp" },
- { LLM_TENSOR_FFN_UP_SHEXP, "blk.%d.ffn_up_shexp" },
- },
- },
- {
- LLM_ARCH_PHI2,
- {
- { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
- { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
- { LLM_TENSOR_OUTPUT, "output" },
- { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
- { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
- { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
- { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
- { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
- { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
- { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
- { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
- },
- },
- {
- LLM_ARCH_PHI3,
- {
- { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
- { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
- { LLM_TENSOR_OUTPUT, "output" },
- { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
- { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
- { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
- { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
- { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
- { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
- { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
- { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
- { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
- },
- },
- {
- LLM_ARCH_PLAMO,
- {
- { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
- { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
- { LLM_TENSOR_OUTPUT, "output" },
- { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
- { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
- { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
- { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
- { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
- { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
- { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
- { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
- { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
- { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
- },
- },
- {
- LLM_ARCH_CODESHELL,
- {
- { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
- { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
- { LLM_TENSOR_OUTPUT, "output" },
- { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
- { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
- { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
- { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
- { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
- { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
- { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
- { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
- { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
- { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
- { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
- { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
- },
- },
- {
- LLM_ARCH_ORION,
- {
- { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
- { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
- { LLM_TENSOR_OUTPUT, "output" },
- { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
- { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
- { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
- { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
- { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
- { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
- { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
- { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
- { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
- { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
- { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
- },
- },
- {
- LLM_ARCH_INTERNLM2,
- {
- { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
- { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
- { LLM_TENSOR_OUTPUT, "output" },
- { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
- { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
- { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
- { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
- { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
- { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
- { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
- { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
- { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
- },
- },
- {
- LLM_ARCH_MINICPM,
- {
- { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
- { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
- { LLM_TENSOR_OUTPUT, "output" },
- { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
- { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
- { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
- { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
- { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
- { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
- { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
- { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
- { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
- { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
- { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
- { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
- { LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" },
- { LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" },
- { LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" },
- },
- },
- {
- LLM_ARCH_GEMMA,
- {
- { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
- { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
- { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
- { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
- { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
- { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
- { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
- { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
- { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
- { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
- { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
- },
- },
- {
- LLM_ARCH_STARCODER2,
- {
- { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
- { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
- { LLM_TENSOR_OUTPUT, "output" },
- { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
- { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
- { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
- { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
- { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
- { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
- { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
- { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
- { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
- { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
- },
- },
- {
- LLM_ARCH_MAMBA,
- {
- { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
- { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
- { LLM_TENSOR_OUTPUT, "output" },
- { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
- { LLM_TENSOR_SSM_IN, "blk.%d.ssm_in" },
- { LLM_TENSOR_SSM_CONV1D, "blk.%d.ssm_conv1d" },
- { LLM_TENSOR_SSM_X, "blk.%d.ssm_x" },
- { LLM_TENSOR_SSM_DT, "blk.%d.ssm_dt" },
- { LLM_TENSOR_SSM_A, "blk.%d.ssm_a" },
- { LLM_TENSOR_SSM_D, "blk.%d.ssm_d" },
- { LLM_TENSOR_SSM_OUT, "blk.%d.ssm_out" },
- },
- },
- {
- LLM_ARCH_XVERSE,
- {
- { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
- { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
- { LLM_TENSOR_OUTPUT, "output" },
- { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
- { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
- { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
- { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
- { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
- { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
- { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
- { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
- { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
- { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
- { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
- },
- },
- {
- LLM_ARCH_COMMAND_R,
- {
- { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
- { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
- { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
- { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
- { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
- { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
- { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
- { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
- { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
- { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
- { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" },
- { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
- },
- },
- {
- LLM_ARCH_DBRX,
- {
- { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
- { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
- { LLM_TENSOR_OUTPUT, "output" },
- { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
- { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
- { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
- { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
- { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
- { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
- { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
- { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
- },
- },
- {
- LLM_ARCH_OLMO,
- {
- { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
- { LLM_TENSOR_OUTPUT, "output" },
- { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
- { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
- { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
- { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
- { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
- { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
- { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
- },
- },
- {
- LLM_ARCH_UNKNOWN,
- {
- { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
- },
- },
- };
- static llm_arch llm_arch_from_string(const std::string & name) {
- for (const auto & kv : LLM_ARCH_NAMES) { // NOLINT
- if (kv.second == name) {
- return kv.first;
- }
- }
- return LLM_ARCH_UNKNOWN;
- }
- // helper to handle gguf constants
- // usage:
- //
- // const auto tn = LLM_TN(LLM_ARCH_LLAMA);
- //
- // std::string name = tn(LLM_TENSOR_OUTPUT); -> "output"
- // std::string name = tn(LLM_TENSOR_TOKEN_EMBD, "bias"); -> "token_embd.bias"
- // std::string name = tn(LLM_TENSOR_ATTN_NORM, "weight", 3); -> "blk.3.attn_norm.weight"
- //
- struct LLM_TN {
- LLM_TN(llm_arch arch) : arch(arch) {}
- llm_arch arch;
- std::string operator()(llm_tensor tensor) const {
- if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
- return "__missing__";
- }
- return LLM_TENSOR_NAMES.at(arch).at(tensor);
- }
- std::string operator()(llm_tensor tensor, const std::string & suffix) const {
- if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
- return "__missing__";
- }
- return LLM_TENSOR_NAMES.at(arch).at(tensor) + "." + suffix;
- }
- std::string operator()(llm_tensor tensor, int bid) const {
- if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
- return "__missing__";
- }
- return ::format(LLM_TENSOR_NAMES.at(arch).at(tensor).c_str(), bid);
- }
- std::string operator()(llm_tensor tensor, const std::string & suffix, int bid) const {
- if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
- return "__missing__";
- }
- return ::format(LLM_TENSOR_NAMES.at(arch).at(tensor).c_str(), bid) + "." + suffix;
- }
- std::string operator()(llm_tensor tensor, const std::string & suffix, int bid, int xid) const {
- if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
- return "__missing__";
- }
- return ::format(LLM_TENSOR_NAMES.at(arch).at(tensor).c_str(), bid, xid) + "." + suffix;
- }
- };
- //
- // gguf helpers
- //
- static const std::map<llama_rope_scaling_type, const char *> LLAMA_ROPE_SCALING_TYPES = {
- { LLAMA_ROPE_SCALING_TYPE_NONE, "none" },
- { LLAMA_ROPE_SCALING_TYPE_LINEAR, "linear" },
- { LLAMA_ROPE_SCALING_TYPE_YARN, "yarn" },
- };
- static llama_rope_scaling_type llama_rope_scaling_type_from_string(const std::string & name) {
- for (const auto & kv : LLAMA_ROPE_SCALING_TYPES) {
- if (kv.second == name) {
- return (llama_rope_scaling_type) kv.first;
- }
- }
- return LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED;
- }
- static std::string gguf_data_to_str(enum gguf_type type, const void * data, int i) {
- switch (type) {
- case GGUF_TYPE_UINT8: return std::to_string(((const uint8_t *)data)[i]);
- case GGUF_TYPE_INT8: return std::to_string(((const int8_t *)data)[i]);
- case GGUF_TYPE_UINT16: return std::to_string(((const uint16_t *)data)[i]);
- case GGUF_TYPE_INT16: return std::to_string(((const int16_t *)data)[i]);
- case GGUF_TYPE_UINT32: return std::to_string(((const uint32_t *)data)[i]);
- case GGUF_TYPE_INT32: return std::to_string(((const int32_t *)data)[i]);
- case GGUF_TYPE_UINT64: return std::to_string(((const uint64_t *)data)[i]);
- case GGUF_TYPE_INT64: return std::to_string(((const int64_t *)data)[i]);
- case GGUF_TYPE_FLOAT32: return std::to_string(((const float *)data)[i]);
- case GGUF_TYPE_FLOAT64: return std::to_string(((const double *)data)[i]);
- case GGUF_TYPE_BOOL: return ((const bool *)data)[i] ? "true" : "false";
- default: return format("unknown type %d", type);
- }
- }
- static std::string gguf_kv_to_str(const struct gguf_context * ctx_gguf, int i) {
- const enum gguf_type type = gguf_get_kv_type(ctx_gguf, i);
- switch (type) {
- case GGUF_TYPE_STRING:
- return gguf_get_val_str(ctx_gguf, i);
- case GGUF_TYPE_ARRAY:
- {
- const enum gguf_type arr_type = gguf_get_arr_type(ctx_gguf, i);
- int arr_n = gguf_get_arr_n(ctx_gguf, i);
- const void * data = gguf_get_arr_data(ctx_gguf, i);
- std::stringstream ss;
- ss << "[";
- for (int j = 0; j < arr_n; j++) {
- if (arr_type == GGUF_TYPE_STRING) {
- std::string val = gguf_get_arr_str(ctx_gguf, i, j);
- // escape quotes
- replace_all(val, "\\", "\\\\");
- replace_all(val, "\"", "\\\"");
- ss << '"' << val << '"';
- } else if (arr_type == GGUF_TYPE_ARRAY) {
- ss << "???";
- } else {
- ss << gguf_data_to_str(arr_type, data, j);
- }
- if (j < arr_n - 1) {
- ss << ", ";
- }
- }
- ss << "]";
- return ss.str();
- }
- default:
- return gguf_data_to_str(type, gguf_get_val_data(ctx_gguf, i), 0);
- }
- }
- //
- // llama helpers
- //
- #if defined(_WIN32)
- static std::string llama_format_win_err(DWORD err) {
- LPSTR buf;
- size_t size = FormatMessageA(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS,
- NULL, err, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), (LPSTR)&buf, 0, NULL);
- if (!size) {
- return "FormatMessageA failed";
- }
- std::string ret(buf, size);
- LocalFree(buf);
- return ret;
- }
- #endif
- template <typename T>
- struct no_init {
- T value;
- no_init() { /* do nothing */ }
- };
- struct llama_file {
- // use FILE * so we don't have to re-open the file to mmap
- FILE * fp;
- size_t size;
- llama_file(const char * fname, const char * mode) {
- fp = ggml_fopen(fname, mode);
- if (fp == NULL) {
- throw std::runtime_error(format("failed to open %s: %s", fname, strerror(errno)));
- }
- seek(0, SEEK_END);
- size = tell();
- seek(0, SEEK_SET);
- }
- size_t tell() const {
- #ifdef _WIN32
- __int64 ret = _ftelli64(fp);
- #else
- long ret = std::ftell(fp);
- #endif
- GGML_ASSERT(ret != -1); // this really shouldn't fail
- return (size_t) ret;
- }
- void seek(size_t offset, int whence) const {
- #ifdef _WIN32
- int ret = _fseeki64(fp, (__int64) offset, whence);
- #else
- int ret = std::fseek(fp, (long) offset, whence);
- #endif
- GGML_ASSERT(ret == 0); // same
- }
- void read_raw(void * ptr, size_t len) const {
- if (len == 0) {
- return;
- }
- errno = 0;
- std::size_t ret = std::fread(ptr, len, 1, fp);
- if (ferror(fp)) {
- throw std::runtime_error(format("read error: %s", strerror(errno)));
- }
- if (ret != 1) {
- throw std::runtime_error("unexpectedly reached end of file");
- }
- }
- uint32_t read_u32() const {
- uint32_t ret;
- read_raw(&ret, sizeof(ret));
- return ret;
- }
- void write_raw(const void * ptr, size_t len) const {
- if (len == 0) {
- return;
- }
- errno = 0;
- size_t ret = std::fwrite(ptr, len, 1, fp);
- if (ret != 1) {
- throw std::runtime_error(format("write error: %s", strerror(errno)));
- }
- }
- void write_u32(std::uint32_t val) const {
- write_raw(&val, sizeof(val));
- }
- ~llama_file() {
- if (fp) {
- std::fclose(fp);
- }
- }
- };
- using llama_files = std::vector<std::unique_ptr<llama_file>>;
- struct llama_mmap {
- void * addr;
- size_t size;
- llama_mmap(const llama_mmap &) = delete;
- #ifdef _POSIX_MAPPED_FILES
- static constexpr bool SUPPORTED = true;
- // list of mapped fragments (first_offset, last_offset)
- std::vector<std::pair<size_t, size_t>> mapped_fragments;
- llama_mmap(struct llama_file * file, size_t prefetch = (size_t) -1 /* -1 = max value */, bool numa = false) {
- size = file->size;
- int fd = fileno(file->fp);
- int flags = MAP_SHARED;
- // prefetch/readahead impairs performance on NUMA systems
- if (numa) { prefetch = 0; }
- #ifdef __linux__
- // advise the kernel to read the file sequentially (increases readahead)
- if (posix_fadvise(fd, 0, 0, POSIX_FADV_SEQUENTIAL)) {
- LLAMA_LOG_WARN("warning: posix_fadvise(.., POSIX_FADV_SEQUENTIAL) failed: %s\n",
- strerror(errno));
- }
- if (prefetch) { flags |= MAP_POPULATE; }
- #endif
- addr = mmap(NULL, file->size, PROT_READ, flags, fd, 0);
- if (addr == MAP_FAILED) { // NOLINT
- throw std::runtime_error(format("mmap failed: %s", strerror(errno)));
- }
- if (prefetch > 0) {
- // advise the kernel to preload the mapped memory
- if (posix_madvise(addr, std::min(file->size, prefetch), POSIX_MADV_WILLNEED)) {
- LLAMA_LOG_WARN("warning: posix_madvise(.., POSIX_MADV_WILLNEED) failed: %s\n",
- strerror(errno));
- }
- }
- if (numa) {
- // advise the kernel not to use readahead
- // (because the next page might not belong on the same node)
- if (posix_madvise(addr, file->size, POSIX_MADV_RANDOM)) {
- LLAMA_LOG_WARN("warning: posix_madvise(.., POSIX_MADV_RANDOM) failed: %s\n",
- strerror(errno));
- }
- }
- // initialize list of mapped_fragments
- mapped_fragments.emplace_back(0, file->size);
- }
- static void align_range(size_t * first, size_t * last, size_t page_size) {
- // align first to the next page
- size_t offset_in_page = *first & (page_size - 1);
- size_t offset_to_page = offset_in_page == 0 ? 0 : page_size - offset_in_page;
- *first += offset_to_page;
- // align last to the previous page
- *last = *last & ~(page_size - 1);
- if (*last <= *first) {
- *last = *first;
- }
- }
- // partially unmap the file in the range [first, last)
- void unmap_fragment(size_t first, size_t last) {
- // note: this function must not be called multiple times with overlapping ranges
- // otherwise, there is a risk of invalidating addresses that have been repurposed for other mappings
- int page_size = sysconf(_SC_PAGESIZE);
- align_range(&first, &last, page_size);
- size_t len = last - first;
- if (len == 0) {
- return;
- }
- GGML_ASSERT(first % page_size == 0);
- GGML_ASSERT(last % page_size == 0);
- GGML_ASSERT(last > first);
- void * next_page_start = (uint8_t *) addr + first;
- // unmap the range
- if (munmap(next_page_start, len)) {
- LLAMA_LOG_WARN("warning: munmap failed: %s\n", strerror(errno));
- }
- // update the list of mapped fragments to avoid unmapping the same range again in the destructor
- std::vector<std::pair<size_t, size_t>> new_mapped_fragments;
- for (const auto & frag : mapped_fragments) {
- if (frag.first < first && frag.second > last) {
- // the range is in the middle of the fragment, split it
- new_mapped_fragments.emplace_back(frag.first, first);
- new_mapped_fragments.emplace_back(last, frag.second);
- } else if (frag.first < first && frag.second > first) {
- // the range starts in the middle of the fragment
- new_mapped_fragments.emplace_back(frag.first, first);
- } else if (frag.first < last && frag.second > last) {
- // the range ends in the middle of the fragment
- new_mapped_fragments.emplace_back(last, frag.second);
- } else if (frag.first >= first && frag.second <= last) {
- // the range covers the entire fragment
- } else {
- // the range is outside the fragment
- new_mapped_fragments.push_back(frag);
- }
- }
- mapped_fragments = std::move(new_mapped_fragments);
- }
- ~llama_mmap() {
- for (const auto & frag : mapped_fragments) {
- if (munmap((char *) addr + frag.first, frag.second - frag.first)) {
- LLAMA_LOG_WARN("warning: munmap failed: %s\n", strerror(errno));
- }
- }
- }
- #elif defined(_WIN32)
- static constexpr bool SUPPORTED = true;
- llama_mmap(struct llama_file * file, size_t prefetch = (size_t) -1, bool numa = false) {
- GGML_UNUSED(numa);
- size = file->size;
- HANDLE hFile = (HANDLE) _get_osfhandle(_fileno(file->fp));
- HANDLE hMapping = CreateFileMappingA(hFile, NULL, PAGE_READONLY, 0, 0, NULL);
- if (hMapping == NULL) {
- DWORD error = GetLastError();
- throw std::runtime_error(format("CreateFileMappingA failed: %s", llama_format_win_err(error).c_str()));
- }
- addr = MapViewOfFile(hMapping, FILE_MAP_READ, 0, 0, 0);
- DWORD error = GetLastError();
- CloseHandle(hMapping);
- if (addr == NULL) {
- throw std::runtime_error(format("MapViewOfFile failed: %s", llama_format_win_err(error).c_str()));
- }
- if (prefetch > 0) {
- #if _WIN32_WINNT >= 0x602
- // PrefetchVirtualMemory is only present on Windows 8 and above, so we dynamically load it
- BOOL (WINAPI *pPrefetchVirtualMemory) (HANDLE, ULONG_PTR, PWIN32_MEMORY_RANGE_ENTRY, ULONG);
- HMODULE hKernel32 = GetModuleHandleW(L"kernel32.dll");
- // may fail on pre-Windows 8 systems
- pPrefetchVirtualMemory = reinterpret_cast<decltype(pPrefetchVirtualMemory)> (GetProcAddress(hKernel32, "PrefetchVirtualMemory"));
- if (pPrefetchVirtualMemory) {
- // advise the kernel to preload the mapped memory
- WIN32_MEMORY_RANGE_ENTRY range;
- range.VirtualAddress = addr;
- range.NumberOfBytes = (SIZE_T) std::min(size, prefetch);
- if (!pPrefetchVirtualMemory(GetCurrentProcess(), 1, &range, 0)) {
- LLAMA_LOG_WARN("warning: PrefetchVirtualMemory failed: %s\n",
- llama_format_win_err(GetLastError()).c_str());
- }
- }
- #else
- throw std::runtime_error("PrefetchVirtualMemory unavailable");
- #endif
- }
- }
- void unmap_fragment(size_t first, size_t last) {
- // not supported
- GGML_UNUSED(first);
- GGML_UNUSED(last);
- }
- ~llama_mmap() {
- if (!UnmapViewOfFile(addr)) {
- LLAMA_LOG_WARN("warning: UnmapViewOfFile failed: %s\n",
- llama_format_win_err(GetLastError()).c_str());
- }
- }
- #else
- static constexpr bool SUPPORTED = false;
- llama_mmap(struct llama_file * file, size_t prefetch = -1, bool numa = false) {
- GGML_UNUSED(file);
- GGML_UNUSED(prefetch);
- GGML_UNUSED(numa);
- throw std::runtime_error("mmap not supported");
- }
- void unmap_fragment(size_t first, size_t last) {
- GGML_UNUSED(first);
- GGML_UNUSED(last);
- throw std::runtime_error("mmap not supported");
- }
- #endif
- };
- using llama_mmaps = std::vector<std::unique_ptr<llama_mmap>>;
- // Represents some region of memory being locked using mlock or VirtualLock;
- // will automatically unlock on destruction.
- struct llama_mlock {
- void * addr = NULL;
- size_t size = 0;
- bool failed_already = false;
- llama_mlock() {}
- llama_mlock(const llama_mlock &) = delete;
- ~llama_mlock() {
- if (size) {
- raw_unlock(addr, size);
- }
- }
- void init(void * ptr) {
- GGML_ASSERT(addr == NULL && size == 0); // NOLINT
- addr = ptr;
- }
- void grow_to(size_t target_size) {
- GGML_ASSERT(addr);
- if (failed_already) {
- return;
- }
- size_t granularity = lock_granularity();
- target_size = (target_size + granularity - 1) & ~(granularity - 1);
- if (target_size > size) {
- if (raw_lock((uint8_t *) addr + size, target_size - size)) {
- size = target_size;
- } else {
- failed_already = true;
- }
- }
- }
- #ifdef _POSIX_MEMLOCK_RANGE
- static constexpr bool SUPPORTED = true;
- static size_t lock_granularity() {
- return (size_t) sysconf(_SC_PAGESIZE);
- }
- #ifdef __APPLE__
- #define MLOCK_SUGGESTION \
- "Try increasing the sysctl values 'vm.user_wire_limit' and 'vm.global_user_wire_limit' and/or " \
- "decreasing 'vm.global_no_user_wire_amount'. Also try increasing RLIMIT_MEMLOCK (ulimit -l).\n"
- #else
- #define MLOCK_SUGGESTION \
- "Try increasing RLIMIT_MEMLOCK ('ulimit -l' as root).\n"
- #endif
- bool raw_lock(const void * addr, size_t size) const {
- if (!mlock(addr, size)) {
- return true;
- }
- char* errmsg = std::strerror(errno);
- bool suggest = (errno == ENOMEM);
- // Check if the resource limit is fine after all
- struct rlimit lock_limit;
- if (suggest && getrlimit(RLIMIT_MEMLOCK, &lock_limit)) {
- suggest = false;
- }
- if (suggest && (lock_limit.rlim_max > lock_limit.rlim_cur + size)) {
- suggest = false;
- }
- LLAMA_LOG_WARN("warning: failed to mlock %zu-byte buffer (after previously locking %zu bytes): %s\n%s",
- size, this->size, errmsg, suggest ? MLOCK_SUGGESTION : "");
- return false;
- }
- #undef MLOCK_SUGGESTION
- static void raw_unlock(void * addr, size_t size) {
- if (munlock(addr, size)) {
- LLAMA_LOG_WARN("warning: failed to munlock buffer: %s\n", std::strerror(errno));
- }
- }
- #elif defined(_WIN32)
- static constexpr bool SUPPORTED = true;
- static size_t lock_granularity() {
- SYSTEM_INFO si;
- GetSystemInfo(&si);
- return (size_t) si.dwPageSize;
- }
- bool raw_lock(void * ptr, size_t len) const {
- for (int tries = 1; ; tries++) {
- if (VirtualLock(ptr, len)) {
- return true;
- }
- if (tries == 2) {
- LLAMA_LOG_WARN("warning: failed to VirtualLock %zu-byte buffer (after previously locking %zu bytes): %s\n",
- len, size, llama_format_win_err(GetLastError()).c_str());
- return false;
- }
- // It failed but this was only the first try; increase the working
- // set size and try again.
- SIZE_T min_ws_size, max_ws_size;
- if (!GetProcessWorkingSetSize(GetCurrentProcess(), &min_ws_size, &max_ws_size)) {
- LLAMA_LOG_WARN("warning: GetProcessWorkingSetSize failed: %s\n",
- llama_format_win_err(GetLastError()).c_str());
- return false;
- }
- // Per MSDN: "The maximum number of pages that a process can lock
- // is equal to the number of pages in its minimum working set minus
- // a small overhead."
- // Hopefully a megabyte is enough overhead:
- size_t increment = len + 1048576;
- // The minimum must be <= the maximum, so we need to increase both:
- min_ws_size += increment;
- max_ws_size += increment;
- if (!SetProcessWorkingSetSize(GetCurrentProcess(), min_ws_size, max_ws_size)) {
- LLAMA_LOG_WARN("warning: SetProcessWorkingSetSize failed: %s\n",
- llama_format_win_err(GetLastError()).c_str());
- return false;
- }
- }
- }
- static void raw_unlock(void * ptr, size_t len) {
- if (!VirtualUnlock(ptr, len)) {
- LLAMA_LOG_WARN("warning: failed to VirtualUnlock buffer: %s\n",
- llama_format_win_err(GetLastError()).c_str());
- }
- }
- #else
- static constexpr bool SUPPORTED = false;
- static size_t lock_granularity() {
- return (size_t) 65536;
- }
- bool raw_lock(const void * addr, size_t len) const {
- LLAMA_LOG_WARN("warning: mlock not supported on this system\n");
- return false;
- }
- static void raw_unlock(const void * addr, size_t len) {}
- #endif
- };
- using llama_mlocks = std::vector<std::unique_ptr<llama_mlock>>;
- static std::string llama_token_to_piece(const struct llama_context * ctx, llama_token token, bool special) {
- std::vector<char> result(8, 0);
- const int n_tokens = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size(), special);
- if (n_tokens < 0) {
- result.resize(-n_tokens);
- int check = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size(), special);
- GGML_ASSERT(check == -n_tokens);
- }
- else {
- result.resize(n_tokens);
- }
- return std::string(result.data(), result.size());
- }
- static ggml_backend_buffer_type_t llama_default_buffer_type_cpu(bool host_buffer) {
- ggml_backend_buffer_type_t buft = nullptr;
- #if defined(GGML_USE_CUDA)
- // host buffers should only be used when data is expected to be copied to/from the GPU
- if (host_buffer) {
- buft = ggml_backend_cuda_host_buffer_type();
- }
- #elif defined(GGML_USE_SYCL)
- if (host_buffer) {
- buft = ggml_backend_sycl_host_buffer_type();
- }
- #elif defined(GGML_USE_CPU_HBM)
- buft = ggml_backend_cpu_hbm_buffer_type();
- #elif defined(GGML_USE_VULKAN)
- if (host_buffer) {
- buft = ggml_backend_vk_host_buffer_type();
- }
- #endif
- if (buft == nullptr) {
- buft = ggml_backend_cpu_buffer_type();
- }
- return buft;
- GGML_UNUSED(host_buffer);
- }
- //
- // globals
- //
- struct llama_state {
- llama_state() {
- #ifdef GGML_USE_METAL
- ggml_backend_metal_log_set_callback(log_callback, log_callback_user_data);
- #endif
- }
- // We save the log callback globally
- ggml_log_callback log_callback = llama_log_callback_default;
- void * log_callback_user_data = nullptr;
- };
- static llama_state g_state;
- // available llama models
- enum e_model {
- MODEL_UNKNOWN,
- MODEL_17M,
- MODEL_22M,
- MODEL_33M,
- MODEL_109M,
- MODEL_137M,
- MODEL_335M,
- MODEL_0_5B,
- MODEL_1B,
- MODEL_2B,
- MODEL_3B,
- MODEL_4B,
- MODEL_7B,
- MODEL_8B,
- MODEL_12B,
- MODEL_13B,
- MODEL_14B,
- MODEL_15B,
- MODEL_20B,
- MODEL_30B,
- MODEL_34B,
- MODEL_35B,
- MODEL_40B,
- MODEL_65B,
- MODEL_70B,
- MODEL_314B,
- MODEL_SMALL,
- MODEL_MEDIUM,
- MODEL_LARGE,
- MODEL_XL,
- MODEL_A2_7B,
- MODEL_8x7B,
- MODEL_8x22B,
- MODEL_16x12B,
- };
- static const size_t kiB = 1024;
- static const size_t MiB = 1024*kiB;
- static const size_t GiB = 1024*MiB;
- struct llama_hparams {
- bool vocab_only;
- bool rope_finetuned;
- uint32_t n_vocab;
- uint32_t n_ctx_train; // context size the model was trained on
- uint32_t n_embd;
- uint32_t n_head;
- uint32_t n_head_kv;
- uint32_t n_layer;
- uint32_t n_rot;
- uint32_t n_embd_head_k; // dimension of keys (d_k). d_q is assumed to be the same, but there are n_head q heads, and only n_head_kv k-v heads
- uint32_t n_embd_head_v; // dimension of values (d_v) aka n_embd_head
- uint32_t n_ff;
- uint32_t n_expert = 0;
- uint32_t n_expert_used = 0;
- uint32_t n_vocab_type = 0; // for BERT-style token types
- float f_norm_eps;
- float f_norm_rms_eps;
- float rope_freq_base_train;
- float rope_freq_scale_train;
- uint32_t n_yarn_orig_ctx;
- // for State Space Models
- uint32_t ssm_d_conv = 0;
- uint32_t ssm_d_inner = 0;
- uint32_t ssm_d_state = 0;
- uint32_t ssm_dt_rank = 0;
- float f_clamp_kqv = 0.0f;
- float f_max_alibi_bias = 0.0f;
- float f_logit_scale = 0.0f;
- bool causal_attn = true;
- bool use_alibi = false;
- enum llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_NONE;
- enum llama_rope_type rope_type = LLAMA_ROPE_TYPE_NONE;
- enum llama_rope_scaling_type rope_scaling_type_train = LLAMA_ROPE_SCALING_TYPE_NONE;
- bool operator!=(const llama_hparams & other) const {
- if (this->vocab_only != other.vocab_only) return true;
- if (this->n_vocab != other.n_vocab) return true;
- if (this->n_ctx_train != other.n_ctx_train) return true;
- if (this->n_embd != other.n_embd) return true;
- if (this->n_head != other.n_head) return true;
- if (this->n_head_kv != other.n_head_kv) return true;
- if (this->n_layer != other.n_layer) return true;
- if (this->n_rot != other.n_rot) return true;
- if (this->n_embd_head_k != other.n_embd_head_k) return true;
- if (this->n_embd_head_v != other.n_embd_head_v) return true;
- if (this->n_ff != other.n_ff) return true;
- if (this->n_expert != other.n_expert) return true;
- if (this->n_expert_used != other.n_expert_used) return true;
- if (this->rope_finetuned != other.rope_finetuned) return true;
- if (this->n_yarn_orig_ctx != other.n_yarn_orig_ctx) return true;
- if (this->ssm_d_conv != other.ssm_d_conv) return true;
- if (this->ssm_d_inner != other.ssm_d_inner) return true;
- if (this->ssm_d_state != other.ssm_d_state) return true;
- if (this->ssm_dt_rank != other.ssm_dt_rank) return true;
- const float EPSILON = 1e-9f;
- if (!is_float_close(this->f_norm_eps, other.f_norm_eps, EPSILON)) return true;
- if (!is_float_close(this->f_norm_rms_eps, other.f_norm_rms_eps, EPSILON)) return true;
- if (!is_float_close(this->rope_freq_base_train, other.rope_freq_base_train, EPSILON)) return true;
- if (!is_float_close(this->rope_freq_scale_train, other.rope_freq_scale_train, EPSILON)) return true;
- return false;
- }
- uint32_t n_gqa() const {
- if (n_head_kv == 0) {
- return 0;
- }
- return n_head/n_head_kv;
- }
- uint32_t n_embd_k_gqa() const { // dimension of key embeddings across all k-v heads
- return n_embd_head_k * n_head_kv;
- }
- uint32_t n_embd_v_gqa() const { // dimension of value embeddings across all k-v heads
- return n_embd_head_v * n_head_kv;
- }
- uint32_t n_embd_k_s() const { // dimension of the rolling state embeddings
- // corresponds to Mamba's conv_states size
- // TODO: maybe support other convolution strides than 1
- // NOTE: since the first column of the conv_state is shifted out each time, it's not actually needed
- return (ssm_d_conv > 0 ? ssm_d_conv - 1 : 0) * ssm_d_inner;
- }
- uint32_t n_embd_v_s() const { // dimension of the recurrent state embeddings
- // corresponds to Mamba's ssm_states size
- return ssm_d_state * ssm_d_inner;
- }
- };
- struct llama_cparams {
- uint32_t n_ctx; // context size used during inference
- uint32_t n_batch;
- uint32_t n_ubatch;
- uint32_t n_seq_max;
- uint32_t n_threads; // number of threads to use for generation
- uint32_t n_threads_batch; // number of threads to use for batch processing
- float rope_freq_base;
- float rope_freq_scale;
- uint32_t n_yarn_orig_ctx;
- // These hyperparameters are not exposed in GGUF, because all
- // existing YaRN models use the same values for them.
- float yarn_ext_factor;
- float yarn_attn_factor;
- float yarn_beta_fast;
- float yarn_beta_slow;
- float defrag_thold;
- bool embeddings;
- bool causal_attn;
- bool offload_kqv;
- bool flash_attn;
- enum llama_pooling_type pooling_type;
- ggml_backend_sched_eval_callback cb_eval;
- void * cb_eval_user_data;
- };
- struct llama_layer {
- // normalization
- struct ggml_tensor * attn_norm;
- struct ggml_tensor * attn_norm_b;
- struct ggml_tensor * attn_norm_2;
- struct ggml_tensor * attn_norm_2_b;
- struct ggml_tensor * attn_q_norm;
- struct ggml_tensor * attn_q_norm_b;
- struct ggml_tensor * attn_k_norm;
- struct ggml_tensor * attn_k_norm_b;
- struct ggml_tensor * attn_out_norm;
- struct ggml_tensor * attn_out_norm_b;
- // attention
- struct ggml_tensor * wq;
- struct ggml_tensor * wk;
- struct ggml_tensor * wv;
- struct ggml_tensor * wo;
- struct ggml_tensor * wqkv;
- // attention bias
- struct ggml_tensor * bq;
- struct ggml_tensor * bk;
- struct ggml_tensor * bv;
- struct ggml_tensor * bo;
- struct ggml_tensor * bqkv;
- // normalization
- struct ggml_tensor * ffn_norm;
- struct ggml_tensor * ffn_norm_b;
- struct ggml_tensor * layer_out_norm;
- struct ggml_tensor * layer_out_norm_b;
- // ff
- struct ggml_tensor * ffn_gate; // w1
- struct ggml_tensor * ffn_down; // w2
- struct ggml_tensor * ffn_up; // w3
- // ff MoE
- struct ggml_tensor * ffn_gate_inp;
- struct ggml_tensor * ffn_gate_exps;
- struct ggml_tensor * ffn_down_exps;
- struct ggml_tensor * ffn_up_exps ;
- // ff shared expert (shexp)
- struct ggml_tensor * ffn_gate_inp_shexp;
- struct ggml_tensor * ffn_gate_shexp;
- struct ggml_tensor * ffn_down_shexp;
- struct ggml_tensor * ffn_up_shexp;
- // ff bias
- struct ggml_tensor * ffn_down_b; // b2
- struct ggml_tensor * ffn_up_b; // b3
- struct ggml_tensor * ffn_act;
- // mamba proj
- struct ggml_tensor * ssm_in;
- struct ggml_tensor * ssm_x;
- struct ggml_tensor * ssm_dt;
- struct ggml_tensor * ssm_out;
- // mamba
- struct ggml_tensor * ssm_conv1d;
- struct ggml_tensor * ssm_a;
- struct ggml_tensor * ssm_d;
- // mamba bias
- struct ggml_tensor * ssm_conv1d_b;
- struct ggml_tensor * ssm_dt_b;
- };
- struct llama_kv_cell {
- llama_pos pos = -1;
- llama_pos delta = 0;
- int32_t src = 0; // used by recurrent state models to copy states
- std::set<llama_seq_id> seq_id;
- bool has_seq_id(const llama_seq_id & id) const {
- return seq_id.find(id) != seq_id.end();
- }
- bool is_empty() const {
- return seq_id.empty();
- }
- bool is_same_seq(const llama_kv_cell & other) const {
- return seq_id == other.seq_id;
- }
- };
- // ring-buffer of cached KV data
- struct llama_kv_cache {
- bool has_shift = false;
- bool do_defrag = false;
- bool do_copy = false;
- bool recurrent = false; // with recurrent state models, a cell can hold the state for more than one past token
- bool v_trans = true; // the value tensor is transposed
- // Note: The value of head isn't only used to optimize searching
- // for a free KV slot. llama_decode_internal also uses it, so it
- // cannot be freely changed after a slot has been allocated.
- uint32_t head = 0;
- uint32_t size = 0;
- uint32_t used = 0; // used cells (i.e. at least one seq_id)
- // computed before each graph build
- uint32_t n = 0;
- ggml_type type_k = GGML_TYPE_F16;
- ggml_type type_v = GGML_TYPE_F16;
- std::vector<llama_kv_cell> cells;
- std::vector<struct ggml_tensor *> k_l; // per layer
- std::vector<struct ggml_tensor *> v_l;
- std::vector<struct ggml_context *> ctxs;
- std::vector<ggml_backend_buffer_t> bufs;
- size_t total_size() const {
- size_t size = 0;
- for (ggml_backend_buffer_t buf : bufs) {
- size += ggml_backend_buffer_get_size(buf);
- }
- return size;
- }
- ~llama_kv_cache() {
- for (struct ggml_context * ctx : ctxs) {
- ggml_free(ctx);
- }
- for (ggml_backend_buffer_t buf : bufs) {
- ggml_backend_buffer_free(buf);
- }
- }
- };
- struct llama_control_vector {
- std::vector<struct ggml_tensor *> tensors; // per layer
- std::vector<struct ggml_context *> ctxs;
- std::vector<ggml_backend_buffer_t> bufs;
- int32_t layer_start = -1;
- int32_t layer_end = -1;
- ggml_tensor * tensor_for(int il) const {
- if (il < 0 || il < layer_start || il > layer_end || (size_t) il >= tensors.size()) {
- return nullptr;
- }
- return tensors[il];
- }
- ~llama_control_vector() {
- for (struct ggml_context * ctx : ctxs) {
- ggml_free(ctx);
- }
- for (ggml_backend_buffer_t buf : bufs) {
- ggml_backend_buffer_free(buf);
- }
- }
- };
- struct llama_vocab {
- using id = int32_t;
- using token = std::string;
- using ttype = llama_token_type;
- struct token_data {
- token text;
- float score;
- ttype type;
- };
- enum llama_vocab_type type = LLAMA_VOCAB_TYPE_SPM;
- enum llama_vocab_pre_type type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
- std::unordered_map<token, id> token_to_id;
- std::vector<token_data> id_to_token;
- std::unordered_map<token, id> special_tokens_cache;
- std::map<std::pair<std::string, std::string>, int> bpe_ranks;
- // default LLaMA special tokens
- id special_bos_id = 1;
- id special_eos_id = 2;
- id special_unk_id = 0;
- id special_sep_id = -1;
- id special_pad_id = -1;
- id special_cls_id = -1;
- id special_mask_id = -1;
- int special_add_bos = -1; // -1 unknown, 1 add, 0 don't add.
- int special_add_eos = -1; // -1 unknown, 1 add, 0 don't add.
- id linefeed_id = 13;
- id special_prefix_id = -1;
- id special_suffix_id = -1;
- id special_middle_id = -1;
- id special_eot_id = -1; // TODO: move above after "eos_id", and here add "file separator" token
- bool add_space_prefix = true;
- int find_bpe_rank(const std::string & token_left, const std::string & token_right) const {
- GGML_ASSERT(token_left.find(' ') == std::string::npos);
- GGML_ASSERT(token_left.find('\n') == std::string::npos);
- GGML_ASSERT(token_right.find(' ') == std::string::npos);
- GGML_ASSERT(token_right.find('\n') == std::string::npos);
- auto it = bpe_ranks.find(std::make_pair(token_left, token_right));
- if (it == bpe_ranks.end()) {
- return -1;
- }
- return it->second;
- }
- };
- struct llama_model {
- e_model type = MODEL_UNKNOWN;
- llm_arch arch = LLM_ARCH_UNKNOWN;
- llama_ftype ftype = LLAMA_FTYPE_ALL_F32;
- std::string name = "n/a";
- llama_hparams hparams = {};
- llama_vocab vocab;
- struct ggml_tensor * tok_embd;
- struct ggml_tensor * type_embd;
- struct ggml_tensor * pos_embd;
- struct ggml_tensor * tok_norm;
- struct ggml_tensor * tok_norm_b;
- struct ggml_tensor * output_norm;
- struct ggml_tensor * output_norm_b;
- struct ggml_tensor * output;
- struct ggml_tensor * output_b;
- std::vector<llama_layer> layers;
- llama_split_mode split_mode;
- int main_gpu;
- int n_gpu_layers;
- std::vector<std::string> rpc_servers;
- // gguf metadata
- std::unordered_map<std::string, std::string> gguf_kv;
- // layer -> buffer type mapping
- struct layer_buft {
- layer_buft() : buft_matrix(nullptr), buft(nullptr) {}
- layer_buft(ggml_backend_buffer_type_t matrix) : buft_matrix(matrix), buft(matrix) {}
- layer_buft(ggml_backend_buffer_type_t matrix, ggml_backend_buffer_type_t other) : buft_matrix(matrix), buft(other) {}
- ggml_backend_buffer_type_t buft_matrix; // matrices only - used by split buffers and backends that support only matrix multiplication
- ggml_backend_buffer_type_t buft; // everything else
- };
- layer_buft buft_input;
- layer_buft buft_output;
- std::vector<layer_buft> buft_layer;
- // contexts where the model tensors metadata is stored
- std::vector<struct ggml_context *> ctxs;
- // the model memory buffers for the tensor data
- std::vector<ggml_backend_buffer_t> bufs;
- // model memory mapped files
- llama_mmaps mappings;
- // objects representing data potentially being locked in memory
- llama_mlocks mlock_bufs;
- llama_mlocks mlock_mmaps;
- // for quantize-stats only
- std::vector<std::pair<std::string, struct ggml_tensor *>> tensors_by_name;
- int64_t t_load_us = 0;
- int64_t t_start_us = 0;
- ~llama_model() {
- for (struct ggml_context * ctx : ctxs) {
- ggml_free(ctx);
- }
- for (ggml_backend_buffer_t buf : bufs) {
- #ifdef GGML_USE_CUDA
- if (ggml_backend_buffer_get_type(buf) == ggml_backend_cpu_buffer_type()) {
- ggml_backend_cuda_unregister_host_buffer(ggml_backend_buffer_get_base(buf));
- }
- #endif
- ggml_backend_buffer_free(buf);
- }
- }
- };
- struct llama_context {
- llama_context(const llama_model & model) : model(model), t_start_us(model.t_start_us), t_load_us(model.t_load_us) {}
- ~llama_context() {
- ggml_backend_sched_free(sched);
- for (ggml_backend_t backend : backends) {
- ggml_backend_free(backend);
- }
- ggml_backend_buffer_free(buf_output);
- }
- llama_cparams cparams;
- std::vector<ggml_backend_t> backends;
- #ifdef GGML_USE_METAL
- ggml_backend_t backend_metal = nullptr;
- #endif
- ggml_backend_t backend_cpu = nullptr;
- const llama_model & model;
- // key + value cache for the self attention
- struct llama_kv_cache kv_self;
- std::mt19937 rng;
- bool has_evaluated_once = false;
- int64_t t_start_us;
- int64_t t_load_us;
- int64_t t_sample_us = 0;
- int64_t t_p_eval_us = 0;
- int64_t t_eval_us = 0;
- int64_t t_compute_start_us = 0;
- int64_t n_queued_tokens = 0;
- int32_t n_sample = 0; // number of tokens sampled
- int32_t n_p_eval = 0; // number of tokens in eval calls for the prompt (with batch size > 1)
- int32_t n_eval = 0; // number of eval calls
- // host buffer for the model output (logits and embeddings)
- ggml_backend_buffer_t buf_output = nullptr;
- // decode output (2-dimensional array: [n_outputs][n_vocab])
- size_t logits_size = 0; // capacity (of floats) for logits
- float * logits = nullptr;
- std::vector<int32_t> output_ids; // map batch token positions to ids of the logits and embd buffers
- size_t output_size = 0; // capacity (of tokens positions) for the output buffers
- int32_t n_outputs = 0; // number of actually-used outputs in the current ubatch or last logical batch
- bool logits_all = false;
- // embeddings output (2-dimensional array: [n_outputs][n_embd])
- // populated only when pooling_type == LLAMA_POOLING_TYPE_NONE
- size_t embd_size = 0; // capacity (of floats) for embeddings
- float * embd = nullptr;
- // sequence embeddings output (map of [n_embd] vectors)
- // populated only when pooling_type != LLAMA_POOLING_TYPE_NONE
- std::map<llama_seq_id, std::vector<float>> embd_seq;
- // memory buffers used to evaluate the model
- std::vector<uint8_t> buf_compute_meta;
- ggml_backend_sched_t sched = nullptr;
- ggml_abort_callback abort_callback = nullptr;
- void * abort_callback_data = nullptr;
- // input tensors
- struct ggml_tensor * inp_tokens; // I32 [n_batch]
- struct ggml_tensor * inp_embd; // F32 [n_embd, n_batch]
- struct ggml_tensor * inp_pos; // I32 [n_batch]
- struct ggml_tensor * inp_out_ids; // I32 [n_outputs]
- struct ggml_tensor * inp_KQ_mask; // F32 [kv_size, n_batch]
- struct ggml_tensor * inp_K_shift; // I32 [kv_size]
- struct ggml_tensor * inp_mean; // F32 [n_batch, n_batch]
- struct ggml_tensor * inp_cls; // I32 [n_batch]
- struct ggml_tensor * inp_s_copy; // I32 [kv_size]
- struct ggml_tensor * inp_s_mask; // F32 [1, n_kv]
- struct ggml_tensor * inp_s_seq; // I32 [n_kv, n_batch]
- // control vectors
- struct llama_control_vector cvec;
- #ifdef GGML_USE_MPI
- ggml_mpi_context * ctx_mpi = NULL;
- #endif
- };
- static ggml_backend_buffer_type_t llama_default_buffer_type_offload(const llama_model & model, int gpu) {
- ggml_backend_buffer_type_t buft = nullptr;
- #ifdef GGML_USE_RPC
- std::string endpoint = model.rpc_servers[gpu];
- buft = ggml_backend_rpc_buffer_type(endpoint.c_str());
- #elif defined(GGML_USE_METAL)
- buft = ggml_backend_metal_buffer_type();
- #elif defined(GGML_USE_CUDA)
- buft = ggml_backend_cuda_buffer_type(gpu);
- #elif defined(GGML_USE_VULKAN)
- buft = ggml_backend_vk_buffer_type(gpu);
- #elif defined(GGML_USE_SYCL)
- buft = ggml_backend_sycl_buffer_type(gpu);
- #elif defined(GGML_USE_CLBLAST)
- buft = ggml_backend_opencl_buffer_type();
- #elif defined(GGML_USE_KOMPUTE)
- buft = ggml_backend_kompute_buffer_type(gpu);
- if (buft == nullptr) {
- LLAMA_LOG_WARN("%s: cannot use GPU %d, check `vulkaninfo --summary`\n", __func__, gpu);
- }
- #endif
- if (buft == nullptr) {
- buft = llama_default_buffer_type_cpu(true);
- }
- return buft;
- GGML_UNUSED(model);
- GGML_UNUSED(gpu);
- }
- static ggml_backend_buffer_type_t llama_default_buffer_type_split(const llama_model & model, int fallback_gpu, const float * tensor_split) {
- ggml_backend_buffer_type_t buft = nullptr;
- #ifdef GGML_USE_CUDA
- if (ggml_backend_cuda_get_device_count() > 1) {
- buft = ggml_backend_cuda_split_buffer_type(tensor_split);
- }
- #endif
- #ifdef GGML_USE_SYCL
- if (ggml_backend_sycl_get_device_count() > 1) {
- buft = ggml_backend_sycl_split_buffer_type(tensor_split);
- }
- #endif
- if (buft == nullptr) {
- buft = llama_default_buffer_type_offload(model, fallback_gpu);
- }
- return buft;
- GGML_UNUSED(tensor_split);
- }
- static size_t llama_get_device_count(const llama_model & model) {
- #if defined(GGML_USE_RPC)
- return model.rpc_servers.size();
- #elif defined(GGML_USE_CUDA)
- return ggml_backend_cuda_get_device_count();
- #elif defined(GGML_USE_SYCL)
- return ggml_backend_sycl_get_device_count();
- #elif defined(GGML_USE_VULKAN)
- return ggml_backend_vk_get_device_count();
- #else
- return 1;
- #endif
- GGML_UNUSED(model);
- }
- static size_t llama_get_device_memory(const llama_model & model, int device) {
- #if defined(GGML_USE_RPC)
- size_t total;
- size_t free;
- std::string endpoint = model.rpc_servers[device];
- ggml_backend_rpc_get_device_memory(endpoint.c_str(), &free, &total);
- return free;
- #elif defined(GGML_USE_CUDA)
- size_t total;
- size_t free;
- ggml_backend_cuda_get_device_memory(device, &free, &total);
- return free;
- #elif defined(GGML_USE_SYCL)
- size_t total;
- size_t free;
- ggml_backend_sycl_get_device_memory(device, &free, &total);
- return free;
- #elif defined(GGML_USE_VULKAN)
- size_t total;
- size_t free;
- ggml_backend_vk_get_device_memory(device, &free, &total);
- return free;
- #else
- return 1;
- #endif
- GGML_UNUSED(model);
- GGML_UNUSED(device);
- }
- //
- // kv cache helpers
- //
- static bool llama_kv_cache_init(
- struct llama_kv_cache & cache,
- const llama_context * ctx,
- ggml_type type_k,
- ggml_type type_v,
- uint32_t kv_size,
- bool offload) {
- const llama_model & model = ctx->model;
- const llama_cparams & cparams = ctx->cparams;
- const struct llama_hparams & hparams = model.hparams;
- const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
- const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
- const int64_t n_layer = hparams.n_layer;
- cache.has_shift = false;
- // TODO: find a nicer way to add other recurrent model architectures
- cache.recurrent = model.arch == LLM_ARCH_MAMBA;
- cache.v_trans = !cparams.flash_attn;
- // TODO: support mixed recurrent Transformer architectures
- // NOTE: (!a || b) is a logical implication (a -> b)
- GGML_ASSERT(!cache.recurrent || n_embd_k_gqa == hparams.n_embd_k_s());
- GGML_ASSERT(!cache.recurrent || n_embd_v_gqa == hparams.n_embd_v_s());
- GGML_ASSERT( cache.recurrent || n_embd_k_gqa == hparams.n_embd_k_gqa());
- GGML_ASSERT( cache.recurrent || n_embd_v_gqa == hparams.n_embd_v_gqa());
- cache.head = 0;
- cache.size = kv_size;
- cache.used = 0;
- cache.type_k = type_k;
- cache.type_v = type_v;
- cache.cells.clear();
- cache.cells.resize(kv_size);
- if (cache.recurrent) {
- // init state copy sources
- for (uint32_t i = 0; i < cache.size; ++i) {
- cache.cells[i].src = i;
- }
- }
- #ifdef GGML_USE_CLBLAST
- offload = false;
- #endif
- // count used buffer types
- std::map<ggml_backend_buffer_type_t, int> buft_layer_count;
- if (offload) {
- for (int64_t i = 0; i < n_layer; ++i) {
- buft_layer_count[model.buft_layer[i].buft]++;
- }
- } else {
- buft_layer_count[llama_default_buffer_type_cpu(true)] = n_layer;
- }
- // create a context for each buffer type
- std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
- for (auto & it : buft_layer_count) {
- int n_layers = it.second;
- struct ggml_init_params params = {
- /*.mem_size =*/ 2u*n_layers*ggml_tensor_overhead(),
- /*.mem_buffer =*/ NULL,
- /*.no_alloc =*/ true,
- };
- ggml_context * ctx = ggml_init(params);
- if (!ctx) {
- LLAMA_LOG_ERROR("%s: failed to allocate context for kv cache\n", __func__);
- return false;
- }
- ctx_map[it.first] = ctx;
- cache.ctxs.push_back(ctx);
- }
- cache.k_l.reserve(n_layer);
- cache.v_l.reserve(n_layer);
- for (int i = 0; i < (int) n_layer; i++) {
- struct ggml_context * ctx = offload ? ctx_map.at(model.buft_layer[i].buft) : cache.ctxs.front();
- ggml_tensor * k = ggml_new_tensor_1d(ctx, type_k, n_embd_k_gqa*kv_size);
- ggml_tensor * v = ggml_new_tensor_1d(ctx, type_v, n_embd_v_gqa*kv_size);
- ggml_format_name(k, "cache_k_l%d", i);
- ggml_format_name(v, "cache_v_l%d", i);
- cache.k_l.push_back(k);
- cache.v_l.push_back(v);
- }
- // allocate tensors and initialize the buffers to avoid NaNs in the padding
- for (auto it : ctx_map) {
- ggml_backend_buffer_type_t buft = it.first;
- ggml_context * ctx = it.second;
- ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
- if (!buf) {
- LLAMA_LOG_ERROR("%s: failed to allocate buffer for kv cache\n", __func__);
- return false;
- }
- ggml_backend_buffer_clear(buf, 0);
- LLAMA_LOG_INFO("%s: %10s KV buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf), ggml_backend_buffer_get_size(buf)/1024.0/1024.0);
- cache.bufs.push_back(buf);
- }
- return true;
- }
- // find an empty slot of size "n_tokens" in the cache
- // updates the cache head
- // Note: On success, it's important that cache.head points
- // to the first cell of the slot.
- static bool llama_kv_cache_find_slot(
- struct llama_kv_cache & cache,
- const struct llama_batch & batch) {
- const uint32_t n_ctx = cache.size;
- const uint32_t n_tokens = batch.n_tokens;
- if (cache.recurrent) {
- // For recurrent state architectures (like Mamba),
- // each KV cache cell can store the state for a whole sequence.
- llama_seq_id min = cache.size - 1;
- llama_seq_id max = 0;
- for (uint32_t i = 0; i < n_tokens; ++i) {
- for (int32_t j = 0; j < batch.n_seq_id[i]; ++j) {
- llama_seq_id seq_id = batch.seq_id[i][j];
- // make sure it's a valid seq_id
- if ((uint32_t) seq_id < cache.size) {
- if (seq_id > max) {
- max = seq_id;
- }
- if (seq_id < min) {
- min = seq_id;
- }
- // Assuming the tokens are in-order
- if (batch.pos[i] != cache.cells[seq_id].pos + 1) {
- // What should happen when the pos backtracks or skips a value?
- // Clearing the state mid-batch would require special-casing which isn't done.
- LLAMA_LOG_WARN("%s: non-consecutive token position %d after %d for sequence %d\n",
- __func__, batch.pos[i], cache.cells[seq_id].pos, seq_id);
- }
- if (cache.cells[seq_id].pos < 0 && 0 <= batch.pos[i]) {
- cache.used += 1;
- }
- cache.cells[seq_id].pos = batch.pos[i];
- // NOTE: seq_ids are not inserted here; they are handled when the input tensors are set
- } else {
- // too big seq_id
- // TODO: would it be possible to resize the KV cache size instead?
- LLAMA_LOG_ERROR("%s: seq_id=%d >= kv_size=%d Try using a bigger --parallel value\n", __func__, seq_id, cache.size);
- return false;
- }
- }
- }
- // allow getting the range of used cells, from head to head + n
- cache.head = min;
- cache.n = max - min + 1;
- // sanity check
- return max >= min;
- }
- // otherwise, one cell per token.
- if (n_tokens > n_ctx) {
- LLAMA_LOG_ERROR("%s: n_tokens=%d > n_ctx=%d\n", __func__, n_tokens, n_ctx);
- return false;
- }
- uint32_t n_tested = 0;
- while (true) {
- if (cache.head + n_tokens > n_ctx) {
- n_tested += n_ctx - cache.head;
- cache.head = 0;
- continue;
- }
- bool found = true;
- for (uint32_t i = 0; i < n_tokens; i++) {
- if (cache.cells[cache.head + i].pos >= 0) {
- found = false;
- cache.head += i + 1;
- n_tested += i + 1;
- break;
- }
- }
- if (found) {
- break;
- }
- if (n_tested >= n_ctx) {
- //LLAMA_LOG_ERROR("%s: failed to find a slot for %d tokens\n", __func__, n_tokens);
- return false;
- }
- }
- for (uint32_t i = 0; i < n_tokens; i++) {
- cache.cells[cache.head + i].pos = batch.pos[i];
- for (int32_t j = 0; j < batch.n_seq_id[i]; j++) {
- cache.cells[cache.head + i].seq_id.insert(batch.seq_id[i][j]);
- }
- }
- cache.used += n_tokens;
- return true;
- }
- // find how many cells are currently in use
- static uint32_t llama_kv_cache_cell_max(const struct llama_kv_cache & cache) {
- for (uint32_t i = cache.size; i > 0; --i) {
- const llama_kv_cell & cell = cache.cells[i - 1];
- if (cell.pos >= 0 && !cell.is_empty()) {
- return i;
- }
- }
- return 0;
- }
- static void llama_kv_cache_clear(struct llama_kv_cache & cache) {
- for (int32_t i = 0; i < (int32_t) cache.size; ++i) {
- cache.cells[i].pos = -1;
- cache.cells[i].seq_id.clear();
- }
- cache.head = 0;
- cache.used = 0;
- for (auto & buf : cache.bufs) {
- ggml_backend_buffer_clear(buf, 0);
- }
- }
- static bool llama_kv_cache_seq_rm(
- struct llama_kv_cache & cache,
- llama_seq_id seq_id,
- llama_pos p0,
- llama_pos p1) {
- uint32_t new_head = cache.size;
- if (p0 < 0) p0 = 0;
- if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
- // models like Mamba can't have a state partially erased
- if (cache.recurrent) {
- if (seq_id >= (int64_t) cache.size) {
- // could be fatal
- return false;
- }
- if (0 <= seq_id) {
- // partial intersection is invalid
- if ((0 < p0 && p0 <= cache.cells[seq_id].pos) || (0 < p1 && p1 <= cache.cells[seq_id].pos)) {
- return false;
- }
- } else {
- // seq_id is negative, then the range should include everything or nothing
- if (p0 != p1 && (p0 != 0 || p1 != std::numeric_limits<llama_pos>::max())) {
- return false;
- }
- }
- }
- for (uint32_t i = 0; i < cache.size; ++i) {
- if (cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
- if (seq_id < 0) {
- cache.cells[i].seq_id.clear();
- } else if (cache.cells[i].has_seq_id(seq_id)) {
- cache.cells[i].seq_id.erase(seq_id);
- } else {
- continue;
- }
- if (cache.cells[i].is_empty()) {
- // keep count of the number of used cells
- if (cache.cells[i].pos >= 0) cache.used--;
- cache.cells[i].pos = -1;
- if (new_head == cache.size) new_head = i;
- }
- }
- }
- // If we freed up a slot, set head to it so searching can start there.
- if (new_head != cache.size && new_head < cache.head) cache.head = new_head;
- return true;
- }
- static void llama_kv_cache_seq_cp(
- struct llama_kv_cache & cache,
- llama_seq_id seq_id_src,
- llama_seq_id seq_id_dst,
- llama_pos p0,
- llama_pos p1) {
- if (p0 < 0) p0 = 0;
- if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
- if (cache.recurrent) {
- if ((uint32_t) seq_id_dst < cache.size && (uint32_t) seq_id_src < cache.size) {
- seq_id_src = cache.cells[seq_id_src].src;
- GGML_ASSERT((uint32_t) seq_id_src < cache.size);
- // intent to "copy from"
- // supports copy chains thanks to taking the source of the source
- cache.cells[seq_id_dst].src = seq_id_src;
- // preserve the "keep or clear" status of the copied sequence
- if (cache.cells[seq_id_src].has_seq_id(seq_id_src)) {
- cache.cells[seq_id_dst].seq_id.insert(seq_id_dst);
- } else {
- cache.cells[seq_id_dst].seq_id.erase(seq_id_dst);
- }
- cache.do_copy = true;
- cache.cells[seq_id_dst].pos = cache.cells[seq_id_src].pos;
- }
- return;
- }
- // otherwise, this is the KV cache of a Transformer-like model
- cache.head = 0;
- for (uint32_t i = 0; i < cache.size; ++i) {
- if (cache.cells[i].has_seq_id(seq_id_src) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
- cache.cells[i].seq_id.insert(seq_id_dst);
- }
- }
- }
- static void llama_kv_cache_seq_keep(struct llama_kv_cache & cache, llama_seq_id seq_id) {
- uint32_t new_head = cache.size;
- for (uint32_t i = 0; i < cache.size; ++i) {
- if (!cache.cells[i].has_seq_id(seq_id)) {
- if (cache.cells[i].pos >= 0) cache.used--;
- cache.cells[i].pos = -1;
- cache.cells[i].seq_id.clear();
- if (new_head == cache.size) new_head = i;
- } else {
- cache.cells[i].seq_id.clear();
- cache.cells[i].seq_id.insert(seq_id);
- }
- }
- // If we freed up a slot, set head to it so searching can start there.
- if (new_head != cache.size && new_head < cache.head) cache.head = new_head;
- }
- static void llama_kv_cache_seq_add(
- struct llama_kv_cache & cache,
- llama_seq_id seq_id,
- llama_pos p0,
- llama_pos p1,
- llama_pos delta) {
- uint32_t new_head = cache.size;
- if (p0 < 0) p0 = 0;
- if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
- if (cache.recurrent) {
- // for Mamba-like models, only the pos needs to be shifted
- if (0 <= seq_id && seq_id < (int64_t) cache.size) {
- llama_kv_cell & cell = cache.cells[seq_id];
- if (cell.has_seq_id(seq_id) && p0 <= cell.pos && cell.pos < p1) {
- cell.pos += delta;
- }
- }
- return;
- }
- for (uint32_t i = 0; i < cache.size; ++i) {
- if (cache.cells[i].has_seq_id(seq_id) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
- cache.has_shift = true;
- cache.cells[i].pos += delta;
- cache.cells[i].delta += delta;
- if (cache.cells[i].pos < 0) {
- if (!cache.cells[i].is_empty()) {
- cache.used--;
- }
- cache.cells[i].pos = -1;
- cache.cells[i].seq_id.clear();
- if (new_head == cache.size) {
- new_head = i;
- }
- }
- }
- }
- // If we freed up a slot, set head to it so searching can start there.
- // Otherwise we just start the next search from the beginning.
- cache.head = new_head != cache.size ? new_head : 0;
- }
- static void llama_kv_cache_seq_div(
- struct llama_kv_cache & cache,
- llama_seq_id seq_id,
- llama_pos p0,
- llama_pos p1,
- int d) {
- if (p0 < 0) p0 = 0;
- if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
- if (cache.recurrent) {
- // for Mamba-like models, only the pos needs to be changed
- if (0 <= seq_id && seq_id < (int64_t) cache.size) {
- llama_kv_cell & cell = cache.cells[seq_id];
- if (cell.has_seq_id(seq_id) && p0 <= cell.pos && cell.pos < p1) {
- cell.pos /= d;
- }
- }
- return;
- }
- for (uint32_t i = 0; i < cache.size; ++i) {
- if (cache.cells[i].has_seq_id(seq_id) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
- cache.has_shift = true;
- {
- llama_pos p_old = cache.cells[i].pos;
- cache.cells[i].pos /= d;
- cache.cells[i].delta += cache.cells[i].pos - p_old;
- }
- }
- }
- }
- static llama_pos llama_kv_cache_seq_pos_max(struct llama_kv_cache & cache, llama_seq_id seq_id) {
- llama_pos result = 0;
- for (uint32_t i = 0; i < cache.size; ++i) {
- if (cache.cells[i].has_seq_id(seq_id)) {
- result = std::max(result, cache.cells[i].pos);
- }
- }
- return result;
- }
- static void llama_kv_cache_defrag(struct llama_kv_cache & cache) {
- cache.do_defrag = true;
- }
- static uint32_t llama_kv_cache_get_padding(const struct llama_cparams & cparams) {
- // the FA kernels require padding to avoid extra runtime boundary checks
- return cparams.flash_attn ? 256u : 32u;
- }
- //
- // model loading and saving
- //
- enum llama_fver {
- GGUF_FILE_VERSION_V1 = 1,
- GGUF_FILE_VERSION_V2 = 2,
- GGUF_FILE_VERSION_V3 = 3,
- };
- static const char * llama_file_version_name(llama_fver version) {
- switch (version) {
- case GGUF_FILE_VERSION_V1: return "GGUF V1 (support until nov 2023)";
- case GGUF_FILE_VERSION_V2: return "GGUF V2";
- case GGUF_FILE_VERSION_V3: return "GGUF V3 (latest)";
- }
- return "unknown";
- }
- static std::string llama_format_tensor_shape(const std::vector<int64_t> & ne) {
- char buf[256];
- snprintf(buf, sizeof(buf), "%5" PRId64, ne.at(0));
- for (size_t i = 1; i < ne.size(); i++) {
- snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), ", %5" PRId64, ne.at(i));
- }
- return buf;
- }
- static std::string llama_format_tensor_shape(const struct ggml_tensor * t) {
- char buf[256];
- snprintf(buf, sizeof(buf), "%5" PRId64, t->ne[0]);
- for (int i = 1; i < GGML_MAX_DIMS; i++) {
- snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), ", %5" PRId64, t->ne[i]);
- }
- return buf;
- }
- namespace GGUFMeta {
- template <typename T, gguf_type gt_, T (*gfun)(const gguf_context *, const int)>
- struct GKV_Base_Type {
- static constexpr gguf_type gt = gt_;
- static T getter(const gguf_context * ctx, const int kid) {
- return gfun(ctx, kid);
- }
- };
- template<typename T> struct GKV_Base;
- template<> struct GKV_Base<bool >: GKV_Base_Type<bool, GGUF_TYPE_BOOL, gguf_get_val_bool> {};
- template<> struct GKV_Base<uint8_t >: GKV_Base_Type<uint8_t, GGUF_TYPE_UINT8, gguf_get_val_u8 > {};
- template<> struct GKV_Base<uint16_t >: GKV_Base_Type<uint16_t, GGUF_TYPE_UINT16, gguf_get_val_u16 > {};
- template<> struct GKV_Base<uint32_t >: GKV_Base_Type<uint32_t, GGUF_TYPE_UINT32, gguf_get_val_u32 > {};
- template<> struct GKV_Base<uint64_t >: GKV_Base_Type<uint64_t, GGUF_TYPE_UINT64, gguf_get_val_u64 > {};
- template<> struct GKV_Base<int8_t >: GKV_Base_Type<int8_t, GGUF_TYPE_INT8, gguf_get_val_i8 > {};
- template<> struct GKV_Base<int16_t >: GKV_Base_Type<int16_t, GGUF_TYPE_INT16, gguf_get_val_i16 > {};
- template<> struct GKV_Base<int32_t >: GKV_Base_Type<int32_t, GGUF_TYPE_INT32, gguf_get_val_i32 > {};
- template<> struct GKV_Base<int64_t >: GKV_Base_Type<int64_t, GGUF_TYPE_INT64, gguf_get_val_i64 > {};
- template<> struct GKV_Base<float >: GKV_Base_Type<float, GGUF_TYPE_FLOAT32, gguf_get_val_f32 > {};
- template<> struct GKV_Base<double >: GKV_Base_Type<double, GGUF_TYPE_FLOAT64, gguf_get_val_f64 > {};
- template<> struct GKV_Base<const char *>: GKV_Base_Type<const char *, GGUF_TYPE_STRING, gguf_get_val_str > {};
- template<> struct GKV_Base<std::string> {
- static constexpr gguf_type gt = GGUF_TYPE_STRING;
- static std::string getter(const gguf_context * ctx, const int kid) {
- return gguf_get_val_str(ctx, kid);
- }
- };
- struct ArrayInfo {
- const gguf_type gt;
- const size_t length;
- const void * data;
- };
- template<> struct GKV_Base<ArrayInfo> {
- public:
- static constexpr gguf_type gt = GGUF_TYPE_ARRAY;
- static ArrayInfo getter(const gguf_context *ctx, const int k) {
- return ArrayInfo {
- gguf_get_arr_type(ctx, k),
- size_t(gguf_get_arr_n(ctx, k)),
- gguf_get_arr_data(ctx, k),
- };
- }
- };
- template<typename T>
- class GKV : public GKV_Base<T> {
- GKV() = delete;
- public:
- static T get_kv(const gguf_context * ctx, const int k) {
- const enum gguf_type kt = gguf_get_kv_type(ctx, k);
- if (kt != GKV::gt) {
- throw std::runtime_error(format("key %s has wrong type %s but expected type %s",
- gguf_get_key(ctx, k), gguf_type_name(kt), gguf_type_name(GKV::gt)));
- }
- return GKV::getter(ctx, k);
- }
- static const char * override_type_to_str(const llama_model_kv_override_type ty) {
- switch (ty) {
- case LLAMA_KV_OVERRIDE_TYPE_BOOL: return "bool";
- case LLAMA_KV_OVERRIDE_TYPE_INT: return "int";
- case LLAMA_KV_OVERRIDE_TYPE_FLOAT: return "float";
- case LLAMA_KV_OVERRIDE_TYPE_STR: return "str";
- }
- return "unknown";
- }
- static bool validate_override(const llama_model_kv_override_type expected_type, const struct llama_model_kv_override * ovrd) {
- if (!ovrd) { return false; }
- if (ovrd->tag == expected_type) {
- LLAMA_LOG_INFO("%s: Using metadata override (%5s) '%s' = ",
- __func__, override_type_to_str(ovrd->tag), ovrd->key);
- switch (ovrd->tag) {
- case LLAMA_KV_OVERRIDE_TYPE_BOOL: {
- LLAMA_LOG_INFO("%s\n", ovrd->val_bool ? "true" : "false");
- } break;
- case LLAMA_KV_OVERRIDE_TYPE_INT: {
- LLAMA_LOG_INFO("%" PRId64 "\n", ovrd->val_i64);
- } break;
- case LLAMA_KV_OVERRIDE_TYPE_FLOAT: {
- LLAMA_LOG_INFO("%.6f\n", ovrd->val_f64);
- } break;
- case LLAMA_KV_OVERRIDE_TYPE_STR: {
- LLAMA_LOG_INFO("%s\n", ovrd->val_str);
- } break;
- default:
- // Shouldn't be possible to end up here, but just in case...
- throw std::runtime_error(
- format("Unsupported attempt to override %s type for metadata key %s\n",
- override_type_to_str(ovrd->tag), ovrd->key));
- }
- return true;
- }
- LLAMA_LOG_WARN("%s: Warning: Bad metadata override type for key '%s', expected %s but got %s\n",
- __func__, ovrd->key, override_type_to_str(expected_type), override_type_to_str(ovrd->tag));
- return false;
- }
- template<typename OT>
- static typename std::enable_if<std::is_same<OT, bool>::value, bool>::type
- try_override(OT & target, const struct llama_model_kv_override * ovrd) {
- if (validate_override(LLAMA_KV_OVERRIDE_TYPE_BOOL, ovrd)) {
- target = ovrd->val_bool;
- return true;
- }
- return false;
- }
- template<typename OT>
- static typename std::enable_if<!std::is_same<OT, bool>::value && std::is_integral<OT>::value, bool>::type
- try_override(OT & target, const struct llama_model_kv_override * ovrd) {
- if (validate_override(LLAMA_KV_OVERRIDE_TYPE_INT, ovrd)) {
- target = ovrd->val_i64;
- return true;
- }
- return false;
- }
- template<typename OT>
- static typename std::enable_if<std::is_floating_point<OT>::value, bool>::type
- try_override(T & target, const struct llama_model_kv_override * ovrd) {
- if (validate_override(LLAMA_KV_OVERRIDE_TYPE_FLOAT, ovrd)) {
- target = ovrd->val_f64;
- return true;
- }
- return false;
- }
- template<typename OT>
- static typename std::enable_if<std::is_same<OT, std::string>::value, bool>::type
- try_override(T & target, const struct llama_model_kv_override * ovrd) {
- if (validate_override(LLAMA_KV_OVERRIDE_TYPE_STR, ovrd)) {
- target = ovrd->val_str;
- return true;
- }
- return false;
- }
- static bool set(const gguf_context * ctx, const int k, T & target, const struct llama_model_kv_override * ovrd = nullptr) {
- if (try_override<T>(target, ovrd)) {
- return true;
- }
- if (k < 0) { return false; }
- target = get_kv(ctx, k);
- return true;
- }
- static bool set(const gguf_context * ctx, const char * key, T & target, const struct llama_model_kv_override * ovrd = nullptr) {
- return set(ctx, gguf_find_key(ctx, key), target, ovrd);
- }
- static bool set(const gguf_context * ctx, const std::string & key, T & target, const struct llama_model_kv_override * ovrd = nullptr) {
- return set(ctx, key.c_str(), target, ovrd);
- }
- };
- }
- using llama_buf_map = std::unordered_map<uint32_t, ggml_backend_buffer_t>;
- struct llama_model_loader {
- int n_kv = 0;
- int n_tensors = 0;
- int n_created = 0;
- int64_t n_elements = 0;
- size_t n_bytes = 0;
- bool use_mmap = false;
- bool check_tensors;
- llama_files files;
- llama_ftype ftype;
- llama_fver fver;
- llama_mmaps mappings;
- // Holds information on a model weight
- struct llama_tensor_weight {
- uint16_t idx; // source file index
- size_t offs; // tensor data offset in the original file
- ggml_tensor * tensor;
- llama_tensor_weight(const llama_file * file, uint16_t idx, const char * name, const struct gguf_context * gguf_ctx, ggml_tensor * tensor) : idx(idx), tensor(tensor) {
- const int tensor_idx = gguf_find_tensor(gguf_ctx, name);
- offs = gguf_get_data_offset(gguf_ctx) + gguf_get_tensor_offset(gguf_ctx, tensor_idx);
- if (offs + ggml_nbytes(tensor) < offs || offs + ggml_nbytes(tensor) > file->size) {
- throw std::runtime_error(format("tensor '%s' data is not within the file bounds, model is corrupted or incomplete", name));
- }
- }
- };
- std::vector<llama_tensor_weight> weights;
- std::unordered_map<std::string, struct llama_model_kv_override> kv_overrides;
- struct gguf_context * meta = NULL;
- std::vector<ggml_context *> contexts;
- std::string arch_name;
- LLM_KV llm_kv = LLM_KV(LLM_ARCH_UNKNOWN);
- llama_model_loader(const std::string & fname, bool use_mmap, bool check_tensors, const struct llama_model_kv_override * param_overrides_p) {
- int trace = 0;
- if (getenv("LLAMA_TRACE")) {
- trace = atoi(getenv("LLAMA_TRACE"));
- }
- if (param_overrides_p != nullptr) {
- for (const struct llama_model_kv_override *p = param_overrides_p; p->key[0] != 0; p++) {
- kv_overrides.insert({std::string(p->key), *p});
- }
- }
- struct ggml_context * ctx = NULL;
- struct gguf_init_params params = {
- /*.no_alloc = */ true,
- /*.ctx = */ &ctx,
- };
- meta = gguf_init_from_file(fname.c_str(), params);
- if (!meta) {
- throw std::runtime_error(format("%s: failed to load model from %s\n", __func__, fname.c_str()));
- }
- get_key(llm_kv(LLM_KV_GENERAL_ARCHITECTURE), arch_name, false);
- llm_kv = LLM_KV(llm_arch_from_string(arch_name));
- files.emplace_back(new llama_file(fname.c_str(), "rb"));
- contexts.emplace_back(ctx);
- // Save tensors data offset of the main file.
- // For subsidiary files, `meta` tensor data offset must not be used,
- // so we build a unified tensors index for weights.
- for (ggml_tensor * cur = ggml_get_first_tensor(ctx); cur; cur = ggml_get_next_tensor(ctx, cur)) {
- weights.emplace_back(files.back().get(), 0, cur->name, meta, cur);
- }
- uint16_t n_split = 0;
- get_key(llm_kv(LLM_KV_SPLIT_COUNT), n_split, false);
- // Load additional GGML contexts
- if (n_split > 1) {
- uint16_t idx = 0;
- get_key(llm_kv(LLM_KV_SPLIT_NO), idx);
- if (idx != 0) {
- throw std::runtime_error(format("illegal split file: %d, model must be loaded with the first split", idx));
- }
- char split_prefix[PATH_MAX] = {0};
- if (!llama_split_prefix(split_prefix, sizeof(split_prefix), fname.c_str(), idx, n_split)) {
- throw std::runtime_error(format("invalid split file: %s", fname.c_str()));
- }
- if (trace > 0) {
- LLAMA_LOG_INFO("%s: loading additional %d GGUFs\n", __func__, n_split);
- }
- char split_path[PATH_MAX] = {0};
- for (idx = 1; idx < n_split; idx++) {
- llama_split_path(split_path, sizeof(split_path), split_prefix, idx, n_split);
- struct gguf_init_params split_params = {
- /*.no_alloc = */ true,
- /*.ctx = */ &ctx,
- };
- struct gguf_context * ctx_gguf = gguf_init_from_file(split_path, split_params);
- if (!ctx_gguf) {
- throw std::runtime_error(format("%s: failed to load GGUF split from %s\n", __func__, split_path));
- }
- files.emplace_back(new llama_file(split_path, "rb"));
- contexts.emplace_back(ctx);
- // Save tensors data offset info of the shard.
- for (ggml_tensor * cur = ggml_get_first_tensor(ctx); cur; cur = ggml_get_next_tensor(ctx, cur)) {
- weights.emplace_back(files.back().get(), idx, cur->name, ctx_gguf, cur);
- }
- gguf_free(ctx_gguf);
- }
- get_key(llm_kv(LLM_KV_SPLIT_TENSORS_COUNT), n_tensors);
- // sanity check
- {
- const int n_tensors_loaded = (int) weights.size();
- if (n_tensors != n_tensors_loaded) {
- throw std::runtime_error(format("corrupted model: %d tensors expected but %d found", n_tensors, n_tensors_loaded));
- }
- }
- LLAMA_LOG_INFO("%s: additional %d GGUFs metadata loaded.\n", __func__, n_split - 1);
- }
- n_kv = gguf_get_n_kv(meta);
- n_tensors = weights.size();
- fver = (enum llama_fver) gguf_get_version(meta);
- std::set<std::string> tensor_names;
- for (auto & w : weights) {
- n_elements += ggml_nelements(w.tensor);
- n_bytes += ggml_nbytes(w.tensor);
- // make sure there is no duplicated tensor names
- const std::string name(w.tensor->name);
- auto found = tensor_names.find(name);
- if (found != tensor_names.end()) {
- throw std::runtime_error(format("invalid model: tensor '%s' is duplicated", w.tensor->name));
- }
- tensor_names.insert(name);
- }
- LLAMA_LOG_INFO("%s: loaded meta data with %d key-value pairs and %d tensors from %s (version %s)\n",
- __func__, n_kv, n_tensors, fname.c_str(), llama_file_version_name(fver));
- // determine file type based on the number of tensors for each quantization and print meta data
- // TODO: make optional
- {
- std::map<enum ggml_type, uint32_t> n_type;
- uint32_t n_type_max = 0;
- enum ggml_type type_max = GGML_TYPE_F32;
- for (int i = 0; i < n_tensors; i++) {
- const ggml_tensor * tensor = weights.at(i).tensor;
- enum ggml_type type = tensor->type;
- n_type[type]++;
- if (n_type_max < n_type[type]) {
- n_type_max = n_type[type];
- type_max = type;
- }
- if (trace > 0) {
- const uint16_t sid = weights.at(i).idx;
- LLAMA_LOG_INFO("%s: - tensor %4d, split %2d: %32s %-8s [ %s ]\n", __func__, i, sid, ggml_get_name(tensor), ggml_type_name(type), llama_format_tensor_shape(tensor).c_str());
- }
- }
- switch (type_max) {
- case GGML_TYPE_F32: ftype = LLAMA_FTYPE_ALL_F32; break;
- case GGML_TYPE_F16: ftype = LLAMA_FTYPE_MOSTLY_F16; break;
- case GGML_TYPE_BF16: ftype = LLAMA_FTYPE_MOSTLY_BF16; break;
- case GGML_TYPE_Q4_0: ftype = LLAMA_FTYPE_MOSTLY_Q4_0; break;
- case GGML_TYPE_Q4_1: ftype = LLAMA_FTYPE_MOSTLY_Q4_1; break;
- case GGML_TYPE_Q5_0: ftype = LLAMA_FTYPE_MOSTLY_Q5_0; break;
- case GGML_TYPE_Q5_1: ftype = LLAMA_FTYPE_MOSTLY_Q5_1; break;
- case GGML_TYPE_Q8_0: ftype = LLAMA_FTYPE_MOSTLY_Q8_0; break;
- case GGML_TYPE_Q2_K: ftype = LLAMA_FTYPE_MOSTLY_Q2_K; break;
- case GGML_TYPE_Q3_K: ftype = LLAMA_FTYPE_MOSTLY_Q3_K_M; break;
- case GGML_TYPE_Q4_K: ftype = LLAMA_FTYPE_MOSTLY_Q4_K_M; break;
- case GGML_TYPE_Q5_K: ftype = LLAMA_FTYPE_MOSTLY_Q5_K_M; break;
- case GGML_TYPE_Q6_K: ftype = LLAMA_FTYPE_MOSTLY_Q6_K; break;
- case GGML_TYPE_IQ2_XXS: ftype = LLAMA_FTYPE_MOSTLY_IQ2_XXS; break;
- case GGML_TYPE_IQ2_XS: ftype = LLAMA_FTYPE_MOSTLY_IQ2_XS; break;
- case GGML_TYPE_IQ2_S: ftype = LLAMA_FTYPE_MOSTLY_IQ2_S; break;
- case GGML_TYPE_IQ3_XXS: ftype = LLAMA_FTYPE_MOSTLY_IQ3_XXS; break;
- case GGML_TYPE_IQ1_S: ftype = LLAMA_FTYPE_MOSTLY_IQ1_S; break;
- case GGML_TYPE_IQ1_M: ftype = LLAMA_FTYPE_MOSTLY_IQ1_M; break;
- case GGML_TYPE_IQ4_NL: ftype = LLAMA_FTYPE_MOSTLY_IQ4_NL; break;
- case GGML_TYPE_IQ4_XS: ftype = LLAMA_FTYPE_MOSTLY_IQ4_XS; break;
- case GGML_TYPE_IQ3_S: ftype = LLAMA_FTYPE_MOSTLY_IQ3_S; break;
- default:
- {
- LLAMA_LOG_WARN("%s: unknown type %s\n", __func__, ggml_type_name(type_max));
- ftype = LLAMA_FTYPE_ALL_F32;
- } break;
- }
- // this is a way to mark that we have "guessed" the file type
- ftype = (llama_ftype) (ftype | LLAMA_FTYPE_GUESSED);
- {
- const int kid = gguf_find_key(meta, "general.file_type");
- if (kid >= 0) {
- ftype = (llama_ftype) gguf_get_val_u32(meta, kid);
- }
- }
- LLAMA_LOG_INFO("%s: Dumping metadata keys/values. Note: KV overrides do not apply in this output.\n", __func__);
- for (int i = 0; i < n_kv; i++) {
- const char * name = gguf_get_key(meta, i);
- const enum gguf_type type = gguf_get_kv_type(meta, i);
- const std::string type_name =
- type == GGUF_TYPE_ARRAY
- ? format("%s[%s,%d]", gguf_type_name(type), gguf_type_name(gguf_get_arr_type(meta, i)), gguf_get_arr_n(meta, i))
- : gguf_type_name(type);
- std::string value = gguf_kv_to_str(meta, i);
- const size_t MAX_VALUE_LEN = 40;
- if (value.size() > MAX_VALUE_LEN) {
- value = format("%s...", value.substr(0, MAX_VALUE_LEN - 3).c_str());
- }
- replace_all(value, "\n", "\\n");
- LLAMA_LOG_INFO("%s: - kv %3d: %42s %-16s = %s\n", __func__, i, name, type_name.c_str(), value.c_str());
- }
- // print type counts
- for (auto & kv : n_type) {
- if (kv.second == 0) {
- continue;
- }
- LLAMA_LOG_INFO("%s: - type %4s: %4d tensors\n", __func__, ggml_type_name(kv.first), kv.second);
- }
- }
- if (!llama_mmap::SUPPORTED) {
- LLAMA_LOG_WARN("%s: mmap is not supported on this platform\n", __func__);
- use_mmap = false;
- }
- this->use_mmap = use_mmap;
- this->check_tensors = check_tensors;
- }
- ~llama_model_loader() {
- if (meta) {
- gguf_free(meta);
- }
- for (auto * ctx : contexts) {
- ggml_free(ctx);
- }
- }
- template<typename T>
- typename std::enable_if<std::is_integral<T>::value, bool>::type
- get_arr_n(const std::string & key, T & result, const bool required = true) {
- const int kid = gguf_find_key(meta, key.c_str());
- if (kid < 0) {
- if (required) {
- throw std::runtime_error(format("key not found in model: %s", key.c_str()));
- }
- return false;
- }
- struct GGUFMeta::ArrayInfo arr_info =
- GGUFMeta::GKV<GGUFMeta::ArrayInfo>::get_kv(meta, kid);
- result = arr_info.length;
- return true;
- }
- template<typename T>
- typename std::enable_if<std::is_integral<T>::value, bool>::type
- get_arr_n(const enum llm_kv kid, T & result, const bool required = true) {
- return get_arr_n(llm_kv(kid), result, required);
- }
- template<typename T>
- bool get_key(const std::string & key, T & result, const bool required = true) {
- auto it = kv_overrides.find(key);
- const struct llama_model_kv_override * override =
- it != kv_overrides.end() ? &it->second : nullptr;
- const bool found = GGUFMeta::GKV<T>::set(meta, key, result, override);
- if (required && !found) {
- throw std::runtime_error(format("key not found in model: %s", key.c_str()));
- }
- return found;
- }
- template<typename T>
- bool get_key(const enum llm_kv kid, T & result, const bool required = true) {
- return get_key(llm_kv(kid), result, required);
- }
- std::string get_arch_name() const {
- return arch_name;
- }
- enum llm_arch get_arch() const {
- return llm_kv.arch;
- }
- const char * get_tensor_name(int i) const {
- return weights.at(i).tensor->name;
- }
- const llama_tensor_weight * get_weight(const char * name) const {
- for (const auto & weight : weights) {
- if (strcmp(name, weight.tensor->name) == 0) {
- return &weight;
- }
- }
- return nullptr;
- }
- const llama_tensor_weight * get_weight(int i) const {
- return get_weight(get_tensor_name(i));
- }
- const llama_tensor_weight & require_weight(const char * name) const {
- const llama_tensor_weight * weight = get_weight(name);
- if (!weight) {
- throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name));
- }
- return *weight;
- }
- struct ggml_tensor * get_tensor_meta(const char * name) const {
- const auto * weight = get_weight(name);
- if (!weight) {
- return nullptr;
- }
- return weight->tensor;
- }
- struct ggml_tensor * require_tensor_meta(const char * name) const {
- struct ggml_tensor * tensor = get_tensor_meta(name);
- if (!tensor) {
- throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name));
- }
- return tensor;
- }
- struct ggml_tensor * get_tensor_meta(int i) const {
- return get_tensor_meta(get_tensor_name(i));
- }
- struct ggml_tensor * create_tensor_for(struct ggml_context * ctx, const struct ggml_tensor * cur) {
- struct ggml_tensor * tensor = ggml_dup_tensor(ctx, cur);
- ggml_set_name(tensor, ggml_get_name(cur));
- n_created++;
- return tensor;
- }
- const struct ggml_tensor * check_tensor_dims(const std::string & name, const std::vector<int64_t> & ne, bool required) const {
- const struct ggml_tensor * cur = get_tensor_meta(name.c_str());
- if (cur == NULL) {
- if (!required) {
- return NULL;
- }
- throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name.c_str()));
- }
- {
- bool is_ok = true;
- for (size_t i = 0; i < GGML_MAX_DIMS; ++i) {
- if ((i < ne.size() && ne[i] != cur->ne[i]) || (i >= ne.size() && cur->ne[i] != 1)) {
- is_ok = false;
- break;
- }
- }
- if (!is_ok) {
- throw std::runtime_error(
- format("%s: tensor '%s' has wrong shape; expected %s, got %s",
- __func__, name.c_str(),
- llama_format_tensor_shape(ne).c_str(),
- llama_format_tensor_shape(cur).c_str()));
- }
- }
- return cur;
- }
- struct ggml_tensor * create_tensor(struct ggml_context * ctx, const std::string & name, const std::vector<int64_t> & ne, bool required = true) {
- const struct ggml_tensor * cur = check_tensor_dims(name, ne, required);
- if (cur == NULL) {
- return NULL;
- }
- return create_tensor_for(ctx, cur);
- }
- struct ggml_tensor * create_tensor_as_view(struct ggml_context * ctx, struct ggml_tensor * base, const std::string & name, const std::vector<int64_t> & ne, size_t offset, bool required = true) {
- const struct ggml_tensor * cur = check_tensor_dims(name, ne, required);
- if (cur == NULL) {
- return NULL;
- }
- if (cur->type != base->type) {
- throw std::runtime_error(format("%s: tensor '%s' has wrong type; expected %s, got %s", __func__, name.c_str(), ggml_type_name(base->type), ggml_type_name(cur->type)));
- }
- std::array<int64_t, GGML_MAX_DIMS> dims;
- for (size_t i = 0; i < GGML_MAX_DIMS; ++i) {
- dims[i] = i < ne.size() ? ne[i] : 1;
- }
- struct ggml_tensor * tensor = ggml_view_4d(ctx, base,
- dims[0], dims[1], dims[2], dims[3],
- cur->nb[1], cur->nb[2], cur->nb[3],
- offset);
- ggml_set_name(tensor, name.c_str());
- n_created++;
- return tensor;
- }
- void done_getting_tensors() const {
- if (n_created != n_tensors) {
- throw std::runtime_error(format("%s: wrong number of tensors; expected %d, got %d", __func__, n_tensors, n_created));
- }
- }
- void init_mappings(bool prefetch = true, llama_mlocks * mlock_mmaps = nullptr) {
- if (use_mmap) {
- mappings.reserve(files.size());
- mmaps_used.reserve(files.size());
- for (const auto & file : files) {
- std::unique_ptr<llama_mmap> mapping(new llama_mmap(file.get(), prefetch ? -1 : 0, ggml_is_numa()));
- mmaps_used.emplace_back(mapping->size, 0);
- if (mlock_mmaps) {
- std::unique_ptr<llama_mlock> mlock_mmap(new llama_mlock());
- mlock_mmap->init(mapping->addr);
- mlock_mmaps->emplace_back(std::move(mlock_mmap));
- }
- mappings.emplace_back(std::move(mapping));
- }
- }
- // compute the total size of all tensors for progress reporting
- for (auto & w : weights) {
- size_data += ggml_nbytes(w.tensor);
- }
- }
- void get_mapping_range(size_t * first, size_t * last, void ** addr, int idx, ggml_context * ctx) const {
- GGML_ASSERT(!mappings.empty());
- const auto & mapping = mappings.at(idx);
- *first = mapping->size;
- *last = 0;
- *addr = mapping->addr;
- for (ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor; tensor = ggml_get_next_tensor(ctx, tensor)) {
- try {
- const auto * weight = get_weight(ggml_get_name(tensor));
- if (!weight) {
- continue;
- }
- if (weight->idx != idx) {
- continue;
- }
- *first = std::min(*first, weight->offs);
- *last = std::max(*last, weight->offs + ggml_nbytes(tensor));
- } catch(...) {
- // the tensor is not in the model
- }
- }
- }
- // for backwards compatibility, does not support ggml-backend
- void load_data_for(struct ggml_tensor * cur) const {
- const auto & w = require_weight(ggml_get_name(cur));
- if (use_mmap) {
- const auto & mapping = mappings.at(w.idx);
- if (cur->data == nullptr) {
- cur->data = (uint8_t *)mapping->addr + w.offs;
- } else {
- memcpy(cur->data, (uint8_t *)mapping->addr + w.offs, ggml_nbytes(cur));
- }
- } else {
- GGML_ASSERT(cur->data != nullptr);
- GGML_ASSERT(w.idx < files.size());
- const auto & file = files.at(w.idx);
- file->seek(w.offs, SEEK_SET);
- file->read_raw(cur->data, ggml_nbytes(cur));
- }
- if (check_tensors && !ggml_validate_row_data(cur->type, cur->data, ggml_nbytes(cur))) {
- throw std::runtime_error(format("tensor '%s' has invalid data", ggml_get_name(cur)));
- }
- }
- size_t size_done = 0;
- size_t size_data = 0;
- std::vector<std::pair<size_t, size_t>> mmaps_used;
- // Returns false if cancelled by progress_callback
- bool load_all_data(
- struct ggml_context * ctx,
- llama_buf_map & bufs_mmap,
- llama_mlocks * lmlocks,
- llama_progress_callback progress_callback,
- void * progress_callback_user_data) {
- GGML_ASSERT(size_data != 0 && "call init_mappings() first");
- std::vector<no_init<uint8_t>> read_buf;
- std::vector<std::future<std::pair<ggml_tensor *, bool>>> validation_result;
- for (struct ggml_tensor * cur = ggml_get_first_tensor(ctx); cur != NULL; cur = ggml_get_next_tensor(ctx, cur)) {
- const auto * weight = get_weight(ggml_get_name(cur));
- if (weight == nullptr) {
- // this can happen with split experts models
- continue;
- }
- if (progress_callback) {
- if (!progress_callback((float) size_done / size_data, progress_callback_user_data)) {
- return false;
- }
- }
- size_t n_size = ggml_nbytes(cur);
- if (use_mmap) {
- const auto & mapping = mappings.at(weight->idx);
- ggml_backend_buffer_t buf_mmap = nullptr;
- if (bufs_mmap.count(weight->idx)) {
- buf_mmap = bufs_mmap.at(weight->idx);
- }
- uint8_t * data = (uint8_t *) mapping->addr + weight->offs;
- if (check_tensors) {
- validation_result.emplace_back(std::async(std::launch::async, [cur, data, n_size] {
- return std::make_pair(cur, ggml_validate_row_data(cur->type, data, n_size));
- }));
- }
- GGML_ASSERT(buf_mmap || cur->data); // either we have a buffer to allocate the tensor in, or it is already allocated
- if (buf_mmap && cur->data == nullptr) {
- ggml_backend_tensor_alloc(buf_mmap, cur, data);
- if (lmlocks) {
- const auto & lmlock = lmlocks->at(weight->idx);
- lmlock->grow_to(weight->offs + n_size);
- }
- auto & mmap_used = mmaps_used[weight->idx];
- mmap_used.first = std::min(mmap_used.first, weight->offs);
- mmap_used.second = std::max(mmap_used.second, weight->offs + n_size);
- } else {
- ggml_backend_tensor_set(cur, data, 0, n_size);
- }
- } else {
- GGML_ASSERT(weight->idx < files.size());
- const auto & file = files.at(weight->idx);
- if (ggml_backend_buffer_is_host(cur->buffer)) {
- file->seek(weight->offs, SEEK_SET);
- file->read_raw(cur->data, n_size);
- if (check_tensors) {
- validation_result.emplace_back(std::async(std::launch::async, [cur, n_size] {
- return std::make_pair(cur, ggml_validate_row_data(cur->type, cur->data, n_size));
- }));
- }
- } else {
- read_buf.resize(n_size);
- file->seek(weight->offs, SEEK_SET);
- file->read_raw(read_buf.data(), n_size);
- ggml_backend_tensor_set(cur, read_buf.data(), 0, n_size);
- if (check_tensors && !ggml_validate_row_data(cur->type, read_buf.data(), n_size)) {
- throw std::runtime_error(format("tensor '%s' has invalid data", ggml_get_name(cur)));
- }
- }
- }
- size_done += n_size;
- }
- // check validation results
- bool validation_failed = false;
- for (auto & future : validation_result) {
- auto result = future.get();
- if (!result.second) {
- LLAMA_LOG_ERROR("%s: tensor '%s' has invalid data\n", __func__, ggml_get_name(result.first));
- validation_failed = true;
- }
- }
- if (validation_failed) {
- throw std::runtime_error("found tensors with invalid data");
- }
- // check if this is the last call and do final cleanup
- if (size_done >= size_data) {
- // unmap offloaded tensors and metadata
- if (use_mmap) {
- for (uint32_t idx = 0; idx < mappings.size(); idx++) {
- const auto & mmap_used = mmaps_used.at(idx);
- auto & mapping = mappings.at(idx);
- mapping->unmap_fragment(0, mmap_used.first);
- if (mmap_used.second != 0) {
- mapping->unmap_fragment(mmap_used.second, mapping->size);
- }
- }
- }
- if (progress_callback) {
- // Even though the model is done loading, we still honor
- // cancellation since we need to free allocations.
- return progress_callback(1.0f, progress_callback_user_data);
- }
- }
- return true;
- }
- };
- template<>
- bool llama_model_loader::get_key(const enum llm_kv kid, enum llama_pooling_type & result, const bool required) {
- uint32_t tmp;
- const bool found = get_key(kid, tmp, required);
- if (found) {
- result = (enum llama_pooling_type) tmp;
- } else {
- result = LLAMA_POOLING_TYPE_UNSPECIFIED;
- }
- return found;
- }
- //
- // load LLaMA models
- //
- static const char * llama_model_arch_name(llm_arch arch) {
- auto it = LLM_ARCH_NAMES.find(arch);
- if (it == LLM_ARCH_NAMES.end()) {
- return "unknown";
- }
- return it->second;
- }
- static std::string llama_model_ftype_name(llama_ftype ftype) {
- if (ftype & LLAMA_FTYPE_GUESSED) {
- return llama_model_ftype_name((enum llama_ftype) (ftype & ~LLAMA_FTYPE_GUESSED)) + " (guessed)";
- }
- switch (ftype) {
- case LLAMA_FTYPE_ALL_F32: return "all F32";
- case LLAMA_FTYPE_MOSTLY_F16: return "F16";
- case LLAMA_FTYPE_MOSTLY_BF16: return "BF16";
- case LLAMA_FTYPE_MOSTLY_Q4_0: return "Q4_0";
- case LLAMA_FTYPE_MOSTLY_Q4_1: return "Q4_1";
- case LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16:
- return "Q4_1, some F16";
- case LLAMA_FTYPE_MOSTLY_Q5_0: return "Q5_0";
- case LLAMA_FTYPE_MOSTLY_Q5_1: return "Q5_1";
- case LLAMA_FTYPE_MOSTLY_Q8_0: return "Q8_0";
- // K-quants
- case LLAMA_FTYPE_MOSTLY_Q2_K: return "Q2_K - Medium";
- case LLAMA_FTYPE_MOSTLY_Q2_K_S: return "Q2_K - Small";
- case LLAMA_FTYPE_MOSTLY_Q3_K_S: return "Q3_K - Small";
- case LLAMA_FTYPE_MOSTLY_Q3_K_M: return "Q3_K - Medium";
- case LLAMA_FTYPE_MOSTLY_Q3_K_L: return "Q3_K - Large";
- case LLAMA_FTYPE_MOSTLY_Q4_K_S: return "Q4_K - Small";
- case LLAMA_FTYPE_MOSTLY_Q4_K_M: return "Q4_K - Medium";
- case LLAMA_FTYPE_MOSTLY_Q5_K_S: return "Q5_K - Small";
- case LLAMA_FTYPE_MOSTLY_Q5_K_M: return "Q5_K - Medium";
- case LLAMA_FTYPE_MOSTLY_Q6_K: return "Q6_K";
- case LLAMA_FTYPE_MOSTLY_IQ2_XXS:return "IQ2_XXS - 2.0625 bpw";
- case LLAMA_FTYPE_MOSTLY_IQ2_XS: return "IQ2_XS - 2.3125 bpw";
- case LLAMA_FTYPE_MOSTLY_IQ2_S: return "IQ2_S - 2.5 bpw";
- case LLAMA_FTYPE_MOSTLY_IQ2_M: return "IQ2_M - 2.7 bpw";
- case LLAMA_FTYPE_MOSTLY_IQ3_XS: return "IQ3_XS - 3.3 bpw";
- case LLAMA_FTYPE_MOSTLY_IQ3_XXS:return "IQ3_XXS - 3.0625 bpw";
- case LLAMA_FTYPE_MOSTLY_IQ1_S :return "IQ1_S - 1.5625 bpw";
- case LLAMA_FTYPE_MOSTLY_IQ1_M :return "IQ1_M - 1.75 bpw";
- case LLAMA_FTYPE_MOSTLY_IQ4_NL: return "IQ4_NL - 4.5 bpw";
- case LLAMA_FTYPE_MOSTLY_IQ4_XS: return "IQ4_XS - 4.25 bpw";
- case LLAMA_FTYPE_MOSTLY_IQ3_S: return "IQ3_S - 3.4375 bpw";
- case LLAMA_FTYPE_MOSTLY_IQ3_M: return "IQ3_S mix - 3.66 bpw";
- default: return "unknown, may not work";
- }
- }
- static const char * llama_model_type_name(e_model type) {
- switch (type) {
- case MODEL_22M: return "22M";
- case MODEL_33M: return "33M";
- case MODEL_109M: return "109M";
- case MODEL_137M: return "137M";
- case MODEL_0_5B: return "0.5B";
- case MODEL_1B: return "1B";
- case MODEL_2B: return "2B";
- case MODEL_3B: return "3B";
- case MODEL_7B: return "7B";
- case MODEL_8B: return "8B";
- case MODEL_12B: return "12B";
- case MODEL_13B: return "13B";
- case MODEL_14B: return "14B";
- case MODEL_15B: return "15B";
- case MODEL_20B: return "20B";
- case MODEL_30B: return "30B";
- case MODEL_34B: return "34B";
- case MODEL_35B: return "35B";
- case MODEL_40B: return "40B";
- case MODEL_65B: return "65B";
- case MODEL_70B: return "70B";
- case MODEL_314B: return "314B";
- case MODEL_SMALL: return "0.1B";
- case MODEL_MEDIUM: return "0.4B";
- case MODEL_LARGE: return "0.8B";
- case MODEL_XL: return "1.5B";
- case MODEL_A2_7B: return "A2.7B";
- case MODEL_8x7B: return "8x7B";
- case MODEL_8x22B: return "8x22B";
- case MODEL_16x12B: return "16x12B";
- default: return "?B";
- }
- }
- static const char * llama_model_vocab_type_name(enum llama_vocab_type type){
- switch (type) {
- case LLAMA_VOCAB_TYPE_NONE: return "no vocab";
- case LLAMA_VOCAB_TYPE_SPM: return "SPM";
- case LLAMA_VOCAB_TYPE_BPE: return "BPE";
- case LLAMA_VOCAB_TYPE_WPM: return "WPM";
- default: return "unknown";
- }
- }
- static void llm_load_arch(llama_model_loader & ml, llama_model & model) {
- model.arch = ml.get_arch();
- if (model.arch == LLM_ARCH_UNKNOWN) {
- throw std::runtime_error("unknown model architecture: '" + ml.get_arch_name() + "'");
- }
- }
- static void llm_load_hparams(
- llama_model_loader & ml,
- llama_model & model) {
- auto & hparams = model.hparams;
- const gguf_context * ctx = ml.meta;
- // get metadata as string
- for (int i = 0; i < gguf_get_n_kv(ctx); i++) {
- enum gguf_type type = gguf_get_kv_type(ctx, i);
- if (type == GGUF_TYPE_ARRAY) {
- continue;
- }
- const char * name = gguf_get_key(ctx, i);
- const std::string value = gguf_kv_to_str(ctx, i);
- model.gguf_kv.emplace(name, value);
- }
- // get general kv
- ml.get_key(LLM_KV_GENERAL_NAME, model.name, false);
- // get hparams kv
- ml.get_key(LLM_KV_VOCAB_SIZE, hparams.n_vocab, false) || ml.get_arr_n(LLM_KV_TOKENIZER_LIST, hparams.n_vocab);
- // everything past this point is not vocab-related
- if (hparams.vocab_only) {
- return;
- }
- ml.get_key(LLM_KV_CONTEXT_LENGTH, hparams.n_ctx_train);
- ml.get_key(LLM_KV_EMBEDDING_LENGTH, hparams.n_embd);
- ml.get_key(LLM_KV_FEED_FORWARD_LENGTH, hparams.n_ff);
- ml.get_key(LLM_KV_ATTENTION_HEAD_COUNT, hparams.n_head);
- ml.get_key(LLM_KV_BLOCK_COUNT, hparams.n_layer);
- ml.get_key(LLM_KV_EXPERT_COUNT, hparams.n_expert, false);
- ml.get_key(LLM_KV_EXPERT_USED_COUNT, hparams.n_expert_used, false);
- GGML_ASSERT(hparams.n_expert <= LLAMA_MAX_EXPERTS);
- GGML_ASSERT(hparams.n_expert_used <= hparams.n_expert);
- if (hparams.n_expert > 0) {
- GGML_ASSERT(hparams.n_expert_used > 0);
- } else {
- GGML_ASSERT(hparams.n_expert_used == 0);
- }
- // n_head_kv is optional, default to n_head
- hparams.n_head_kv = hparams.n_head;
- ml.get_key(LLM_KV_ATTENTION_HEAD_COUNT_KV, hparams.n_head_kv, false);
- bool rope_finetuned = false;
- ml.get_key(LLM_KV_ROPE_SCALING_FINETUNED, rope_finetuned, false);
- hparams.rope_finetuned = rope_finetuned;
- hparams.n_yarn_orig_ctx = hparams.n_ctx_train;
- ml.get_key(LLM_KV_ROPE_SCALING_ORIG_CTX_LEN, hparams.n_yarn_orig_ctx, false);
- // rope_freq_base (optional)
- hparams.rope_freq_base_train = 10000.0f;
- ml.get_key(LLM_KV_ROPE_FREQ_BASE, hparams.rope_freq_base_train, false);
- std::string rope_scaling("linear");
- ml.get_key(LLM_KV_ROPE_SCALING_TYPE, rope_scaling, false);
- hparams.rope_scaling_type_train = llama_rope_scaling_type_from_string(rope_scaling);
- GGML_ASSERT(hparams.rope_scaling_type_train != LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED);
- // rope_freq_scale (inverse of the kv) is optional
- float ropescale = 0.0f;
- if (!ml.get_key(LLM_KV_ROPE_SCALING_FACTOR, ropescale, false)) {
- // try the old key name
- ml.get_key(LLM_KV_ROPE_SCALE_LINEAR, ropescale, false);
- }
- hparams.rope_freq_scale_train = ropescale == 0.0f ? 1.0f : 1.0f/ropescale;
- // sanity check for n_rot (optional)
- {
- hparams.n_rot = (hparams.n_head == 0) ? 0 : hparams.n_embd / hparams.n_head;
- ml.get_key(LLM_KV_ROPE_DIMENSION_COUNT, hparams.n_rot, false);
- if (model.arch == LLM_ARCH_LLAMA || model.arch == LLM_ARCH_FALCON) {
- if (hparams.n_rot != hparams.n_embd / hparams.n_head) {
- throw std::runtime_error(format("invalid n_rot: %u, expected %u", hparams.n_rot, hparams.n_embd / hparams.n_head));
- }
- }
- // gpt-neox n_rot = rotary_pct * (n_embd / n_head)
- // gpt-j n_rot = rotary_dim
- }
- hparams.n_embd_head_k = (hparams.n_head == 0) ? 0 : hparams.n_embd / hparams.n_head;
- ml.get_key(LLM_KV_ATTENTION_KEY_LENGTH, hparams.n_embd_head_k, false);
- hparams.n_embd_head_v = (hparams.n_head == 0) ? 0 : hparams.n_embd / hparams.n_head;
- ml.get_key(LLM_KV_ATTENTION_VALUE_LENGTH, hparams.n_embd_head_v, false);
- // arch-specific KVs
- switch (model.arch) {
- case LLM_ARCH_LLAMA:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- if (hparams.n_expert == 8) {
- switch (hparams.n_layer) {
- case 32: model.type = e_model::MODEL_8x7B; break;
- case 56: model.type = e_model::MODEL_8x22B; break;
- default: model.type = e_model::MODEL_UNKNOWN;
- }
- } else {
- switch (hparams.n_layer) {
- case 22: model.type = e_model::MODEL_1B; break;
- case 26: model.type = e_model::MODEL_3B; break;
- case 32: model.type = hparams.n_vocab < 40000 ? e_model::MODEL_7B : e_model::MODEL_8B; break;
- case 40: model.type = e_model::MODEL_13B; break;
- case 48: model.type = e_model::MODEL_34B; break;
- case 60: model.type = e_model::MODEL_30B; break;
- case 80: model.type = hparams.n_head == hparams.n_head_kv ? e_model::MODEL_65B : e_model::MODEL_70B; break;
- default: model.type = e_model::MODEL_UNKNOWN;
- }
- }
- } break;
- case LLM_ARCH_MINICPM:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- switch (hparams.n_layer) {
- case 40: model.type = e_model::MODEL_2B; break;
- default: model.type = e_model::MODEL_UNKNOWN;
- }
- } break;
- case LLM_ARCH_GROK:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- switch (hparams.n_layer) {
- case 64: model.type = e_model::MODEL_314B; break;
- default: model.type = e_model::MODEL_UNKNOWN;
- }
- } break;
- case LLM_ARCH_FALCON:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
- switch (hparams.n_layer) {
- case 32: model.type = e_model::MODEL_7B; break;
- case 60: model.type = e_model::MODEL_40B; break;
- default: model.type = e_model::MODEL_UNKNOWN;
- }
- } break;
- case LLM_ARCH_BAICHUAN:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- switch (hparams.n_layer) {
- case 32: model.type = e_model::MODEL_7B; break;
- case 40: model.type = e_model::MODEL_13B; break;
- default: model.type = e_model::MODEL_UNKNOWN;
- }
- if (model.type == e_model::MODEL_13B) {
- // TODO: become GGUF KV parameter
- hparams.f_max_alibi_bias = 8.0f;
- }
- } break;
- case LLM_ARCH_STARCODER:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
- switch (hparams.n_layer) {
- case 24: model.type = e_model::MODEL_1B; break;
- case 36: model.type = e_model::MODEL_3B; break;
- case 42: model.type = e_model::MODEL_7B; break;
- case 40: model.type = e_model::MODEL_15B; break;
- default: model.type = e_model::MODEL_UNKNOWN;
- }
- } break;
- case LLM_ARCH_PERSIMMON:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
- switch (hparams.n_layer) {
- case 36: model.type = e_model::MODEL_8B; break;
- default: model.type = e_model::MODEL_UNKNOWN;
- }
- } break;
- case LLM_ARCH_REFACT:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- switch (hparams.n_layer) {
- case 32: model.type = e_model::MODEL_1B; break;
- default: model.type = e_model::MODEL_UNKNOWN;
- }
- // TODO: become GGUF KV parameter
- hparams.f_max_alibi_bias = 8.0f;
- } break;
- case LLM_ARCH_BERT:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
- ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
- ml.get_key(LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, hparams.n_vocab_type);
- ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type, false);
- switch (hparams.n_layer) {
- case 3:
- model.type = e_model::MODEL_17M; break; // bge-micro
- case 6:
- model.type = e_model::MODEL_22M; break; // MiniLM-L6
- case 12:
- switch (hparams.n_embd) {
- case 384: model.type = e_model::MODEL_33M; break; // MiniLM-L12, bge-small
- case 768: model.type = e_model::MODEL_109M; break; // bge-base
- } break;
- case 24:
- model.type = e_model::MODEL_335M; break; // bge-large
- }
- } break;
- case LLM_ARCH_JINA_BERT_V2:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
- ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
- ml.get_key(LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, hparams.n_vocab_type);
- ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type);
- hparams.f_max_alibi_bias = 8.0f;
- switch (hparams.n_layer) {
- case 4: model.type = e_model::MODEL_33M; break; // jina-embeddings-small
- case 12: model.type = e_model::MODEL_137M; break; // jina-embeddings-base
- }
- } break;
- case LLM_ARCH_NOMIC_BERT:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
- ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
- ml.get_key(LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, hparams.n_vocab_type);
- ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type);
- if (hparams.n_layer == 12 && hparams.n_embd == 768) {
- model.type = e_model::MODEL_137M;
- }
- } break;
- case LLM_ARCH_BLOOM:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
- switch (hparams.n_layer) {
- case 24: model.type = e_model::MODEL_1B; break;
- case 30:
- switch (hparams.n_embd) {
- case 2560: model.type = e_model::MODEL_3B; break;
- case 4096: model.type = e_model::MODEL_7B; break;
- } break;
- }
- // TODO: become GGUF KV parameter
- hparams.f_max_alibi_bias = 8.0f;
- } break;
- case LLM_ARCH_MPT:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
- ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv, false);
- ml.get_key(LLM_KV_ATTENTION_MAX_ALIBI_BIAS, hparams.f_max_alibi_bias);
- switch (hparams.n_layer) {
- case 32: model.type = e_model::MODEL_7B; break;
- case 48: model.type = e_model::MODEL_30B; break;
- default: model.type = e_model::MODEL_UNKNOWN;
- }
- } break;
- case LLM_ARCH_STABLELM:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
- switch (hparams.n_layer) {
- case 24: model.type = e_model::MODEL_1B; break;
- case 32: model.type = e_model::MODEL_3B; break;
- case 40: model.type = e_model::MODEL_12B; break;
- default: model.type = e_model::MODEL_UNKNOWN;
- }
- } break;
- case LLM_ARCH_QWEN:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- switch (hparams.n_layer) {
- case 32: model.type = e_model::MODEL_7B; break;
- case 40: model.type = e_model::MODEL_13B; break;
- default: model.type = e_model::MODEL_UNKNOWN;
- }
- } break;
- case LLM_ARCH_QWEN2:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- switch (hparams.n_layer) {
- case 24: model.type = hparams.n_embd == 1024 ? e_model::MODEL_0_5B : e_model::MODEL_1B; break;
- case 32: model.type = e_model::MODEL_7B; break;
- case 40: model.type = hparams.n_head == 20 ? e_model::MODEL_4B : e_model::MODEL_13B; break;
- case 80: model.type = e_model::MODEL_70B; break;
- default: model.type = e_model::MODEL_UNKNOWN;
- }
- } break;
- case LLM_ARCH_QWEN2MOE:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- switch (hparams.n_layer) {
- case 24: model.type = e_model::MODEL_A2_7B; break;
- default: model.type = e_model::MODEL_UNKNOWN;
- }
- } break;
- case LLM_ARCH_PHI2:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
- switch (hparams.n_layer) {
- case 24: model.type = e_model::MODEL_1B; break;
- case 32: model.type = e_model::MODEL_3B; break;
- default: model.type = e_model::MODEL_UNKNOWN;
- }
- } break;
- case LLM_ARCH_PHI3:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- switch (hparams.n_layer) {
- case 24: model.type = e_model::MODEL_1B; break;
- case 32: model.type = e_model::MODEL_3B; break;
- default: model.type = e_model::MODEL_UNKNOWN;
- }
- } break;
- case LLM_ARCH_PLAMO:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- switch (hparams.n_layer) {
- case 40: model.type = e_model::MODEL_13B; break;
- default: model.type = e_model::MODEL_UNKNOWN;
- }
- } break;
- case LLM_ARCH_GPT2:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
- switch (hparams.n_layer) {
- case 12: model.type = e_model::MODEL_SMALL; break;
- case 24: model.type = e_model::MODEL_MEDIUM; break;
- case 36: model.type = e_model::MODEL_LARGE; break;
- case 48: model.type = e_model::MODEL_XL; break;
- default: model.type = e_model::MODEL_UNKNOWN;
- }
- } break;
- case LLM_ARCH_CODESHELL:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
- switch (hparams.n_layer) {
- case 42: model.type = e_model::MODEL_SMALL; break;
- default: model.type = e_model::MODEL_UNKNOWN;
- }
- } break;
- case LLM_ARCH_ORION:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
- switch (hparams.n_layer) {
- case 40: model.type = e_model::MODEL_14B; break;
- default: model.type = e_model::MODEL_UNKNOWN;
- }
- } break;
- case LLM_ARCH_INTERNLM2:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- switch (hparams.n_layer) {
- case 32: model.type = e_model::MODEL_7B; break;
- case 48: model.type = e_model::MODEL_20B; break;
- default: model.type = e_model::MODEL_UNKNOWN;
- }
- } break;
- case LLM_ARCH_GEMMA:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- switch (hparams.n_layer) {
- case 18: model.type = e_model::MODEL_2B; break;
- case 28: model.type = e_model::MODEL_7B; break;
- default: model.type = e_model::MODEL_UNKNOWN;
- }
- } break;
- case LLM_ARCH_STARCODER2:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
- switch (hparams.n_layer) {
- case 30: model.type = e_model::MODEL_3B; break;
- case 32: model.type = e_model::MODEL_7B; break;
- case 40: model.type = e_model::MODEL_15B; break;
- default: model.type = e_model::MODEL_UNKNOWN;
- }
- } break;
- case LLM_ARCH_MAMBA:
- {
- ml.get_key(LLM_KV_SSM_CONV_KERNEL, hparams.ssm_d_conv);
- ml.get_key(LLM_KV_SSM_INNER_SIZE, hparams.ssm_d_inner);
- ml.get_key(LLM_KV_SSM_STATE_SIZE, hparams.ssm_d_state);
- ml.get_key(LLM_KV_SSM_TIME_STEP_RANK, hparams.ssm_dt_rank);
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- switch (hparams.n_layer) {
- case 24:
- switch (hparams.n_embd) {
- case 768: model.type = e_model::MODEL_SMALL; break;
- default: model.type = e_model::MODEL_UNKNOWN;
- } break;
- case 48:
- switch (hparams.n_embd) {
- case 1024: model.type = e_model::MODEL_MEDIUM; break;
- case 1536: model.type = e_model::MODEL_LARGE; break;
- case 2048: model.type = e_model::MODEL_XL; break;
- default: model.type = e_model::MODEL_UNKNOWN;
- } break;
- case 64:
- switch (hparams.n_embd) {
- case 2560: model.type = e_model::MODEL_3B; break;
- default: model.type = e_model::MODEL_UNKNOWN;
- } break;
- default: model.type = e_model::MODEL_UNKNOWN;
- }
- } break;
- case LLM_ARCH_XVERSE:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- switch (hparams.n_layer) {
- case 32: model.type = e_model::MODEL_7B; break;
- case 40: model.type = e_model::MODEL_13B; break;
- case 80: model.type = e_model::MODEL_65B; break;
- default: model.type = e_model::MODEL_UNKNOWN;
- }
- } break;
- case LLM_ARCH_COMMAND_R:
- {
- ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale);
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
- switch (hparams.n_layer) {
- case 40: model.type = e_model::MODEL_35B; break;
- default: model.type = e_model::MODEL_UNKNOWN;
- }
- } break;
- case LLM_ARCH_DBRX:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
- ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv);
- switch (hparams.n_layer) {
- case 40: model.type = e_model::MODEL_16x12B; break;
- default: model.type = e_model::MODEL_UNKNOWN;
- }
- } break;
- case LLM_ARCH_OLMO:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
- ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv, false);
- switch (hparams.n_layer) {
- case 22: model.type = e_model::MODEL_1B; break;
- case 32: model.type = e_model::MODEL_7B; break;
- case 80: model.type = e_model::MODEL_70B; break;
- default: model.type = e_model::MODEL_UNKNOWN;
- }
- } break;
- default: (void)0;
- }
- model.ftype = ml.ftype;
- if (hparams.f_max_alibi_bias > 0.0f) {
- hparams.use_alibi = true;
- }
- hparams.rope_type = llama_rope_type(&model);
- }
- // TODO: This should probably be in llama.h
- static std::vector<llama_vocab::id> llama_tokenize_internal(
- const llama_vocab & vocab, std::string raw_text, bool add_special, bool parse_special = false
- );
- static llama_token llama_byte_to_token(const llama_vocab & vocab, uint8_t ch);
- static void llm_load_vocab(
- llama_model_loader & ml,
- llama_model & model) {
- auto & vocab = model.vocab;
- struct gguf_context * ctx = ml.meta;
- const auto kv = LLM_KV(model.arch);
- // determine vocab type
- {
- std::string tokenizer_model;
- std::string tokenizer_pre;
- ml.get_key(LLM_KV_TOKENIZER_MODEL, tokenizer_model);
- ml.get_key(LLM_KV_TOKENIZER_PRE, tokenizer_pre, false);
- if (tokenizer_model == "no_vocab") {
- vocab.type = LLAMA_VOCAB_TYPE_NONE;
- // default special tokens
- vocab.special_bos_id = -1;
- vocab.special_eos_id = -1;
- vocab.special_unk_id = -1;
- vocab.special_sep_id = -1;
- vocab.special_pad_id = -1;
- vocab.special_cls_id = -1;
- vocab.special_mask_id = -1;
- vocab.linefeed_id = -1;
- return;
- } else if (tokenizer_model == "llama") {
- vocab.type = LLAMA_VOCAB_TYPE_SPM;
- // default special tokens
- vocab.special_bos_id = 1;
- vocab.special_eos_id = 2;
- vocab.special_unk_id = 0;
- vocab.special_sep_id = -1;
- vocab.special_pad_id = -1;
- vocab.special_cls_id = -1;
- vocab.special_mask_id = -1;
- // For Fill-In-the-Middle (FIM)/infill models which where converted
- // prior to support of FIM special tokens in GGUF, the following
- // will allow those models to continue to work. The general names
- // of the known models are currently CodeLlama (LLM_ARCH_LLAMA) and
- // CodeGemma (LLM_ARCH_GEMMA). This can potentially be removed once
- // new versions of these models have been published.
- std::string gen_name;
- ml.get_key(LLM_KV_GENERAL_NAME, gen_name, false);
- std::transform(gen_name.begin(), gen_name.end(), gen_name.begin(),
- [](unsigned char c){ return std::tolower(c); });
- if (gen_name.find("code") != std::string::npos) {
- if (model.arch == LLM_ARCH_LLAMA) {
- vocab.special_prefix_id = 32007;
- vocab.special_suffix_id = 32008;
- vocab.special_middle_id = 32009;
- vocab.special_eot_id = 32010;
- } else if (model.arch == LLM_ARCH_GEMMA) {
- vocab.special_prefix_id = 67;
- vocab.special_suffix_id = 69;
- vocab.special_middle_id = 68;
- // TODO: this is not EOT, it is "file separator" token, needs fix
- // https://huggingface.co/google/codegemma-7b-it/blob/9b1d9231388358c04d90bd003458f5070d97db44/tokenizer_config.json#L565-L572
- //vocab.special_eot_id = 70;
- vocab.special_eot_id = 107;
- }
- }
- const int add_space_prefix_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_ADD_PREFIX).c_str());
- if (add_space_prefix_keyidx != -1) {
- vocab.add_space_prefix = gguf_get_val_bool(ctx, add_space_prefix_keyidx);
- } // The default value of add_space_prefix is true.
- } else if (tokenizer_model == "bert") {
- vocab.type = LLAMA_VOCAB_TYPE_WPM;
- // default special tokens
- vocab.special_bos_id = -1;
- vocab.special_eos_id = -1;
- vocab.special_unk_id = 100;
- vocab.special_sep_id = 102;
- vocab.special_pad_id = 0;
- vocab.special_cls_id = 101;
- vocab.special_mask_id = 103;
- vocab.add_space_prefix = false;
- } else {
- if (tokenizer_model == "gpt2") {
- vocab.type = LLAMA_VOCAB_TYPE_BPE;
- } else {
- LLAMA_LOG_WARN("%s: unknown tokenizer: '%s'", __func__, tokenizer_model.c_str());
- LLAMA_LOG_WARN("%s: using default tokenizer: 'llama'", __func__);
- vocab.type = LLAMA_VOCAB_TYPE_SPM;
- return;
- }
- // read bpe merges and populate bpe ranks
- const int merges_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_MERGES).c_str());
- if (merges_keyidx == -1) {
- throw std::runtime_error("cannot find tokenizer merges in model file\n");
- }
- const int n_merges = gguf_get_arr_n(ctx, merges_keyidx);
- for (int i = 0; i < n_merges; i++) {
- const std::string word = gguf_get_arr_str(ctx, merges_keyidx, i);
- GGML_ASSERT(unicode_cpts_from_utf8(word).size() > 0);
- std::string first;
- std::string second;
- const size_t pos = word.find(' ', 1);
- if (pos != std::string::npos) {
- first = word.substr(0, pos);
- second = word.substr(pos + 1);
- }
- vocab.bpe_ranks.emplace(std::make_pair(first, second), i);
- }
- // default special tokens
- vocab.special_bos_id = 11;
- vocab.special_eos_id = 11;
- vocab.special_unk_id = -1;
- vocab.special_sep_id = -1;
- vocab.special_pad_id = -1;
- vocab.special_cls_id = -1;
- vocab.special_mask_id = -1;
- }
- // for now, only BPE models have pre-tokenizers
- if (vocab.type == LLAMA_VOCAB_TYPE_BPE) {
- if (tokenizer_pre.empty()) {
- LLAMA_LOG_WARN("%s: missing pre-tokenizer type, using: 'default'\n", __func__);
- LLAMA_LOG_WARN("%s: \n", __func__);
- LLAMA_LOG_WARN("%s: ************************************ \n", __func__);
- LLAMA_LOG_WARN("%s: GENERATION QUALITY WILL BE DEGRADED! \n", __func__);
- LLAMA_LOG_WARN("%s: CONSIDER REGENERATING THE MODEL \n", __func__);
- LLAMA_LOG_WARN("%s: ************************************ \n", __func__);
- LLAMA_LOG_WARN("%s: \n", __func__);
- vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
- } else if (
- tokenizer_pre == "default") {
- vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
- } else if (
- tokenizer_pre == "llama3" ||
- tokenizer_pre == "llama-v3" ||
- tokenizer_pre == "llama-bpe") {
- vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_LLAMA3;
- } else if (
- tokenizer_pre == "deepseek-llm") {
- vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_LLM;
- } else if (
- tokenizer_pre == "deepseek-coder") {
- vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_CODER;
- } else if (
- tokenizer_pre == "falcon") {
- vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_FALCON;
- } else if (
- tokenizer_pre == "mpt") {
- vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_MPT;
- } else if (
- tokenizer_pre == "starcoder") {
- vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_STARCODER;
- } else if (
- tokenizer_pre == "gpt-2" ||
- tokenizer_pre == "jina-es" ||
- tokenizer_pre == "jina-de" ||
- tokenizer_pre == "jina-v2-es" ||
- tokenizer_pre == "jina-v2-de") {
- vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_GPT2;
- } else if (
- tokenizer_pre == "refact") {
- vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_REFACT;
- } else if (
- tokenizer_pre == "command-r") {
- vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_COMMAND_R;
- } else if (
- tokenizer_pre == "qwen2") {
- vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_QWEN2;
- } else if (
- tokenizer_pre == "olmo") {
- vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_OLMO;
- } else if (
- tokenizer_pre == "dbrx") {
- vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DBRX;
- } else {
- throw std::runtime_error(format("unknown pre-tokenizer type: '%s'", tokenizer_pre.c_str()));
- }
- } else {
- vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
- }
- }
- const int token_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_LIST).c_str());
- if (token_idx == -1) {
- throw std::runtime_error("cannot find tokenizer vocab in model file\n");
- }
- const float * scores = nullptr;
- const int score_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_SCORES).c_str());
- if (score_idx != -1) {
- scores = (const float * ) gguf_get_arr_data(ctx, score_idx);
- }
- const int * toktypes = nullptr;
- const int toktype_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_TOKEN_TYPE).c_str());
- if (toktype_idx != -1) {
- toktypes = (const int * ) gguf_get_arr_data(ctx, toktype_idx);
- }
- const uint32_t n_vocab = gguf_get_arr_n(ctx, token_idx);
- vocab.id_to_token.resize(n_vocab);
- for (uint32_t i = 0; i < n_vocab; i++) {
- std::string word = gguf_get_arr_str(ctx, token_idx, i);
- GGML_ASSERT(unicode_cpts_from_utf8(word).size() > 0);
- vocab.token_to_id[word] = i;
- auto & token_data = vocab.id_to_token[i];
- token_data.text = std::move(word);
- token_data.score = scores ? scores[i] : 0.0f;
- token_data.type = toktypes ? (llama_token_type) toktypes[i] : LLAMA_TOKEN_TYPE_NORMAL;
- }
- GGML_ASSERT(vocab.id_to_token.size() == vocab.token_to_id.size());
- // determine the newline token: LLaMA "<0x0A>" == 10 == '\n', Falcon 193 == '\n'
- if (vocab.type == LLAMA_VOCAB_TYPE_SPM) {
- try {
- vocab.linefeed_id = llama_byte_to_token(vocab, '\n');
- } catch (const std::exception & e) {
- LLAMA_LOG_WARN("%s: SPM vocabulary, but newline token not found: %s! Using special_pad_id instead.", __func__, e.what());
- vocab.linefeed_id = vocab.special_pad_id;
- }
- } else if (vocab.type == LLAMA_VOCAB_TYPE_WPM) {
- vocab.linefeed_id = vocab.special_pad_id;
- } else {
- const std::vector<int> ids = llama_tokenize_internal(vocab, "\xC4\x8A", false); // U+010A
- GGML_ASSERT(!ids.empty() && "model vocab missing newline token");
- vocab.linefeed_id = ids[0];
- }
- // special tokens
- {
- const std::vector<std::pair<enum llm_kv, int32_t &>> special_token_types = {
- { LLM_KV_TOKENIZER_BOS_ID, vocab.special_bos_id },
- { LLM_KV_TOKENIZER_EOS_ID, vocab.special_eos_id },
- { LLM_KV_TOKENIZER_UNK_ID, vocab.special_unk_id },
- { LLM_KV_TOKENIZER_SEP_ID, vocab.special_sep_id },
- { LLM_KV_TOKENIZER_PAD_ID, vocab.special_pad_id },
- { LLM_KV_TOKENIZER_CLS_ID, vocab.special_cls_id },
- { LLM_KV_TOKENIZER_MASK_ID, vocab.special_mask_id },
- { LLM_KV_TOKENIZER_PREFIX_ID, vocab.special_prefix_id },
- { LLM_KV_TOKENIZER_SUFFIX_ID, vocab.special_suffix_id },
- { LLM_KV_TOKENIZER_MIDDLE_ID, vocab.special_middle_id },
- { LLM_KV_TOKENIZER_EOT_ID, vocab.special_eot_id },
- };
- for (const auto & it : special_token_types) {
- const std::string & key = kv(std::get<0>(it));
- int32_t & id = std::get<1>(it);
- uint32_t new_id;
- if (!ml.get_key(std::get<0>(it), new_id, false)) {
- continue;
- }
- if (new_id >= vocab.id_to_token.size()) {
- LLAMA_LOG_WARN("%s: bad special token: '%s' = %ud, using default id %d\n",
- __func__, key.c_str(), new_id, id);
- } else {
- id = new_id;
- }
- }
- // Handle add_bos_token and add_eos_token
- {
- bool temp = true;
- if (ml.get_key(LLM_KV_TOKENIZER_ADD_BOS, temp, false)) {
- vocab.special_add_bos = int(temp);
- }
- if (ml.get_key(LLM_KV_TOKENIZER_ADD_EOS, temp, false)) {
- vocab.special_add_eos = int(temp);
- }
- }
- // find EOT token: "<|eot_id|>", "<|im_end|>", "<end_of_turn>", etc.
- //
- // TODO: convert scripts should provide this token through the KV metadata LLAMA_KV_TOKENIZER_EOT_ID
- // for now, we apply this workaround to find the EOT token based on its text
- if (vocab.special_eot_id == -1) {
- for (const auto & t : vocab.token_to_id) {
- if (
- // TODO: gemma "<end_of_turn>" is exported as a normal token, so the following check does not work
- // need to fix convert script
- //vocab.id_to_token[t.second].type == LLAMA_TOKEN_TYPE_CONTROL &&
- (t.first == "<|eot_id|>" ||
- t.first == "<|im_end|>" ||
- t.first == "<|end|>" ||
- t.first == "<end_of_turn>"
- )
- ) {
- vocab.special_eot_id = t.second;
- break;
- }
- }
- }
- }
- // build special tokens cache
- {
- // TODO: It is unclear (to me) at this point, whether special tokes are guaranteed to be of a deterministic type,
- // and will always be correctly labeled in 'added_tokens.json' etc.
- // The assumption is, since special tokens aren't meant to be exposed to end user, they are designed
- // to be unmatchable by the tokenizer, therefore tokens from the vocab, which are unmatchable by the tokenizer
- // are special tokens.
- // From testing, this appears to correlate 1:1 with special tokens.
- //
- // Counting special tokens and verifying in only one direction
- // is sufficient to detect difference in those two sets.
- //
- uint32_t special_tokens_count_by_type = 0;
- uint32_t special_tokens_count_from_verification = 0;
- bool special_tokens_definition_mismatch = false;
- for (const auto & t : vocab.token_to_id) {
- const auto & token = t.first;
- const auto & id = t.second;
- // Count all non-normal tokens in the vocab while iterating
- if (vocab.id_to_token[id].type != LLAMA_TOKEN_TYPE_NORMAL) {
- special_tokens_count_by_type++;
- }
- // Skip single character tokens
- if (token.length() > 1) {
- bool is_tokenizable = false;
- // Split token string representation in two, in all possible ways
- // and check if both halves can be matched to a valid token
- for (unsigned i = 1; i < token.length();) {
- const auto left = token.substr(0, i);
- const auto right = token.substr(i);
- // check if we didnt partition in the middle of a utf sequence
- auto utf = utf8_len(left.at(left.length() - 1));
- if (utf == 1) {
- if (vocab.token_to_id.find(left) != vocab.token_to_id.end() &&
- vocab.token_to_id.find(right) != vocab.token_to_id.end() ) {
- is_tokenizable = true;
- break;
- }
- i++;
- } else {
- // skip over the rest of multibyte utf sequence
- i += utf - 1;
- }
- }
- if (!is_tokenizable) {
- // Some tokens are multibyte, but they are utf sequences with equivalent text length of 1
- // it's faster to re-filter them here, since there are way less candidates now
- // Calculate a total "utf" length of a token string representation
- size_t utf8_str_len = 0;
- for (unsigned i = 0; i < token.length();) {
- utf8_str_len++;
- i += utf8_len(token.at(i));
- }
- // And skip the ones which are one character
- if (utf8_str_len > 1) {
- // At this point what we have left are special tokens only
- vocab.special_tokens_cache[token] = id;
- // Count manually found special tokens
- special_tokens_count_from_verification++;
- // If this manually found special token is not marked as such, flag a mismatch
- if (vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_NORMAL) {
- special_tokens_definition_mismatch = true;
- }
- }
- }
- }
- }
- if (special_tokens_definition_mismatch || special_tokens_count_from_verification != special_tokens_count_by_type) {
- LLAMA_LOG_WARN("%s: mismatch in special tokens definition ( %u/%zu vs %u/%zu ).\n",
- __func__,
- special_tokens_count_from_verification, vocab.id_to_token.size(),
- special_tokens_count_by_type, vocab.id_to_token.size()
- );
- } else {
- LLAMA_LOG_INFO("%s: special tokens definition check successful ( %u/%zu ).\n",
- __func__,
- special_tokens_count_from_verification, vocab.id_to_token.size()
- );
- }
- }
- }
- static void llm_load_print_meta(llama_model_loader & ml, llama_model & model) {
- const auto & hparams = model.hparams;
- const auto & vocab = model.vocab;
- const char * rope_scaling_type = LLAMA_ROPE_SCALING_TYPES.at(hparams.rope_scaling_type_train);
- // hparams
- LLAMA_LOG_INFO("%s: format = %s\n", __func__, llama_file_version_name(ml.fver));
- LLAMA_LOG_INFO("%s: arch = %s\n", __func__, LLM_ARCH_NAMES.at(model.arch));
- LLAMA_LOG_INFO("%s: vocab type = %s\n", __func__, llama_model_vocab_type_name(vocab.type));
- LLAMA_LOG_INFO("%s: n_vocab = %u\n", __func__, hparams.n_vocab);
- LLAMA_LOG_INFO("%s: n_merges = %u\n", __func__, (int) vocab.bpe_ranks.size());
- LLAMA_LOG_INFO("%s: n_ctx_train = %u\n", __func__, hparams.n_ctx_train);
- LLAMA_LOG_INFO("%s: n_embd = %u\n", __func__, hparams.n_embd);
- LLAMA_LOG_INFO("%s: n_head = %u\n", __func__, hparams.n_head);
- LLAMA_LOG_INFO("%s: n_head_kv = %u\n", __func__, hparams.n_head_kv);
- LLAMA_LOG_INFO("%s: n_layer = %u\n", __func__, hparams.n_layer);
- LLAMA_LOG_INFO("%s: n_rot = %u\n", __func__, hparams.n_rot);
- LLAMA_LOG_INFO("%s: n_embd_head_k = %u\n", __func__, hparams.n_embd_head_k);
- LLAMA_LOG_INFO("%s: n_embd_head_v = %u\n", __func__, hparams.n_embd_head_v);
- LLAMA_LOG_INFO("%s: n_gqa = %u\n", __func__, hparams.n_gqa());
- LLAMA_LOG_INFO("%s: n_embd_k_gqa = %u\n", __func__, hparams.n_embd_k_gqa());
- LLAMA_LOG_INFO("%s: n_embd_v_gqa = %u\n", __func__, hparams.n_embd_v_gqa());
- LLAMA_LOG_INFO("%s: f_norm_eps = %.1e\n", __func__, hparams.f_norm_eps);
- LLAMA_LOG_INFO("%s: f_norm_rms_eps = %.1e\n", __func__, hparams.f_norm_rms_eps);
- LLAMA_LOG_INFO("%s: f_clamp_kqv = %.1e\n", __func__, hparams.f_clamp_kqv);
- LLAMA_LOG_INFO("%s: f_max_alibi_bias = %.1e\n", __func__, hparams.f_max_alibi_bias);
- LLAMA_LOG_INFO("%s: f_logit_scale = %.1e\n", __func__, hparams.f_logit_scale);
- LLAMA_LOG_INFO("%s: n_ff = %u\n", __func__, hparams.n_ff);
- LLAMA_LOG_INFO("%s: n_expert = %u\n", __func__, hparams.n_expert);
- LLAMA_LOG_INFO("%s: n_expert_used = %u\n", __func__, hparams.n_expert_used);
- LLAMA_LOG_INFO("%s: causal attn = %d\n", __func__, hparams.causal_attn);
- LLAMA_LOG_INFO("%s: pooling type = %d\n", __func__, hparams.pooling_type);
- LLAMA_LOG_INFO("%s: rope type = %d\n", __func__, hparams.rope_type);
- LLAMA_LOG_INFO("%s: rope scaling = %s\n", __func__, rope_scaling_type);
- LLAMA_LOG_INFO("%s: freq_base_train = %.1f\n", __func__, hparams.rope_freq_base_train);
- LLAMA_LOG_INFO("%s: freq_scale_train = %g\n", __func__, hparams.rope_freq_scale_train);
- LLAMA_LOG_INFO("%s: n_yarn_orig_ctx = %u\n", __func__, hparams.n_yarn_orig_ctx);
- LLAMA_LOG_INFO("%s: rope_finetuned = %s\n", __func__, hparams.rope_finetuned ? "yes" : "unknown");
- LLAMA_LOG_INFO("%s: ssm_d_conv = %u\n", __func__, hparams.ssm_d_conv);
- LLAMA_LOG_INFO("%s: ssm_d_inner = %u\n", __func__, hparams.ssm_d_inner);
- LLAMA_LOG_INFO("%s: ssm_d_state = %u\n", __func__, hparams.ssm_d_state);
- LLAMA_LOG_INFO("%s: ssm_dt_rank = %u\n", __func__, hparams.ssm_dt_rank);
- LLAMA_LOG_INFO("%s: model type = %s\n", __func__, llama_model_type_name(model.type));
- LLAMA_LOG_INFO("%s: model ftype = %s\n", __func__, llama_model_ftype_name(model.ftype).c_str());
- if (ml.n_elements >= 1e12) {
- LLAMA_LOG_INFO("%s: model params = %.2f T\n", __func__, ml.n_elements*1e-12);
- } else if (ml.n_elements >= 1e9) {
- LLAMA_LOG_INFO("%s: model params = %.2f B\n", __func__, ml.n_elements*1e-9);
- } else if (ml.n_elements >= 1e6) {
- LLAMA_LOG_INFO("%s: model params = %.2f M\n", __func__, ml.n_elements*1e-6);
- } else {
- LLAMA_LOG_INFO("%s: model params = %.2f K\n", __func__, ml.n_elements*1e-3);
- }
- if (ml.n_bytes < GiB) {
- LLAMA_LOG_INFO("%s: model size = %.2f MiB (%.2f BPW) \n", __func__, ml.n_bytes/1024.0/1024.0, ml.n_bytes*8.0/ml.n_elements);
- } else {
- LLAMA_LOG_INFO("%s: model size = %.2f GiB (%.2f BPW) \n", __func__, ml.n_bytes/1024.0/1024.0/1024.0, ml.n_bytes*8.0/ml.n_elements);
- }
- // general kv
- LLAMA_LOG_INFO("%s: general.name = %s\n", __func__, model.name.c_str());
- // special tokens
- if (vocab.special_bos_id != -1) { LLAMA_LOG_INFO( "%s: BOS token = %d '%s'\n", __func__, vocab.special_bos_id, vocab.id_to_token[vocab.special_bos_id].text.c_str() ); }
- if (vocab.special_eos_id != -1) { LLAMA_LOG_INFO( "%s: EOS token = %d '%s'\n", __func__, vocab.special_eos_id, vocab.id_to_token[vocab.special_eos_id].text.c_str() ); }
- if (vocab.special_unk_id != -1) { LLAMA_LOG_INFO( "%s: UNK token = %d '%s'\n", __func__, vocab.special_unk_id, vocab.id_to_token[vocab.special_unk_id].text.c_str() ); }
- if (vocab.special_sep_id != -1) { LLAMA_LOG_INFO( "%s: SEP token = %d '%s'\n", __func__, vocab.special_sep_id, vocab.id_to_token[vocab.special_sep_id].text.c_str() ); }
- if (vocab.special_pad_id != -1) { LLAMA_LOG_INFO( "%s: PAD token = %d '%s'\n", __func__, vocab.special_pad_id, vocab.id_to_token[vocab.special_pad_id].text.c_str() ); }
- if (vocab.special_cls_id != -1) { LLAMA_LOG_INFO( "%s: CLS token = %d '%s'\n", __func__, vocab.special_cls_id, vocab.id_to_token[vocab.special_cls_id].text.c_str() ); }
- if (vocab.special_mask_id != -1) { LLAMA_LOG_INFO( "%s: MASK token = %d '%s'\n", __func__, vocab.special_mask_id, vocab.id_to_token[vocab.special_mask_id].text.c_str() ); }
- if (vocab.linefeed_id != -1) { LLAMA_LOG_INFO( "%s: LF token = %d '%s'\n", __func__, vocab.linefeed_id, vocab.id_to_token[vocab.linefeed_id].text.c_str() ); }
- if (vocab.special_prefix_id != -1) { LLAMA_LOG_INFO( "%s: PRE token = %d '%s'\n", __func__, vocab.special_prefix_id, vocab.id_to_token[vocab.special_prefix_id].text.c_str() ); }
- if (vocab.special_suffix_id != -1) { LLAMA_LOG_INFO( "%s: SUF token = %d '%s'\n", __func__, vocab.special_suffix_id, vocab.id_to_token[vocab.special_suffix_id].text.c_str() ); }
- if (vocab.special_middle_id != -1) { LLAMA_LOG_INFO( "%s: MID token = %d '%s'\n", __func__, vocab.special_middle_id, vocab.id_to_token[vocab.special_middle_id].text.c_str() ); }
- if (vocab.special_eot_id != -1) { LLAMA_LOG_INFO( "%s: EOT token = %d '%s'\n", __func__, vocab.special_eot_id, vocab.id_to_token[vocab.special_eot_id].text.c_str() ); }
- }
- // Returns false if cancelled by progress_callback
- static bool llm_load_tensors(
- llama_model_loader & ml,
- llama_model & model,
- int n_gpu_layers,
- enum llama_split_mode split_mode,
- int main_gpu,
- const float * tensor_split,
- bool use_mlock,
- llama_progress_callback progress_callback,
- void * progress_callback_user_data) {
- model.t_start_us = ggml_time_us();
- auto & hparams = model.hparams;
- #ifdef GGML_USE_SYCL
- // disable MoE with SYCL until mul_mat_id is updated
- if (hparams.n_expert > 0) {
- n_gpu_layers = 0;
- }
- #endif
- model.split_mode = split_mode;
- model.main_gpu = main_gpu;
- model.n_gpu_layers = n_gpu_layers;
- const int64_t n_layer = hparams.n_layer;
- const int64_t i_gpu_start = std::max((int64_t) hparams.n_layer - n_gpu_layers, (int64_t) 0);
- bool use_mmap_buffer = true;
- // there is very little benefit to offloading the input layer, so always keep it on the CPU
- model.buft_input = llama_default_buffer_type_cpu(true);
- //model.buft_input = llama_default_buffer_type_offload(main_gpu);
- model.buft_layer.resize(n_layer);
- // assign cpu layers
- for (int64_t i = 0; i < i_gpu_start; ++i) {
- model.buft_layer[i] = llama_default_buffer_type_cpu(true);
- }
- if (split_mode == LLAMA_SPLIT_MODE_LAYER) {
- // calculate the split points
- int device_count = llama_get_device_count(model);
- bool all_zero = tensor_split == nullptr || std::all_of(tensor_split, tensor_split + device_count, [](float x) { return x == 0.0f; });
- std::vector<float> splits(device_count);
- if (all_zero) {
- // default split, by free memory
- for (int i = 0; i < device_count; ++i) {
- splits[i] = llama_get_device_memory(model, i);
- }
- } else {
- std::copy(tensor_split, tensor_split + device_count, splits.begin());
- }
- // sum and normalize the splits to get the split points
- float split_sum = 0.0f;
- for (int i = 0; i < device_count; ++i) {
- split_sum += splits[i];
- splits[i] = split_sum;
- }
- for (int i = 0; i < device_count; ++i) {
- splits[i] /= split_sum;
- }
- // assign the repeating layers to the devices according to the splits
- int act_gpu_layers = std::min(n_gpu_layers, (int)n_layer + 1);
- for (int64_t i = i_gpu_start; i < n_layer; ++i) {
- int layer_gpu = std::upper_bound(splits.begin(), splits.begin() + device_count, float(i - i_gpu_start)/act_gpu_layers) - splits.begin();
- model.buft_layer[i] = llama_default_buffer_type_offload(model, layer_gpu);
- }
- // assign the output layer
- if (n_gpu_layers > n_layer) {
- int layer_gpu = std::upper_bound(splits.begin(), splits.begin() + device_count, float(act_gpu_layers - 1)/act_gpu_layers) - splits.begin();
- model.buft_output = llama_default_buffer_type_offload(model, layer_gpu);
- } else {
- model.buft_output = llama_default_buffer_type_cpu(true);
- }
- } else {
- ggml_backend_buffer_type_t split_buft;
- if (split_mode == LLAMA_SPLIT_MODE_ROW) {
- split_buft = llama_default_buffer_type_split(model, main_gpu, tensor_split);
- } else {
- // LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_LAYER in backends where it is not supported
- split_buft = llama_default_buffer_type_offload(model, main_gpu);
- }
- // assign the repeating layers
- for (int64_t i = i_gpu_start; i < n_layer; ++i) {
- model.buft_layer[i] = {
- split_buft,
- llama_default_buffer_type_offload(model, main_gpu)
- };
- }
- // assign the output layer
- if (n_gpu_layers > n_layer) {
- model.buft_output = {
- split_buft,
- llama_default_buffer_type_offload(model, main_gpu)
- };
- } else {
- model.buft_output = llama_default_buffer_type_cpu(true);
- }
- }
- // count used buffer types
- std::map<ggml_backend_buffer_type_t, int> buft_layer_count;
- buft_layer_count[model.buft_input.buft]++;
- buft_layer_count[model.buft_input.buft_matrix]++;
- buft_layer_count[model.buft_output.buft]++;
- buft_layer_count[model.buft_output.buft_matrix]++;
- for (int64_t i = 0; i < n_layer; ++i) {
- buft_layer_count[model.buft_layer[i].buft]++;
- buft_layer_count[model.buft_layer[i].buft_matrix]++;
- }
- // create one context per buffer type
- size_t ctx_size = ggml_tensor_overhead()*(ml.n_tensors + 1); // +1 for models where tok_embd is duplicated as output
- // for moe merged tensors
- ctx_size += ggml_tensor_overhead()*n_layer*3;
- std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
- for (auto & it : buft_layer_count) {
- struct ggml_init_params params = {
- /*.mem_size =*/ ctx_size,
- /*.mem_buffer =*/ NULL,
- /*.no_alloc =*/ true,
- };
- ggml_context * ctx = ggml_init(params);
- if (!ctx) {
- throw std::runtime_error(format("failed to create context"));
- }
- ctx_map[it.first] = ctx;
- model.ctxs.push_back(ctx);
- }
- LLAMA_LOG_INFO("%s: ggml ctx size = %7.2f MiB\n", __func__, model.ctxs.size()*ctx_size/1024.0/1024.0);
- // create tensors for the weights
- {
- const int64_t n_embd = hparams.n_embd;
- const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
- const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
- const int64_t n_embd_gqa = n_embd_v_gqa;
- const int64_t n_vocab = hparams.n_vocab;
- const int64_t n_vocab_type = hparams.n_vocab_type;
- const int64_t n_ff = hparams.n_ff;
- const int64_t n_expert = hparams.n_expert;
- if (n_expert > 0 && hparams.n_expert_used == 0) {
- throw std::runtime_error("model has expert layers but no expert layers are used");
- }
- GGML_ASSERT(n_embd_gqa == n_embd_k_gqa);
- ggml_context * ctx_input = ctx_map.at(model.buft_input.buft);
- ggml_context * ctx_output = ctx_map.at(model.buft_output.buft);
- ggml_context * ctx_output_split = ctx_map.at(model.buft_output.buft_matrix);
- auto ctx_for_layer = [&](int i) { return ctx_map.at(model.buft_layer[i].buft); };
- auto ctx_for_layer_split = [&](int i) { return ctx_map.at(model.buft_layer[i].buft_matrix); };
- model.layers.resize(n_layer);
- const auto tn = LLM_TN(model.arch);
- switch (model.arch) {
- case LLM_ARCH_LLAMA:
- case LLM_ARCH_REFACT:
- case LLM_ARCH_MINICPM:
- {
- model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
- // output
- {
- model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
- if (model.arch != LLM_ARCH_MINICPM){
- model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false);
- // if output is NULL, init from the input tok embed
- if (model.output == NULL) {
- model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
- ml.n_created--; // artificial tensor
- ml.size_data += ggml_nbytes(model.output);
- }
- }
- }
- for (int i = 0; i < n_layer; ++i) {
- ggml_context * ctx_layer = ctx_for_layer(i);
- ggml_context * ctx_split = ctx_for_layer_split(i);
- auto & layer = model.layers[i];
- layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
- layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
- layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
- layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
- layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
- // optional bias tensors
- layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, false);
- layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, false);
- layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, false);
- layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, false);
- layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
- if (n_expert == 0) {
- layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
- layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
- layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
- } else {
- layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
- layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, false);
- if (layer.ffn_gate_exps) {
- layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert});
- layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert});
- } else {
- // merge split expert into a single tensor for compatibility with older models
- // requires disabling mmap
- use_mmap_buffer = false;
- ggml_type type_gate = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, 0).c_str())->type;
- ggml_type type_down = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, 0).c_str())->type;
- ggml_type type_up = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, 0).c_str())->type;
- layer.ffn_gate_exps = ggml_new_tensor_3d(ctx_split, type_gate, n_embd, n_ff, n_expert);
- layer.ffn_down_exps = ggml_new_tensor_3d(ctx_split, type_down, n_ff, n_embd, n_expert);
- layer.ffn_up_exps = ggml_new_tensor_3d(ctx_split, type_up, n_embd, n_ff, n_expert);
- ggml_set_name(layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i).c_str());
- ggml_set_name(layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i).c_str());
- ggml_set_name(layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i).c_str());
- for (uint32_t x = 0; x < n_expert; ++x) {
- // the individual experts are loaded into a view of the merged tensor
- ml.create_tensor_as_view(ctx_split, layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_gate_exps->nb[2]*x);
- ml.create_tensor_as_view(ctx_split, layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, x), { n_ff, n_embd }, layer.ffn_down_exps->nb[2]*x);
- ml.create_tensor_as_view(ctx_split, layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_up_exps->nb[2]*x);
- }
- }
- }
- }
- } break;
- case LLM_ARCH_GROK:
- {
- if (n_expert == 0) {
- throw std::runtime_error("Grok model cannot have zero experts");
- }
- model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
- // output
- {
- model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
- model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false);
- // if output is NULL, init from the input tok embed
- if (model.output == NULL) {
- model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
- ml.n_created--; // artificial tensor
- ml.size_data += ggml_nbytes(model.output);
- }
- }
- for (int i = 0; i < n_layer; ++i) {
- ggml_context * ctx_layer = ctx_for_layer(i);
- ggml_context * ctx_split = ctx_for_layer_split(i);
- auto & layer = model.layers[i];
- layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
- layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
- layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
- layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
- layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
- layer.attn_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd});
- layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
- layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
- layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, false);
- if (layer.ffn_gate_exps) {
- layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert});
- layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert});
- } else {
- // merge split expert into a single tensor for compatibility with older models
- // requires disabling mmap
- use_mmap_buffer = false;
- ggml_type type_gate = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, 0).c_str())->type;
- ggml_type type_down = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, 0).c_str())->type;
- ggml_type type_up = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, 0).c_str())->type;
- layer.ffn_gate_exps = ggml_new_tensor_3d(ctx_split, type_gate, n_embd, n_ff, n_expert);
- layer.ffn_down_exps = ggml_new_tensor_3d(ctx_split, type_down, n_ff, n_embd, n_expert);
- layer.ffn_up_exps = ggml_new_tensor_3d(ctx_split, type_up, n_embd, n_ff, n_expert);
- ggml_set_name(layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i).c_str());
- ggml_set_name(layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i).c_str());
- ggml_set_name(layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i).c_str());
- for (uint32_t x = 0; x < n_expert; ++x) {
- // the individual experts are loaded into a view of the merged tensor
- ml.create_tensor_as_view(ctx_split, layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_gate_exps->nb[2]*x);
- ml.create_tensor_as_view(ctx_split, layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, x), { n_ff, n_embd }, layer.ffn_down_exps->nb[2]*x);
- ml.create_tensor_as_view(ctx_split, layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_up_exps->nb[2]*x);
- }
- }
- layer.layer_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd});
- }
- } break;
- case LLM_ARCH_DBRX:
- {
- if (n_expert == 0) {
- throw std::runtime_error("DBRX model cannot have zero experts");
- }
- model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
- // output
- {
- model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
- model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
- }
- for (int i = 0; i < n_layer; ++i) {
- ggml_context * ctx_layer = ctx_for_layer(i);
- ggml_context * ctx_split = ctx_for_layer_split(i);
- auto & layer = model.layers[i];
- layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
- layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
- layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
- layer.attn_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd});
- layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
- layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert});
- layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff, n_embd, n_expert});
- layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert});
- }
- } break;
- case LLM_ARCH_BAICHUAN:
- {
- model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
- {
- model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
- model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
- }
- for (int i = 0; i < n_layer; ++i) {
- ggml_context * ctx_layer = ctx_for_layer(i);
- ggml_context * ctx_split = ctx_for_layer_split(i);
- auto & layer = model.layers[i];
- layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
- layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
- layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
- layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
- layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
- layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
- layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
- layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
- layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
- }
- } break;
- case LLM_ARCH_FALCON:
- {
- model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
- // output
- {
- model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
- model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
- model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false);
- if (!model.output) {
- model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); // needs to be on GPU
- ml.n_created--; // artificial tensor
- ml.size_data += ggml_nbytes(model.output);
- }
- }
- for (int i = 0; i < n_layer; ++i) {
- ggml_context * ctx_layer = ctx_for_layer(i);
- ggml_context * ctx_split = ctx_for_layer_split(i);
- auto & layer = model.layers[i];
- layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
- layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
- layer.attn_norm_2 = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, false);
- layer.attn_norm_2_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, false);
- layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
- layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
- layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
- layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
- }
- } break;
- case LLM_ARCH_STARCODER:
- {
- model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
- model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train});
- // output
- {
- model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
- model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
- model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false);
- if (!model.output) {
- // needs to be on GPU
- model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
- ml.n_created--; // artificial tensor
- ml.size_data += ggml_nbytes(model.output);
- }
- }
- for (int i = 0; i < n_layer; ++i) {
- ggml_context * ctx_layer = ctx_for_layer(i);
- ggml_context * ctx_split = ctx_for_layer_split(i);
- auto & layer = model.layers[i];
- layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
- layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
- layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
- layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
- layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
- layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
- layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
- layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
- layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
- layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
- layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
- layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
- }
- } break;
- case LLM_ARCH_PERSIMMON:
- {
- model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
- {
- model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
- model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
- model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
- }
- for (int i = 0; i < n_layer; ++i) {
- ggml_context * ctx_layer = ctx_for_layer(i);
- ggml_context * ctx_split = ctx_for_layer_split(i);
- auto & layer = model.layers[i];
- layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
- layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
- layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
- layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
- layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
- layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
- layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
- layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
- layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
- layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
- layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
- layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
- layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {64});
- layer.attn_q_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {64});
- layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {64});
- layer.attn_k_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {64});
- }
- } break;
- case LLM_ARCH_BERT:
- case LLM_ARCH_NOMIC_BERT:
- {
- model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
- model.type_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_TYPES, "weight"), {n_embd, n_vocab_type});
- if (model.arch == LLM_ARCH_BERT) {
- model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train});
- }
- model.tok_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd});
- model.tok_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd});
- for (int i = 0; i < n_layer; ++i) {
- ggml_context * ctx_layer = ctx_for_layer(i);
- ggml_context * ctx_split = ctx_for_layer_split(i);
- auto & layer = model.layers[i];
- if (model.arch == LLM_ARCH_BERT) {
- layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
- layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
- layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
- layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
- layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
- layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
- } else {
- layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
- }
- layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
- layer.attn_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd});
- layer.attn_out_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "bias", i), {n_embd});
- layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
- layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
- if (model.arch == LLM_ARCH_BERT) {
- layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
- layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
- layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
- } else {
- layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
- }
- layer.layer_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd});
- layer.layer_out_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "bias", i), {n_embd});
- }
- } break;
- case LLM_ARCH_JINA_BERT_V2:
- {
- model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); // word_embeddings
- model.type_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_TYPES, "weight"), {n_embd, n_vocab_type}); //token_type_embeddings
- model.tok_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}); // LayerNorm
- model.tok_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}); //LayerNorm bias
- for (int i = 0; i < n_layer; ++i) {
- ggml_context * ctx_layer = ctx_for_layer(i);
- ggml_context * ctx_split = ctx_for_layer_split(i);
- auto & layer = model.layers[i]; // JinaBertLayer
- layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
- layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
- layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, false);
- layer.attn_q_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {n_embd}, false);
- layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
- layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
- layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, false);
- layer.attn_k_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {n_embd}, false);
- layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
- layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
- layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); //output_dens
- layer.bo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}); //output_dens
- layer.attn_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd}); //output_norm
- layer.attn_out_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "bias", i), {n_embd});
- layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
- layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
- layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
- layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
- layer.layer_out_norm = ml.create_tensor(ctx_split, tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd});
- layer.layer_out_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "bias", i), {n_embd});
- }
- } break;
- case LLM_ARCH_BLOOM:
- {
- model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
- model.tok_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd});
- model.tok_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd});
- // output
- {
- model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
- model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
- model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
- }
- for (int i = 0; i < n_layer; ++i) {
- ggml_context * ctx_layer = ctx_for_layer(i);
- ggml_context * ctx_split = ctx_for_layer_split(i);
- auto & layer = model.layers[i];
- layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
- layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
- layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
- layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
- layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
- layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
- layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
- layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
- layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
- layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
- layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
- layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
- }
- } break;
- case LLM_ARCH_MPT:
- {
- model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
- model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train}, false);
- // output
- {
- model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
- model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, false);
- model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false);
- if (!model.output) {
- model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); // needs to be on GPU
- ml.n_created--; // artificial tensor
- ml.size_data += ggml_nbytes(model.output);
- }
- }
- for (int i = 0; i < n_layer; ++i) {
- ggml_context * ctx_layer = ctx_for_layer(i);
- ggml_context * ctx_split = ctx_for_layer_split(i);
- auto & layer = model.layers[i];
- layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
- layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, false);
- layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
- layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, false);
- layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
- layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, false);
- layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
- layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, false);
- layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
- layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, false);
- layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
- layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, false);
- layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, false);
- layer.attn_q_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {n_embd}, false);
- layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, false);
- layer.attn_k_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {n_embd}, false);
- // AWQ ScaleActivation layer
- layer.ffn_act = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_ACT, "scales", i), {n_ff}, false);
- }
- } break;
- case LLM_ARCH_STABLELM:
- {
- model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
- // output
- {
- model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
- model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
- model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
- }
- for (int i = 0; i < n_layer; ++i) {
- ggml_context * ctx_layer = ctx_for_layer(i);
- ggml_context * ctx_split = ctx_for_layer_split(i);
- auto & layer = model.layers[i];
- layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
- layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
- layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
- layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
- layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
- layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
- // optional bias tensors, present in Stable LM 2 1.6B
- layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, false);
- layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, false);
- layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, false);
- // optional q and k layernorms, present in StableLM 2 12B
- layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {hparams.n_embd_head_k, hparams.n_head}, false);
- layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {hparams.n_embd_head_k, hparams.n_head_kv}, false);
- // optional FFN norm, not present in StableLM 2 12B which uses parallel residual
- layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, false);
- layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, false);
- layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
- layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
- layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
- }
- } break;
- case LLM_ARCH_QWEN:
- {
- model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
- // output
- {
- model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
- model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
- }
- for (int i = 0; i < n_layer; ++i) {
- ggml_context * ctx_layer = ctx_for_layer(i);
- ggml_context * ctx_split = ctx_for_layer_split(i);
- auto & layer = model.layers[i];
- layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
- layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd*3});
- layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd*3});
- layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
- layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
- layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff/2});
- layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff/2, n_embd});
- layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff/2});
- }
- } break;
- case LLM_ARCH_QWEN2:
- {
- model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
- // output
- {
- model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
- model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false);
- // if output is NULL, init from the input tok embed
- if (model.output == NULL) {
- model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
- ml.n_created--; // artificial tensor
- ml.size_data += ggml_nbytes(model.output);
- }
- }
- for (int i = 0; i < n_layer; ++i) {
- ggml_context * ctx_layer = ctx_for_layer(i);
- ggml_context * ctx_split = ctx_for_layer_split(i);
- auto & layer = model.layers[i];
- layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
- layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
- layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
- layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
- layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
- // optional bias tensors
- layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
- layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
- layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
- layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
- layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
- layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
- layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
- }
- } break;
- case LLM_ARCH_QWEN2MOE:
- {
- model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
- // output
- {
- model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
- model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
- }
- for (int i = 0; i < n_layer; ++i) {
- ggml_context * ctx_layer = ctx_for_layer(i);
- ggml_context * ctx_split = ctx_for_layer_split(i);
- auto & layer = model.layers[i];
- layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
- layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
- layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
- layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
- layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
- // optional bias tensors
- layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
- layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
- layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
- layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
- layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
- GGML_ASSERT(hparams.n_expert > 0);
- GGML_ASSERT(hparams.n_expert_used > 0);
- // MoE branch
- auto n_ff_exp = n_ff / hparams.n_expert_used;
- layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert});
- layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert});
- layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert});
- // Shared expert branch
- layer.ffn_gate_inp_shexp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP_SHEXP, "weight", i), {n_embd});
- layer.ffn_gate_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff});
- layer.ffn_down_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), { n_ff, n_embd});
- layer.ffn_up_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff});
- }
- } break;
- case LLM_ARCH_PHI2:
- {
- model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
- // output
- {
- model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
- model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
- model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
- model.output_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT, "bias"), {n_vocab});
- }
- for (int i = 0; i < n_layer; ++i) {
- ggml_context * ctx_layer = ctx_for_layer(i);
- ggml_context * ctx_split = ctx_for_layer_split(i);
- auto & layer = model.layers[i];
- layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
- layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
- layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, false);
- layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, false);
- if (layer.wqkv == nullptr) {
- layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
- layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
- layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
- layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
- layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
- layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
- }
- layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
- layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
- layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
- layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
- layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
- layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
- }
- } break;
- case LLM_ARCH_PHI3:
- {
- model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab });
- // output
- {
- model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd });
- model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), { n_embd, n_vocab });
- }
- for (int i = 0; i < n_layer; ++i) {
- ggml_context* ctx_layer = ctx_for_layer(i);
- ggml_context* ctx_split = ctx_for_layer_split(i);
- auto& layer = model.layers[i];
- layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd });
- layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), { n_embd, n_embd + 2 * n_embd_gqa }, false);
- layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd, n_embd });
- layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), { n_embd });
- layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd });
- layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), { n_embd, 2 * n_ff });
- }
- } break;
- case LLM_ARCH_PLAMO:
- {
- model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
- // output
- {
- model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
- model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
- }
- for (int i = 0; i < n_layer; ++i) {
- ggml_context * ctx_layer = ctx_for_layer(i);
- ggml_context * ctx_split = ctx_for_layer_split(i);
- auto & layer = model.layers[i];
- layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
- layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
- layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
- layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
- layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
- layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
- layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
- layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
- }
- } break;
- case LLM_ARCH_GPT2:
- {
- model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
- model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train});
- // output
- {
- model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
- model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
- model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
- }
- for (int i = 0; i < n_layer; ++i) {
- ggml_context * ctx_layer = ctx_for_layer(i);
- ggml_context * ctx_split = ctx_for_layer_split(i);
- auto & layer = model.layers[i];
- layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
- layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
- layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
- layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
- layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
- layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
- layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
- layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
- layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
- layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
- layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
- layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
- }
- } break;
- case LLM_ARCH_CODESHELL:
- {
- model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
- // output
- {
- model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
- model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
- model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
- }
- for (int i = 0; i < n_layer; ++i) {
- ggml_context * ctx_layer = ctx_for_layer(i);
- ggml_context * ctx_split = ctx_for_layer_split(i);
- auto & layer = model.layers[i];
- layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
- layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
- layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
- layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
- layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
- layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
- layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
- layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
- layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
- layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
- layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
- layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
- }
- } break;
- case LLM_ARCH_ORION:
- {
- model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
- {
- model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
- model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
- model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
- }
- for (int i = 0; i < n_layer; ++i) {
- ggml_context * ctx_layer = ctx_for_layer(i);
- ggml_context * ctx_split = ctx_for_layer_split(i);
- auto & layer = model.layers[i];
- layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
- layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
- layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
- layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
- layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
- layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
- layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
- layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
- layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
- layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
- layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
- }
- } break;
- case LLM_ARCH_INTERNLM2:
- {
- model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
- // output
- {
- model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
- model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
- }
- for (int i = 0; i < n_layer; ++i) {
- ggml_context * ctx_layer = ctx_for_layer(i);
- ggml_context * ctx_split = ctx_for_layer_split(i);
- auto & layer = model.layers[i];
- layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
- // layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
- layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
- layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
- layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
- layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
- layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
- layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
- layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
- layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
- }
- } break;
- case LLM_ARCH_GEMMA:
- {
- model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
- // output
- model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
- model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); // same as tok_embd, duplicated to allow offloading
- ml.n_created--; // artificial tensor
- ml.size_data += ggml_nbytes(model.output);
- const int64_t n_ff = hparams.n_ff;
- const int64_t n_embd_head_k = hparams.n_embd_head_k;
- const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
- const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
- for (uint32_t i = 0; i < n_layer; ++i) {
- ggml_context * ctx_layer = ctx_for_layer(i);
- ggml_context * ctx_split = ctx_for_layer_split(i);
- auto & layer = model.layers[i];
- layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
- layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * hparams.n_head});
- layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa});
- layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa});
- layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * hparams.n_head, n_embd});
- layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
- layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
- layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
- layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
- }
- } break;
- case LLM_ARCH_STARCODER2:
- {
- model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
- // output
- {
- model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
- model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
- model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false);
- // if output is NULL, init from the input tok embed
- if (model.output == NULL) {
- model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
- ml.n_created--; // artificial tensor
- ml.size_data += ggml_nbytes(model.output);
- }
- }
- for (int i = 0; i < n_layer; ++i) {
- ggml_context * ctx_layer = ctx_for_layer(i);
- ggml_context * ctx_split = ctx_for_layer_split(i);
- auto & layer = model.layers[i];
- layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
- layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
- layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
- layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
- layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
- layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
- // optional bias tensors
- layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
- layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
- layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
- layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
- layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
- layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
- layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
- layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
- // optional bias tensors
- layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
- layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP , "bias", i), { n_ff});
- }
- } break;
- case LLM_ARCH_MAMBA:
- {
- const int64_t d_conv = hparams.ssm_d_conv;
- const int64_t d_inner = hparams.ssm_d_inner;
- const int64_t d_state = hparams.ssm_d_state;
- const int64_t dt_rank = hparams.ssm_dt_rank;
- // only an expansion factor of 2 is supported for now
- GGML_ASSERT(2 * n_embd == d_inner);
- model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
- // output
- {
- model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
- model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false);
- // if output is NULL, init from the input tok embed, duplicated to allow offloading
- if (model.output == NULL) {
- model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
- ml.n_created--; // artificial tensor
- ml.size_data += ggml_nbytes(model.output);
- }
- }
- for (int i = 0; i < n_layer; ++i) {
- ggml_context * ctx_layer = ctx_for_layer(i);
- ggml_context * ctx_split = ctx_for_layer_split(i);
- auto & layer = model.layers[i];
- // norm
- layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
- layer.ssm_in = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_IN, "weight", i), {n_embd, 2*d_inner});
- layer.ssm_conv1d = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_CONV1D, "weight", i), {d_conv, d_inner});
- layer.ssm_conv1d_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_SSM_CONV1D, "bias", i), {d_inner});
- layer.ssm_x = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_X, "weight", i), {d_inner, dt_rank + 2*d_state});
- layer.ssm_dt = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_DT, "weight", i), {dt_rank, d_inner});
- layer.ssm_dt_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_SSM_DT, "bias", i), {d_inner});
- // no "weight" suffix for these
- layer.ssm_a = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_A, i), {d_state, d_inner});
- layer.ssm_d = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_SSM_D, i), {d_inner});
- // out_proj
- layer.ssm_out = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_OUT, "weight", i), {d_inner, n_embd});
- }
- } break;
- case LLM_ARCH_XVERSE:
- {
- model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
- {
- model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
- model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
- }
- for (int i = 0; i < n_layer; ++i) {
- ggml_context * ctx_layer = ctx_for_layer(i);
- ggml_context * ctx_split = ctx_for_layer_split(i);
- auto & layer = model.layers[i];
- layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
- layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
- layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
- layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
- layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
- layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
- layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
- layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
- layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
- }
- } break;
- case LLM_ARCH_COMMAND_R:
- {
- model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
- // output
- {
- model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
- // init output from the input tok embed
- model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
- ml.n_created--; // artificial tensor
- ml.size_data += ggml_nbytes(model.output);
- }
- for (int i = 0; i < n_layer; ++i) {
- ggml_context * ctx_layer = ctx_for_layer(i);
- ggml_context * ctx_split = ctx_for_layer_split(i);
- auto & layer = model.layers[i];
- layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
- if (n_layer >= 64){
- layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {hparams.n_embd_head_k, hparams.n_head});
- layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {hparams.n_embd_head_k, hparams.n_head_kv});
- }
- layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
- layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
- layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
- layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
- layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
- layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
- layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
- }
- } break;
- case LLM_ARCH_OLMO: // adapted from LLM_ARCH_LLAMA with norm params removed
- {
- model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
- // output
- {
- model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false);
- // if output is NULL, init from the input tok embed
- if (model.output == NULL) {
- model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
- ml.n_created--; // artificial tensor
- ml.size_data += ggml_nbytes(model.output);
- }
- }
- for (int i = 0; i < n_layer; ++i) {
- ggml_context * ctx_split = ctx_for_layer_split(i);
- auto & layer = model.layers[i];
- layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
- layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
- layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
- layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
- layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
- layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
- layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
- }
- } break;
- default:
- throw std::runtime_error("unknown architecture");
- }
- }
- ml.done_getting_tensors();
- ml.init_mappings(true, use_mlock ? &model.mlock_mmaps : nullptr);
- model.mappings.reserve(ml.mappings.size());
- // create the backend buffers
- std::vector<std::pair<ggml_context *, llama_buf_map>> ctx_bufs;
- ctx_bufs.reserve(ctx_map.size());
- // Ensure we have enough capacity for the maximum backend buffer we will potentially create
- size_t n_max_backend_buffer = ctx_map.size() * ml.files.size();
- model.bufs.reserve(n_max_backend_buffer);
- for (auto & it : ctx_map) {
- ggml_backend_buffer_type_t buft = it.first;
- ggml_context * ctx = it.second;
- llama_buf_map bufs;
- bufs.reserve(n_max_backend_buffer);
- // only the mmap region containing the tensors in the model is mapped to the backend buffer
- // this is important for metal with apple silicon: if the entire model could be mapped to a metal buffer, then we could just use metal for all layers
- // this allows using partial offloading when the model size exceeds the metal buffer size, but not the RAM size
- if (ml.use_mmap && use_mmap_buffer && buft == llama_default_buffer_type_cpu(true)) {
- for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
- void * addr = nullptr;
- size_t first, last;
- ml.get_mapping_range(&first, &last, &addr, idx, ctx);
- if (first >= last) {
- continue;
- }
- ggml_backend_buffer_t buf = ggml_backend_cpu_buffer_from_ptr((char *) addr + first, last - first);
- if (buf == nullptr) {
- throw std::runtime_error("unable to allocate backend CPU buffer");
- }
- model.bufs.push_back(buf);
- bufs.emplace(idx, buf);
- #ifdef GGML_USE_CUDA
- if (n_layer >= n_gpu_layers) {
- ggml_backend_cuda_register_host_buffer(
- ggml_backend_buffer_get_base(buf),
- ggml_backend_buffer_get_size(buf));
- }
- #endif
- }
- }
- #ifdef GGML_USE_METAL
- else if (ml.use_mmap && use_mmap_buffer && buft == ggml_backend_metal_buffer_type()) {
- for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
- const size_t max_size = ggml_get_max_tensor_size(ctx);
- void * addr = nullptr;
- size_t first, last;
- ml.get_mapping_range(&first, &last, &addr, idx, ctx);
- if (first >= last) {
- continue;
- }
- ggml_backend_buffer_t buf = ggml_backend_metal_buffer_from_ptr((char *) addr + first, last - first, max_size);
- if (buf == nullptr) {
- throw std::runtime_error("unable to allocate backend metal buffer");
- }
- model.bufs.push_back(buf);
- bufs.emplace(idx, buf);
- }
- }
- #endif
- else {
- ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
- if (buf == nullptr) {
- throw std::runtime_error("unable to allocate backend buffer");
- }
- model.bufs.push_back(buf);
- if (use_mlock && ggml_backend_buffer_is_host(buf)) {
- model.mlock_bufs.emplace_back(new llama_mlock);
- auto & mlock_buf = model.mlock_bufs.back();
- mlock_buf->init (ggml_backend_buffer_get_base(buf));
- mlock_buf->grow_to(ggml_backend_buffer_get_size(buf));
- }
- for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
- bufs.emplace(idx, buf);
- }
- }
- if (bufs.empty()) {
- throw std::runtime_error("failed to allocate buffer");
- }
- for (auto & buf : bufs) {
- // indicate that this buffer contains weights
- // this is used by ggml_backend_sched to improve op scheduling -> ops that use a weight are preferably scheduled to the backend that contains the weight
- ggml_backend_buffer_set_usage(buf.second, GGML_BACKEND_BUFFER_USAGE_WEIGHTS);
- }
- ctx_bufs.emplace_back(ctx, bufs);
- }
- if (llama_supports_gpu_offload()) {
- const int n_gpu = std::min(n_gpu_layers, int(hparams.n_layer));
- LLAMA_LOG_INFO("%s: offloading %d repeating layers to GPU\n", __func__, n_gpu);
- if (n_gpu_layers > (int) hparams.n_layer) {
- LLAMA_LOG_INFO("%s: offloading non-repeating layers to GPU\n", __func__);
- }
- const int max_backend_supported_layers = hparams.n_layer + 1;
- const int max_offloadable_layers = hparams.n_layer + 1;
- LLAMA_LOG_INFO("%s: offloaded %d/%d layers to GPU\n", __func__, std::min(n_gpu_layers, max_offloadable_layers), max_backend_supported_layers);
- }
- // print memory requirements
- for (ggml_backend_buffer_t buf : model.bufs) {
- LLAMA_LOG_INFO("%s: %10s buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf), ggml_backend_buffer_get_size(buf) / 1024.0 / 1024.0);
- }
- // populate tensors_by_name
- for (ggml_context * ctx : model.ctxs) {
- for (auto * cur = ggml_get_first_tensor(ctx); cur != NULL; cur = ggml_get_next_tensor(ctx, cur)) {
- model.tensors_by_name.emplace_back(ggml_get_name(cur), cur);
- }
- }
- // load tensor data
- for (auto & it : ctx_bufs) {
- ggml_context * ctx = it.first;
- auto & bufs = it.second;
- if (!ml.load_all_data(ctx, bufs, use_mlock ? &model.mlock_mmaps : NULL, progress_callback, progress_callback_user_data)) {
- return false;
- }
- }
- if (use_mmap_buffer) {
- for (auto & mapping : ml.mappings) {
- model.mappings.emplace_back(std::move(mapping));
- }
- }
- // loading time will be recalculate after the first eval, so
- // we take page faults deferred by mmap() into consideration
- model.t_load_us = ggml_time_us() - model.t_start_us;
- return true;
- }
- // Returns 0 on success, -1 on error, and -2 on cancellation via llama_progress_callback
- static int llama_model_load(const std::string & fname, llama_model & model, llama_model_params & params) {
- try {
- llama_model_loader ml(fname, params.use_mmap, params.check_tensors, params.kv_overrides);
- model.hparams.vocab_only = params.vocab_only;
- try {
- llm_load_arch(ml, model);
- } catch(const std::exception & e) {
- throw std::runtime_error("error loading model architecture: " + std::string(e.what()));
- }
- try {
- llm_load_hparams(ml, model);
- } catch(const std::exception & e) {
- throw std::runtime_error("error loading model hyperparameters: " + std::string(e.what()));
- }
- try {
- llm_load_vocab(ml, model);
- } catch(const std::exception & e) {
- throw std::runtime_error("error loading model vocabulary: " + std::string(e.what()));
- }
- llm_load_print_meta(ml, model);
- if (model.vocab.type != LLAMA_VOCAB_TYPE_NONE &&
- model.hparams.n_vocab != model.vocab.id_to_token.size()) {
- throw std::runtime_error("vocab size mismatch");
- }
- if (params.vocab_only) {
- LLAMA_LOG_INFO("%s: vocab only - skipping tensors\n", __func__);
- return 0;
- }
- #ifdef GGML_USE_KOMPUTE
- if (params.n_gpu_layers > 0 && (
- !(model.arch == LLM_ARCH_LLAMA || model.arch == LLM_ARCH_FALCON)
- || !(
- model.ftype == LLAMA_FTYPE_ALL_F32 ||
- model.ftype == LLAMA_FTYPE_MOSTLY_F16 ||
- model.ftype == LLAMA_FTYPE_MOSTLY_BF16 ||
- model.ftype == LLAMA_FTYPE_MOSTLY_Q4_0 ||
- model.ftype == LLAMA_FTYPE_MOSTLY_Q4_1
- )
- )) {
- // TODO(cebtenzzre): propagate this error outside of llama_load_model_from_file
- LLAMA_LOG_WARN("%s: disabling Kompute due to unsupported model arch or quantization\n", __func__);
- params.n_gpu_layers = 0;
- }
- #endif
- #ifdef GGML_USE_SYCL
- if (params.split_mode == LLAMA_SPLIT_MODE_NONE) {
- ggml_backend_sycl_set_single_device_mode(params.main_gpu);
- //SYCL use device index (0, 1, 2) directly, uer input device id, then convert to device index.
- params.main_gpu = ggml_backend_sycl_get_device_index(params.main_gpu);
- } else {
- ggml_backend_sycl_set_mul_device_mode();
- }
- #endif
- if (!llm_load_tensors(
- ml, model, params.n_gpu_layers, params.split_mode, params.main_gpu, params.tensor_split, params.use_mlock,
- params.progress_callback, params.progress_callback_user_data
- )) {
- return -2;
- }
- } catch (const std::exception & err) {
- LLAMA_LOG_ERROR("%s: error loading model: %s\n", __func__, err.what());
- return -1;
- }
- return 0;
- }
- //
- // llm_build
- //
- using llm_build_cb = std::function<void(struct ggml_tensor * cur, const char * name, int nl)>;
- enum llm_ffn_op_type {
- LLM_FFN_SILU,
- LLM_FFN_GELU,
- LLM_FFN_RELU,
- LLM_FFN_RELU_SQR,
- };
- enum llm_ffn_gate_type {
- LLM_FFN_SEQ,
- LLM_FFN_PAR, // ffn_gate is parallel to ffn_up
- };
- enum llm_norm_type {
- LLM_NORM,
- LLM_NORM_RMS,
- };
- static struct ggml_tensor * llm_build_inp_embd(
- struct ggml_context * ctx,
- struct llama_context & lctx,
- const llama_hparams & hparams,
- const llama_batch & batch,
- struct ggml_tensor * tok_embd,
- const llm_build_cb & cb) {
- const int64_t n_embd = hparams.n_embd;
- struct ggml_tensor * inpL;
- if (batch.token) {
- lctx.inp_tokens = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, batch.n_tokens);
- cb(lctx.inp_tokens, "inp_tokens", -1);
- ggml_set_input(lctx.inp_tokens);
- inpL = ggml_get_rows(ctx, tok_embd, lctx.inp_tokens);
- } else {
- #ifdef GGML_USE_MPI
- GGML_ASSERT(false && "not implemented");
- #endif
- lctx.inp_embd = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, batch.n_tokens);
- inpL = lctx.inp_embd;
- ggml_set_input(lctx.inp_embd);
- }
- cb(inpL, "inp_embd", -1);
- return inpL;
- }
- static void llm_build_kv_store(
- struct ggml_context * ctx,
- const llama_hparams & hparams,
- const llama_cparams & cparams,
- const llama_kv_cache & kv,
- struct ggml_cgraph * graph,
- struct ggml_tensor * k_cur,
- struct ggml_tensor * v_cur,
- int32_t n_tokens,
- int32_t kv_head,
- const llm_build_cb & cb,
- int64_t il) {
- const int64_t n_ctx = cparams.n_ctx;
- const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
- const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
- GGML_ASSERT(kv.size == n_ctx);
- struct ggml_tensor * k_cache_view = ggml_view_1d(ctx, kv.k_l[il], n_tokens*n_embd_k_gqa,
- (ggml_row_size(kv.k_l[il]->type, n_embd_k_gqa))*kv_head);
- cb(k_cache_view, "k_cache_view", il);
- // note: storing RoPE-ed version of K in the KV cache
- ggml_build_forward_expand(graph, ggml_cpy(ctx, k_cur, k_cache_view));
- assert(v_cur->ne[0] == n_embd_v_gqa && v_cur->ne[1] == n_tokens);
- struct ggml_tensor * v_cache_view = nullptr;
- if (cparams.flash_attn) {
- v_cache_view = ggml_view_1d(ctx, kv.v_l[il], n_tokens*n_embd_v_gqa,
- (kv_head)*ggml_row_size(kv.v_l[il]->type, n_embd_v_gqa));
- } else {
- // note: the V cache is transposed when not using flash attention
- v_cache_view = ggml_view_2d(ctx, kv.v_l[il], n_tokens, n_embd_v_gqa,
- ( n_ctx)*ggml_element_size(kv.v_l[il]),
- (kv_head)*ggml_element_size(kv.v_l[il]));
- v_cur = ggml_transpose(ctx, v_cur);
- }
- cb(v_cache_view, "v_cache_view", il);
- ggml_build_forward_expand(graph, ggml_cpy(ctx, v_cur, v_cache_view));
- }
- static struct ggml_tensor * llm_build_norm(
- struct ggml_context * ctx,
- struct ggml_tensor * cur,
- const llama_hparams & hparams,
- struct ggml_tensor * mw,
- struct ggml_tensor * mb,
- llm_norm_type type,
- const llm_build_cb & cb,
- int il) {
- switch (type) {
- case LLM_NORM: cur = ggml_norm (ctx, cur, hparams.f_norm_eps); break;
- case LLM_NORM_RMS: cur = ggml_rms_norm(ctx, cur, hparams.f_norm_rms_eps); break;
- }
- if (mw || mb) {
- cb(cur, "norm", il);
- }
- if (mw) {
- cur = ggml_mul(ctx, cur, mw);
- if (mb) {
- cb(cur, "norm_w", il);
- }
- }
- if (mb) {
- cur = ggml_add(ctx, cur, mb);
- }
- return cur;
- }
- static struct ggml_tensor * llm_build_ffn(
- struct ggml_context * ctx,
- struct ggml_tensor * cur,
- struct ggml_tensor * up,
- struct ggml_tensor * up_b,
- struct ggml_tensor * gate,
- struct ggml_tensor * gate_b,
- struct ggml_tensor * down,
- struct ggml_tensor * down_b,
- struct ggml_tensor * act_scales,
- llm_ffn_op_type type_op,
- llm_ffn_gate_type type_gate,
- const llm_build_cb & cb,
- int il) {
- struct ggml_tensor * tmp = up ? ggml_mul_mat(ctx, up, cur) : cur;
- cb(tmp, "ffn_up", il);
- if (up_b) {
- tmp = ggml_add(ctx, tmp, up_b);
- cb(tmp, "ffn_up_b", il);
- }
- if (gate) {
- switch (type_gate) {
- case LLM_FFN_SEQ:
- {
- cur = ggml_mul_mat(ctx, gate, tmp);
- cb(cur, "ffn_gate", il);
- } break;
- case LLM_FFN_PAR:
- {
- cur = ggml_mul_mat(ctx, gate, cur);
- cb(cur, "ffn_gate", il);
- } break;
- }
- if (gate_b) {
- cur = ggml_add(ctx, cur, gate_b);
- cb(cur, "ffn_gate_b", il);
- }
- } else {
- cur = tmp;
- }
- switch (type_op) {
- case LLM_FFN_SILU:
- {
- cur = ggml_silu(ctx, cur);
- cb(cur, "ffn_silu", il);
- } break;
- case LLM_FFN_GELU:
- {
- cur = ggml_gelu(ctx, cur);
- cb(cur, "ffn_gelu", il);
- if (act_scales != NULL) {
- cur = ggml_div(ctx, cur, act_scales);
- cb(cur, "ffn_act", il);
- }
- } break;
- case LLM_FFN_RELU:
- {
- cur = ggml_relu(ctx, cur);
- cb(cur, "ffn_relu", il);
- } break;
- case LLM_FFN_RELU_SQR:
- {
- cur = ggml_relu(ctx, cur);
- cb(cur, "ffn_relu", il);
- cur = ggml_sqr(ctx, cur);
- cb(cur, "ffn_sqr(relu)", il);
- } break;
- }
- if (type_gate == LLM_FFN_PAR) {
- cur = ggml_mul(ctx, cur, tmp);
- cb(cur, "ffn_gate_par", il);
- }
- cur = ggml_mul_mat(ctx, down, cur);
- if (down_b) {
- cb(cur, "ffn_down", il);
- }
- if (down_b) {
- cur = ggml_add(ctx, cur, down_b);
- }
- return cur;
- }
- static struct ggml_tensor * llm_build_moe_ffn(
- struct ggml_context * ctx,
- struct ggml_tensor * cur,
- struct ggml_tensor * gate_inp,
- struct ggml_tensor * up_exps,
- struct ggml_tensor * gate_exps,
- struct ggml_tensor * down_exps,
- int64_t n_expert,
- int64_t n_expert_used,
- llm_ffn_op_type type_op,
- bool norm_w,
- const llm_build_cb & cb,
- int il) {
- int64_t n_embd = cur->ne[0];
- int64_t n_tokens = cur->ne[1];
- ggml_tensor * logits = ggml_mul_mat(ctx, gate_inp, cur); // [n_expert, n_tokens]
- cb(logits, "ffn_moe_logits", il);
- ggml_tensor * probs = ggml_soft_max(ctx, logits); // [n_expert, n_tokens]
- cb(probs, "ffn_moe_probs", il);
- // select experts
- ggml_tensor * selected_experts = ggml_top_k(ctx, probs, n_expert_used); // [n_expert_used, n_tokens]
- cb(selected_experts->src[0], "ffn_moe_argsort", il);
- cb(selected_experts, "ffn_moe_topk", il);
- ggml_tensor * weights = ggml_get_rows(ctx,
- ggml_reshape_3d(ctx, probs, 1, n_expert, n_tokens), selected_experts); // [1, n_expert_used, n_tokens]
- cb(weights, "ffn_moe_weights", il);
- if (norm_w) {
- weights = ggml_reshape_2d(ctx, weights, n_expert_used, n_tokens);
- ggml_tensor * weights_sum = ggml_sum_rows(ctx, weights); // [1, n_tokens]
- cb(weights_sum, "ffn_moe_weights_sum", il);
- weights = ggml_div(ctx, weights, weights_sum); // [n_expert_used, n_tokens]
- cb(weights, "ffn_moe_weights_norm", il);
- weights = ggml_reshape_3d(ctx, weights, 1, n_expert_used, n_tokens);
- }
- cur = ggml_reshape_3d(ctx, cur, n_embd, 1, n_tokens);
- ggml_tensor * up = ggml_mul_mat_id(ctx, up_exps, cur, selected_experts); // [n_ff, n_expert_used, n_tokens]
- cb(up, "ffn_moe_up", il);
- ggml_tensor * gate = ggml_mul_mat_id(ctx, gate_exps, cur, selected_experts); // [n_ff, n_expert_used, n_tokens]
- cb(gate, "ffn_moe_gate", il);
- switch (type_op) {
- case LLM_FFN_SILU:
- {
- gate = ggml_silu(ctx, gate);
- cb(gate, "ffn_moe_silu", il);
- } break;
- case LLM_FFN_GELU:
- {
- gate = ggml_gelu(ctx, gate);
- cb(gate, "ffn_moe_gelu", il);
- } break;
- default:
- GGML_ASSERT(false);
- }
- ggml_tensor * par = ggml_mul(ctx, up, gate); // [n_ff, n_expert_used, n_tokens]
- cb(par, "ffn_moe_gate_par", il);
- ggml_tensor * experts = ggml_mul_mat_id(ctx, down_exps, par, selected_experts); // [n_embd, n_expert_used, n_tokens]
- cb(experts, "ffn_moe_down", il);
- experts = ggml_mul(ctx, experts, weights);
- // aggregate experts
- ggml_tensor * moe_out = nullptr;
- for (int i = 0; i < n_expert_used; ++i) {
- ggml_tensor * cur_expert = ggml_view_2d(ctx, experts, n_embd, n_tokens,
- experts->nb[2], i*experts->nb[1]);
- if (i == 0) {
- moe_out = cur_expert;
- } else {
- moe_out = ggml_add(ctx, moe_out, cur_expert);
- }
- }
- if (n_expert_used == 1) {
- // avoid returning a non-contiguous tensor
- moe_out = ggml_cont(ctx, moe_out);
- }
- return moe_out;
- }
- static struct ggml_tensor * llm_build_kqv(
- struct ggml_context * ctx,
- const llama_model & model,
- const llama_hparams & hparams,
- const llama_cparams & cparams,
- const llama_kv_cache & kv,
- struct ggml_cgraph * graph,
- struct ggml_tensor * wo,
- struct ggml_tensor * wo_b,
- struct ggml_tensor * q_cur,
- struct ggml_tensor * kq_mask,
- int32_t n_tokens,
- int32_t n_kv,
- float kq_scale,
- const llm_build_cb & cb,
- int il) {
- const int64_t n_ctx = cparams.n_ctx;
- const int64_t n_head = hparams.n_head;
- const int64_t n_head_kv = hparams.n_head_kv;
- const int64_t n_embd_head_k = hparams.n_embd_head_k;
- const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
- const int64_t n_embd_head_v = hparams.n_embd_head_v;
- const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
- struct ggml_tensor * q = ggml_permute(ctx, q_cur, 0, 2, 1, 3);
- cb(q, "q", il);
- struct ggml_tensor * k =
- ggml_view_3d(ctx, kv.k_l[il],
- n_embd_head_k, n_kv, n_head_kv,
- ggml_row_size(kv.k_l[il]->type, n_embd_k_gqa),
- ggml_row_size(kv.k_l[il]->type, n_embd_head_k),
- 0);
- cb(k, "k", il);
- struct ggml_tensor * cur;
- if (cparams.flash_attn) {
- GGML_UNUSED(model);
- GGML_UNUSED(n_ctx);
- // split cached v into n_head heads (not transposed)
- struct ggml_tensor * v =
- ggml_view_3d(ctx, kv.v_l[il],
- n_embd_head_v, n_kv, n_head_kv,
- ggml_row_size(kv.v_l[il]->type, n_embd_v_gqa),
- ggml_row_size(kv.v_l[il]->type, n_embd_head_v),
- 0);
- cb(v, "v", il);
- cur = ggml_flash_attn_ext(ctx, q, k, v, kq_mask, kq_scale, hparams.f_max_alibi_bias);
- if (model.arch == LLM_ARCH_PHI2 || model.arch == LLM_ARCH_PHI3) {
- ggml_flash_attn_ext_set_prec(cur, GGML_PREC_F32);
- }
- cur = ggml_reshape_2d(ctx, cur, n_embd_head_v*n_head, n_tokens);
- } else {
- struct ggml_tensor * kq = ggml_mul_mat(ctx, k, q);
- cb(kq, "kq", il);
- if (model.arch == LLM_ARCH_PHI2 || model.arch == LLM_ARCH_PHI3) {
- // for this arch, we need to perform the KQ multiplication with F32 precision, otherwise we get NaNs
- // ref: https://github.com/ggerganov/llama.cpp/pull/4490#issuecomment-1859055847
- ggml_mul_mat_set_prec(kq, GGML_PREC_F32);
- }
- if (model.arch == LLM_ARCH_GROK) {
- // need to do the following:
- // multiply by attn_output_multiplyer of 0.08838834764831845
- // and then :
- // kq = 30 * tanh(kq / 30)
- // before the softmax below
- //try from phi2
- //ggml_mul_mat_set_prec(kq, GGML_PREC_F32);
- kq = ggml_tanh(ctx, ggml_scale(ctx, kq, 0.08838834764831845f/30.0f));
- kq = ggml_scale(ctx, kq, 30);
- }
- kq = ggml_soft_max_ext(ctx, kq, kq_mask, kq_scale, hparams.f_max_alibi_bias);
- cb(kq, "kq_soft_max_ext", il);
- GGML_ASSERT(kv.size == n_ctx);
- // split cached v into n_head heads
- struct ggml_tensor * v =
- ggml_view_3d(ctx, kv.v_l[il],
- n_kv, n_embd_head_v, n_head_kv,
- ggml_element_size(kv.v_l[il])*n_ctx,
- ggml_element_size(kv.v_l[il])*n_ctx*n_embd_head_v,
- 0);
- cb(v, "v", il);
- struct ggml_tensor * kqv = ggml_mul_mat(ctx, v, kq);
- cb(kqv, "kqv", il);
- struct ggml_tensor * kqv_merged = ggml_permute(ctx, kqv, 0, 2, 1, 3);
- cb(kqv_merged, "kqv_merged", il);
- cur = ggml_cont_2d(ctx, kqv_merged, n_embd_head_v*n_head, n_tokens);
- cb(cur, "kqv_merged_cont", il);
- }
- ggml_build_forward_expand(graph, cur);
- cur = ggml_mul_mat(ctx, wo, cur);
- if (wo_b) {
- cb(cur, "kqv_wo", il);
- }
- if (wo_b) {
- cur = ggml_add(ctx, cur, wo_b);
- }
- return cur;
- }
- static struct ggml_tensor * llm_build_kv(
- struct ggml_context * ctx,
- const llama_model & model,
- const llama_hparams & hparams,
- const llama_cparams & cparams,
- const llama_kv_cache & kv,
- struct ggml_cgraph * graph,
- struct ggml_tensor * wo,
- struct ggml_tensor * wo_b,
- struct ggml_tensor * k_cur,
- struct ggml_tensor * v_cur,
- struct ggml_tensor * q_cur,
- struct ggml_tensor * kq_mask,
- int32_t n_tokens,
- int32_t kv_head,
- int32_t n_kv,
- float kq_scale,
- const llm_build_cb & cb,
- int il) {
- // these nodes are added to the graph together so that they are not reordered
- // by doing so, the number of splits in the graph is reduced
- ggml_build_forward_expand(graph, q_cur);
- ggml_build_forward_expand(graph, k_cur);
- ggml_build_forward_expand(graph, v_cur);
- llm_build_kv_store(ctx, hparams, cparams, kv, graph, k_cur, v_cur, n_tokens, kv_head, cb, il);
- struct ggml_tensor * cur;
- cur = llm_build_kqv(ctx, model, hparams, cparams, kv, graph, wo, wo_b,
- q_cur, kq_mask, n_tokens, n_kv, kq_scale, cb, il);
- cb(cur, "kqv_out", il);
- return cur;
- }
- struct llm_build_context {
- const llama_model & model;
- llama_context & lctx;
- const llama_hparams & hparams;
- const llama_cparams & cparams;
- const llama_batch & batch;
- const llama_kv_cache & kv_self;
- const int64_t n_embd;
- const int64_t n_layer;
- const int64_t n_rot;
- const int64_t n_ctx; // user-specified context size (can be different from n_ctx_train)
- const int64_t n_head;
- const int64_t n_head_kv;
- const int64_t n_embd_head_k;
- const int64_t n_embd_k_gqa;
- const int64_t n_embd_head_v;
- const int64_t n_embd_v_gqa;
- const int64_t n_expert;
- const int64_t n_expert_used;
- const float freq_base;
- const float freq_scale;
- const float ext_factor;
- const float attn_factor;
- const float beta_fast;
- const float beta_slow;
- const float norm_eps;
- const float norm_rms_eps;
- const int32_t n_tokens;
- const int32_t n_kv; // size of KV cache to consider (n_kv <= kv_self.size)
- const int32_t n_outputs;
- const int32_t kv_head; // index of where we store new KV data in the cache
- const int32_t n_orig_ctx;
- const bool flash_attn;
- const enum llama_pooling_type pooling_type;
- const enum llama_rope_type rope_type;
- const llm_build_cb & cb;
- std::vector<uint8_t> & buf_compute_meta;
- struct ggml_context * ctx0 = nullptr;
- // TODO: consider making the entire interface noexcept
- llm_build_context(
- llama_context & lctx,
- const llama_batch & batch,
- const llm_build_cb & cb,
- bool worst_case) :
- model (lctx.model),
- lctx (lctx),
- hparams (model.hparams),
- cparams (lctx.cparams),
- batch (batch),
- kv_self (lctx.kv_self),
- n_embd (hparams.n_embd),
- n_layer (hparams.n_layer),
- n_rot (hparams.n_rot),
- n_ctx (cparams.n_ctx),
- n_head (hparams.n_head),
- n_head_kv (hparams.n_head_kv),
- n_embd_head_k (hparams.n_embd_head_k),
- n_embd_k_gqa (hparams.n_embd_k_gqa()),
- n_embd_head_v (hparams.n_embd_head_v),
- n_embd_v_gqa (hparams.n_embd_v_gqa()),
- n_expert (hparams.n_expert),
- n_expert_used (hparams.n_expert_used),
- freq_base (cparams.rope_freq_base),
- freq_scale (cparams.rope_freq_scale),
- ext_factor (cparams.yarn_ext_factor),
- attn_factor (cparams.yarn_attn_factor),
- beta_fast (cparams.yarn_beta_fast),
- beta_slow (cparams.yarn_beta_slow),
- norm_eps (hparams.f_norm_eps),
- norm_rms_eps (hparams.f_norm_rms_eps),
- n_tokens (batch.n_tokens),
- n_kv (worst_case ? kv_self.size : kv_self.n),
- n_outputs (worst_case ? n_tokens : lctx.n_outputs),
- kv_head (worst_case ? (kv_self.recurrent ? 0 : kv_self.size - n_tokens) : kv_self.head),
- n_orig_ctx (cparams.n_yarn_orig_ctx),
- flash_attn (cparams.flash_attn),
- pooling_type (cparams.pooling_type),
- rope_type (hparams.rope_type),
- cb (cb),
- buf_compute_meta (lctx.buf_compute_meta) {
- // all initializations should be done in init()
- }
- void init() {
- struct ggml_init_params params = {
- /*.mem_size =*/ buf_compute_meta.size(),
- /*.mem_buffer =*/ buf_compute_meta.data(),
- /*.no_alloc =*/ true,
- };
- ctx0 = ggml_init(params);
- lctx.inp_tokens = nullptr;
- lctx.inp_embd = nullptr;
- lctx.inp_pos = nullptr;
- lctx.inp_out_ids = nullptr;
- lctx.inp_KQ_mask = nullptr;
- lctx.inp_K_shift = nullptr;
- lctx.inp_mean = nullptr;
- lctx.inp_cls = nullptr;
- lctx.inp_s_copy = nullptr;
- lctx.inp_s_mask = nullptr;
- lctx.inp_s_seq = nullptr;
- }
- void free() {
- if (ctx0) {
- ggml_free(ctx0);
- ctx0 = nullptr;
- }
- }
- struct ggml_cgraph * build_k_shift() {
- struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
- GGML_ASSERT(kv_self.size == n_ctx);
- lctx.inp_K_shift = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_ctx);
- cb(lctx.inp_K_shift, "K_shift", -1);
- ggml_set_input(lctx.inp_K_shift);
- for (int il = 0; il < n_layer; ++il) {
- struct ggml_tensor * tmp =
- // we rotate only the first n_rot dimensions
- ggml_rope_custom_inplace(ctx0,
- ggml_view_3d(ctx0, kv_self.k_l[il],
- n_embd_head_k, n_head_kv, n_ctx,
- ggml_row_size(kv_self.k_l[il]->type, n_embd_head_k),
- ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa),
- 0),
- lctx.inp_K_shift, n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow);
- cb(tmp, "K_shifted", il);
- ggml_build_forward_expand(gf, tmp);
- }
- return gf;
- }
- struct ggml_cgraph * build_s_copy() {
- struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
- GGML_ASSERT(kv_self.recurrent);
- struct ggml_tensor * state_copy = build_inp_s_copy();
- for (int il = 0; il < n_layer; ++il) {
- struct ggml_tensor * conv_states = ggml_reshape_2d(ctx0, kv_self.k_l[il], hparams.n_embd_k_s(), kv_self.size);
- struct ggml_tensor * ssm_states = ggml_reshape_2d(ctx0, kv_self.v_l[il], hparams.n_embd_v_s(), kv_self.size);
- conv_states = ggml_get_rows(ctx0, conv_states, state_copy);
- ssm_states = ggml_get_rows(ctx0, ssm_states, state_copy);
- // TODO: name the intermediate tensors with cb()
- ggml_build_forward_expand(gf, ggml_cpy(ctx0, conv_states, kv_self.k_l[il]));
- ggml_build_forward_expand(gf, ggml_cpy(ctx0, ssm_states, kv_self.v_l[il]));
- }
- return gf;
- }
- struct ggml_cgraph * build_defrag(const std::vector<uint32_t> & ids) {
- struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
- for (uint32_t i = 0; i < ids.size(); ++i) {
- const uint32_t id = ids[i];
- if (i == id || id == ids.size()) {
- continue;
- }
- uint32_t nm = 1;
- while (i + nm < ids.size() && ids[i + nm] == id + nm) {
- nm++;
- }
- for (int il = 0; il < n_layer; ++il) {
- ggml_tensor * view_k_src = ggml_view_2d(ctx0, kv_self.k_l[il],
- n_embd_k_gqa, nm,
- ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa),
- ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*i));
- ggml_tensor * view_k_dst = ggml_view_2d(ctx0, kv_self.k_l[il],
- n_embd_k_gqa, nm,
- ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa),
- ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*id));
- ggml_tensor * view_v_src;
- ggml_tensor * view_v_dst;
- if (flash_attn) {
- // NOTE: the V cache is not transposed when using flash attention
- view_v_src = ggml_view_2d(ctx0, kv_self.v_l[il],
- n_embd_v_gqa, nm,
- ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa),
- ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa*i));
- view_v_dst = ggml_view_2d(ctx0, kv_self.v_l[il],
- n_embd_v_gqa, nm,
- ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa),
- ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa*id));
- } else {
- view_v_src = ggml_view_2d(ctx0, kv_self.v_l[il],
- nm, n_embd_v_gqa,
- ggml_row_size(kv_self.v_l[il]->type, kv_self.size),
- ggml_row_size(kv_self.v_l[il]->type, i));
- view_v_dst = ggml_view_2d(ctx0, kv_self.v_l[il],
- nm, n_embd_v_gqa,
- ggml_row_size(kv_self.v_l[il]->type, kv_self.size),
- ggml_row_size(kv_self.v_l[il]->type, id));
- }
- ggml_build_forward_expand(gf, ggml_cpy(ctx0, view_k_src, view_k_dst));
- ggml_build_forward_expand(gf, ggml_cpy(ctx0, view_v_src, view_v_dst));
- }
- i += nm - 1;
- }
- //LLAMA_LOG_INFO("gf->n_nodes = %d\n", gf->n_nodes);
- return gf;
- }
- struct ggml_tensor * build_inp_pos() {
- lctx.inp_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
- cb(lctx.inp_pos, "inp_pos", -1);
- ggml_set_input(lctx.inp_pos);
- return lctx.inp_pos;
- }
- struct ggml_tensor * build_inp_out_ids() {
- lctx.inp_out_ids = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_outputs);
- cb(lctx.inp_out_ids, "inp_out_ids", -1);
- ggml_set_input(lctx.inp_out_ids);
- return lctx.inp_out_ids;
- }
- struct ggml_tensor * build_inp_KQ_mask(bool causal = true) {
- if (causal) {
- lctx.inp_KQ_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_kv, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD));
- } else {
- lctx.inp_KQ_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD));
- }
- cb(lctx.inp_KQ_mask, "KQ_mask", -1);
- ggml_set_input(lctx.inp_KQ_mask);
- return flash_attn ? ggml_cast(ctx0, lctx.inp_KQ_mask, GGML_TYPE_F16) : lctx.inp_KQ_mask;
- }
- struct ggml_tensor * build_inp_mean() {
- lctx.inp_mean = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, n_tokens);
- cb(lctx.inp_mean, "inp_mean", -1);
- ggml_set_input(lctx.inp_mean);
- return lctx.inp_mean;
- }
- struct ggml_tensor * build_inp_cls() {
- lctx.inp_cls = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
- cb(lctx.inp_cls, "inp_cls", -1);
- ggml_set_input(lctx.inp_cls);
- return lctx.inp_cls;
- }
- struct ggml_tensor * build_inp_s_copy() {
- lctx.inp_s_copy = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, kv_self.size);
- cb(lctx.inp_s_copy, "inp_s_copy", -1);
- ggml_set_input(lctx.inp_s_copy);
- return lctx.inp_s_copy;
- }
- struct ggml_tensor * build_inp_s_mask() {
- lctx.inp_s_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, 1, n_kv);
- cb(lctx.inp_s_mask, "inp_s_mask", -1);
- ggml_set_input(lctx.inp_s_mask);
- return lctx.inp_s_mask;
- }
- struct ggml_tensor * build_inp_s_seq() {
- lctx.inp_s_seq = ggml_new_tensor_2d(ctx0, GGML_TYPE_I32, n_kv, n_tokens);
- cb(lctx.inp_s_seq, "inp_s_seq", -1);
- ggml_set_input(lctx.inp_s_seq);
- return lctx.inp_s_seq;
- }
- struct ggml_cgraph * build_llama() {
- struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
- // mutable variable, needed during the last layer of the computation to skip unused tokens
- int32_t n_tokens = this->n_tokens;
- const int64_t n_embd_head = hparams.n_embd_head_v;
- GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
- GGML_ASSERT(n_embd_head == hparams.n_rot);
- struct ggml_tensor * cur;
- struct ggml_tensor * inpL;
- inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
- // inp_pos - contains the positions
- struct ggml_tensor * inp_pos = build_inp_pos();
- // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
- struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
- for (int il = 0; il < n_layer; ++il) {
- struct ggml_tensor * inpSA = inpL;
- // norm
- cur = llm_build_norm(ctx0, inpL, hparams,
- model.layers[il].attn_norm, NULL,
- LLM_NORM_RMS, cb, il);
- cb(cur, "attn_norm", il);
- // self-attention
- {
- // compute Q and K and RoPE them
- struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
- cb(Qcur, "Qcur", il);
- if (model.layers[il].bq) {
- Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
- cb(Qcur, "Qcur", il);
- }
- struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
- cb(Kcur, "Kcur", il);
- if (model.layers[il].bk) {
- Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
- cb(Kcur, "Kcur", il);
- }
- struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
- cb(Vcur, "Vcur", il);
- if (model.layers[il].bv) {
- Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
- cb(Vcur, "Vcur", il);
- }
- Qcur = ggml_rope_custom(
- ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
- n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- cb(Qcur, "Qcur", il);
- Kcur = ggml_rope_custom(
- ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
- n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- cb(Kcur, "Kcur", il);
- cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
- model.layers[il].wo, model.layers[il].bo,
- Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
- }
- if (il == n_layer - 1) {
- // skip computing output for unused tokens
- struct ggml_tensor * inp_out_ids = build_inp_out_ids();
- n_tokens = n_outputs;
- cur = ggml_get_rows(ctx0, cur, inp_out_ids);
- inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
- }
- struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
- cb(ffn_inp, "ffn_inp", il);
- // feed-forward network
- if (model.layers[il].ffn_gate_inp == nullptr) {
- cur = llm_build_norm(ctx0, ffn_inp, hparams,
- model.layers[il].ffn_norm, NULL,
- LLM_NORM_RMS, cb, il);
- cb(cur, "ffn_norm", il);
- cur = llm_build_ffn(ctx0, cur,
- model.layers[il].ffn_up, NULL,
- model.layers[il].ffn_gate, NULL,
- model.layers[il].ffn_down, NULL,
- NULL,
- LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
- cb(cur, "ffn_out", il);
- } else {
- // MoE branch
- cur = llm_build_norm(ctx0, ffn_inp, hparams,
- model.layers[il].ffn_norm, NULL,
- LLM_NORM_RMS, cb, il);
- cb(cur, "ffn_norm", il);
- cur = llm_build_moe_ffn(ctx0, cur,
- model.layers[il].ffn_gate_inp,
- model.layers[il].ffn_up_exps,
- model.layers[il].ffn_gate_exps,
- model.layers[il].ffn_down_exps,
- n_expert, n_expert_used,
- LLM_FFN_SILU, true,
- cb, il);
- cb(cur, "ffn_moe_out", il);
- }
- cur = ggml_add(ctx0, cur, ffn_inp);
- cb(cur, "ffn_out", il);
- ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
- if (layer_dir != nullptr) {
- cur = ggml_add(ctx0, cur, layer_dir);
- }
- cb(cur, "l_out", il);
- // input for next layer
- inpL = cur;
- }
- cur = inpL;
- cur = llm_build_norm(ctx0, cur, hparams,
- model.output_norm, NULL,
- LLM_NORM_RMS, cb, -1);
- cb(cur, "result_norm", -1);
- // lm_head
- cur = ggml_mul_mat(ctx0, model.output, cur);
- cb(cur, "result_output", -1);
- ggml_build_forward_expand(gf, cur);
- return gf;
- }
- struct ggml_cgraph * build_baichuan() {
- struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
- const int64_t n_embd_head = hparams.n_embd_head_v;
- GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
- GGML_ASSERT(n_embd_head == hparams.n_rot);
- struct ggml_tensor * cur;
- struct ggml_tensor * inpL;
- inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
- // inp_pos - contains the positions
- struct ggml_tensor * inp_pos = model.type == MODEL_7B ? build_inp_pos() : nullptr;
- // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
- struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
- for (int il = 0; il < n_layer; ++il) {
- struct ggml_tensor * inpSA = inpL;
- cur = llm_build_norm(ctx0, inpL, hparams,
- model.layers[il].attn_norm, NULL,
- LLM_NORM_RMS, cb, il);
- cb(cur, "attn_norm", il);
- // self-attention
- {
- struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
- cb(Qcur, "Qcur", il);
- struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
- cb(Kcur, "Kcur", il);
- struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
- cb(Vcur, "Vcur", il);
- switch (model.type) {
- case MODEL_7B:
- Qcur = ggml_rope_custom(
- ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
- n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- Kcur = ggml_rope_custom(
- ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
- n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- break;
- case MODEL_13B:
- Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd/n_head, n_head, n_tokens);
- Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd/n_head, n_head, n_tokens);
- break;
- default:
- GGML_ASSERT(false);
- }
- cb(Qcur, "Qcur", il);
- cb(Kcur, "Kcur", il);
- cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
- model.layers[il].wo, NULL,
- Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
- }
- if (il == n_layer - 1) {
- // skip computing output for unused tokens
- struct ggml_tensor * inp_out_ids = build_inp_out_ids();
- cur = ggml_get_rows(ctx0, cur, inp_out_ids);
- inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
- }
- struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
- cb(ffn_inp, "ffn_inp", il);
- // feed-forward network
- {
- cur = llm_build_norm(ctx0, ffn_inp, hparams,
- model.layers[il].ffn_norm, NULL,
- LLM_NORM_RMS, cb, il);
- cb(cur, "ffn_norm", il);
- cur = llm_build_ffn(ctx0, cur,
- model.layers[il].ffn_up, NULL,
- model.layers[il].ffn_gate, NULL,
- model.layers[il].ffn_down, NULL,
- NULL,
- LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
- cb(cur, "ffn_out", il);
- }
- cur = ggml_add(ctx0, cur, ffn_inp);
- cb(cur, "l_out", il);
- // input for next layer
- inpL = cur;
- }
- cur = inpL;
- cur = llm_build_norm(ctx0, cur, hparams,
- model.output_norm, NULL,
- LLM_NORM_RMS, cb, -1);
- cb(cur, "result_norm", -1);
- // lm_head
- cur = ggml_mul_mat(ctx0, model.output, cur);
- cb(cur, "result_output", -1);
- ggml_build_forward_expand(gf, cur);
- return gf;
- }
- struct ggml_cgraph * build_xverse() {
- struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
- const int64_t n_embd_head = hparams.n_embd_head_v;
- GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
- GGML_ASSERT(n_embd_head == hparams.n_rot);
- struct ggml_tensor * cur;
- struct ggml_tensor * inpL;
- inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
- // inp_pos - contains the positions
- struct ggml_tensor * inp_pos = build_inp_pos();
- // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
- struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
- for (int il = 0; il < n_layer; ++il) {
- struct ggml_tensor * inpSA = inpL;
- cur = llm_build_norm(ctx0, inpL, hparams,
- model.layers[il].attn_norm, NULL,
- LLM_NORM_RMS, cb, il);
- cb(cur, "attn_norm", il);
- // self-attention
- {
- struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
- cb(Qcur, "Qcur", il);
- struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
- cb(Kcur, "Kcur", il);
- struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
- cb(Vcur, "Vcur", il);
- Qcur = ggml_rope_custom(
- ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
- n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- cb(Qcur, "Qcur", il);
- Kcur = ggml_rope_custom(
- ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
- n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- cb(Kcur, "Kcur", il);
- cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
- model.layers[il].wo, NULL,
- Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
- }
- if (il == n_layer - 1) {
- // skip computing output for unused tokens
- struct ggml_tensor * inp_out_ids = build_inp_out_ids();
- cur = ggml_get_rows(ctx0, cur, inp_out_ids);
- inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
- }
- struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
- cb(ffn_inp, "ffn_inp", il);
- // feed-forward network
- {
- cur = llm_build_norm(ctx0, ffn_inp, hparams,
- model.layers[il].ffn_norm, NULL,
- LLM_NORM_RMS, cb, il);
- cb(cur, "ffn_norm", il);
- cur = llm_build_ffn(ctx0, cur,
- model.layers[il].ffn_up, NULL,
- model.layers[il].ffn_gate, NULL,
- model.layers[il].ffn_down, NULL,
- NULL,
- LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
- cb(cur, "ffn_out", il);
- }
- cur = ggml_add(ctx0, cur, ffn_inp);
- cb(cur, "l_out", il);
- // input for next layer
- inpL = cur;
- }
- cur = inpL;
- cur = llm_build_norm(ctx0, cur, hparams, model.output_norm, NULL, LLM_NORM_RMS, cb, -1);
- cb(cur, "result_norm", -1);
- // lm_head
- cur = ggml_mul_mat(ctx0, model.output, cur);
- cb(cur, "result_output", -1);
- ggml_build_forward_expand(gf, cur);
- return gf;
- }
- struct ggml_cgraph * build_falcon() {
- struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
- const int64_t n_embd_head = hparams.n_embd_head_v;
- const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
- GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
- GGML_ASSERT(n_embd_head == hparams.n_rot);
- struct ggml_tensor * cur;
- struct ggml_tensor * inpL;
- inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
- // inp_pos - contains the positions
- struct ggml_tensor * inp_pos = build_inp_pos();
- // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
- struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
- for (int il = 0; il < n_layer; ++il) {
- struct ggml_tensor * attn_norm;
- attn_norm = llm_build_norm(ctx0, inpL, hparams,
- model.layers[il].attn_norm,
- model.layers[il].attn_norm_b,
- LLM_NORM, cb, il);
- cb(attn_norm, "attn_norm", il);
- // self-attention
- {
- if (model.layers[il].attn_norm_2) {
- // Falcon-40B
- cur = llm_build_norm(ctx0, inpL, hparams,
- model.layers[il].attn_norm_2,
- model.layers[il].attn_norm_2_b,
- LLM_NORM, cb, il);
- cb(cur, "attn_norm_2", il);
- } else {
- cur = attn_norm;
- }
- cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
- cb(cur, "wqkv", il);
- struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
- struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
- struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
- cb(Qcur, "Qcur", il);
- cb(Kcur, "Kcur", il);
- cb(Vcur, "Vcur", il);
- Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
- Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
- // using mode = 2 for neox mode
- Qcur = ggml_rope_custom(
- ctx0, Qcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
- freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
- );
- cb(Qcur, "Qcur", il);
- Kcur = ggml_rope_custom(
- ctx0, Kcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
- freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
- );
- cb(Kcur, "Kcur", il);
- cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
- model.layers[il].wo, NULL,
- Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
- }
- if (il == n_layer - 1) {
- // skip computing output for unused tokens
- struct ggml_tensor * inp_out_ids = build_inp_out_ids();
- cur = ggml_get_rows(ctx0, cur, inp_out_ids);
- inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
- attn_norm = ggml_get_rows(ctx0, attn_norm, inp_out_ids);
- }
- struct ggml_tensor * ffn_inp = cur;
- // feed forward
- {
- cur = llm_build_ffn(ctx0, attn_norm, // !! use the attn norm, not the result
- model.layers[il].ffn_up, NULL,
- NULL, NULL,
- model.layers[il].ffn_down, NULL,
- NULL,
- LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
- cb(cur, "ffn_out", il);
- }
- cur = ggml_add(ctx0, cur, ffn_inp);
- cb(cur, "l_out", il);
- cur = ggml_add(ctx0, cur, inpL);
- cb(cur, "l_out", il);
- // input for next layer
- inpL = cur;
- }
- cur = inpL;
- // norm
- cur = llm_build_norm(ctx0, cur, hparams,
- model.output_norm,
- model.output_norm_b,
- LLM_NORM, cb, -1);
- cb(cur, "result_norm", -1);
- cur = ggml_mul_mat(ctx0, model.output, cur);
- cb(cur, "result_output", -1);
- ggml_build_forward_expand(gf, cur);
- return gf;
- }
- struct ggml_cgraph * build_grok() {
- struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
- // mutable variable, needed during the last layer of the computation to skip unused tokens
- int32_t n_tokens = this->n_tokens;
- const int64_t n_embd_head = hparams.n_embd_head_v;
- GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
- GGML_ASSERT(n_embd_head == hparams.n_rot);
- struct ggml_tensor * cur;
- struct ggml_tensor * inpL;
- inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
- // multiply by embedding_multiplier_scale of 78.38367176906169
- inpL = ggml_scale(ctx0, inpL, 78.38367176906169f);
- // inp_pos - contains the positions
- struct ggml_tensor * inp_pos = build_inp_pos();
- // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
- struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
- for (int il = 0; il < n_layer; ++il) {
- struct ggml_tensor * inpSA = inpL;
- // norm
- cur = llm_build_norm(ctx0, inpL, hparams,
- model.layers[il].attn_norm, NULL,
- LLM_NORM_RMS, cb, il);
- cb(cur, "attn_norm", il);
- // self-attention
- {
- // compute Q and K and RoPE them
- struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
- cb(Qcur, "Qcur", il);
- if (model.layers[il].bq) {
- Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
- cb(Qcur, "Qcur", il);
- }
- struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
- cb(Kcur, "Kcur", il);
- if (model.layers[il].bk) {
- Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
- cb(Kcur, "Kcur", il);
- }
- struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
- cb(Vcur, "Vcur", il);
- if (model.layers[il].bv) {
- Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
- cb(Vcur, "Vcur", il);
- }
- Qcur = ggml_rope_custom(
- ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
- n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- cb(Qcur, "Qcur", il);
- Kcur = ggml_rope_custom(
- ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
- n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- cb(Kcur, "Kcur", il);
- cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
- model.layers[il].wo, model.layers[il].bo,
- Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f, cb, il);
- }
- if (il == n_layer - 1) {
- // skip computing output for unused tokens
- struct ggml_tensor * inp_out_ids = build_inp_out_ids();
- n_tokens = n_outputs;
- cur = ggml_get_rows(ctx0, cur, inp_out_ids);
- inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
- }
- // Grok
- // if attn_out_norm is present then apply it before adding the input
- if (model.layers[il].attn_out_norm) {
- cur = llm_build_norm(ctx0, cur, hparams,
- model.layers[il].attn_out_norm, NULL,
- LLM_NORM_RMS, cb, il);
- cb(cur, "attn_out_norm", il);
- }
- struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
- cb(ffn_inp, "ffn_inp", il);
- // feed-forward network
- // MoE branch
- cur = llm_build_norm(ctx0, ffn_inp, hparams,
- model.layers[il].ffn_norm, NULL,
- LLM_NORM_RMS, cb, il);
- cb(cur, "ffn_norm", il);
- cur = llm_build_moe_ffn(ctx0, cur,
- model.layers[il].ffn_gate_inp,
- model.layers[il].ffn_up_exps,
- model.layers[il].ffn_gate_exps,
- model.layers[il].ffn_down_exps,
- n_expert, n_expert_used,
- LLM_FFN_GELU, true,
- cb, il);
- cb(cur, "ffn_moe_out", il);
- // Grok
- // if layer_out_norm is present then apply it before adding the input
- // Idea: maybe ffn_out_norm is a better name
- if (model.layers[il].layer_out_norm) {
- cur = llm_build_norm(ctx0, cur, hparams,
- model.layers[il].layer_out_norm, NULL,
- LLM_NORM_RMS, cb, il);
- cb(cur, "layer_out_norm", il);
- }
- cur = ggml_add(ctx0, cur, ffn_inp);
- cb(cur, "ffn_out", il);
- ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
- if (layer_dir != nullptr) {
- cur = ggml_add(ctx0, cur, layer_dir);
- }
- cb(cur, "l_out", il);
- // input for next layer
- inpL = cur;
- }
- cur = inpL;
- cur = llm_build_norm(ctx0, cur, hparams,
- model.output_norm, NULL,
- LLM_NORM_RMS, cb, -1);
- cb(cur, "result_norm", -1);
- // lm_head
- cur = ggml_mul_mat(ctx0, model.output, cur);
- // Grok
- // multiply logits by output_multiplier_scale of 0.5773502691896257
- cur = ggml_scale(ctx0, cur, 0.5773502691896257f);
- cb(cur, "result_output", -1);
- ggml_build_forward_expand(gf, cur);
- return gf;
- }
- struct ggml_cgraph * build_dbrx() {
- struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
- // mutable variable, needed during the last layer of the computation to skip unused tokens
- int32_t n_tokens = this->n_tokens;
- const int64_t n_embd_head = hparams.n_embd_head_v;
- const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
- GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
- GGML_ASSERT(n_embd_head == hparams.n_rot);
- struct ggml_tensor * cur;
- struct ggml_tensor * inpL;
- inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
- // inp_pos - contains the positions
- struct ggml_tensor * inp_pos = build_inp_pos();
- // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
- struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
- for (int il = 0; il < n_layer; ++il) {
- struct ggml_tensor * inpSA = inpL;
- // norm
- cur = llm_build_norm(ctx0, inpL, hparams,
- model.layers[il].attn_norm, NULL,
- LLM_NORM, cb, il);
- cb(cur, "attn_norm", il);
- // self-attention
- {
- struct ggml_tensor * Qcur = nullptr;
- struct ggml_tensor * Kcur = nullptr;
- struct ggml_tensor * Vcur = nullptr;
- cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
- cb(cur, "wqkv", il);
- cur = ggml_clamp(ctx0, cur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
- cb(cur, "wqkv_clamped", il);
- Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
- Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
- Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
- cb(Qcur, "Qcur", il);
- cb(Kcur, "Kcur", il);
- cb(Vcur, "Vcur", il);
- Qcur = ggml_rope_custom(
- ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
- n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- cb(Qcur, "Qcur", il);
- Kcur = ggml_rope_custom(
- ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
- n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- cb(Kcur, "Kcur", il);
- cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
- model.layers[il].wo, NULL,
- Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
- }
- if (il == n_layer - 1) {
- // skip computing output for unused tokens
- struct ggml_tensor * inp_out_ids = build_inp_out_ids();
- n_tokens = n_outputs;
- cur = ggml_get_rows(ctx0, cur, inp_out_ids);
- inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
- }
- struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
- cb(ffn_inp, "ffn_inp", il);
- // feed-forward network
- // MoE branch
- cur = llm_build_norm(ctx0, ffn_inp, hparams,
- model.layers[il].attn_out_norm, NULL,
- LLM_NORM, cb, il);
- cb(cur, "attn_out_norm", il);
- cur = llm_build_moe_ffn(ctx0, cur,
- model.layers[il].ffn_gate_inp,
- model.layers[il].ffn_up_exps,
- model.layers[il].ffn_gate_exps,
- model.layers[il].ffn_down_exps,
- n_expert, n_expert_used,
- LLM_FFN_SILU, true,
- cb, il);
- cb(cur, "ffn_moe_out", il);
- cur = ggml_add(ctx0, cur, ffn_inp);
- cb(cur, "ffn_out", il);
- ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
- if (layer_dir != nullptr) {
- cur = ggml_add(ctx0, cur, layer_dir);
- }
- cb(cur, "l_out", il);
- // input for next layer
- inpL = cur;
- }
- cur = inpL;
- cur = llm_build_norm(ctx0, cur, hparams,
- model.output_norm, NULL,
- LLM_NORM, cb, -1);
- cb(cur, "result_norm", -1);
- // lm_head
- cur = ggml_mul_mat(ctx0, model.output, cur);
- cb(cur, "result_output", -1);
- ggml_build_forward_expand(gf, cur);
- return gf;
- }
- struct ggml_cgraph * build_starcoder() {
- struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
- const int64_t n_embd_head = hparams.n_embd_head_v;
- const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
- GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
- struct ggml_tensor * cur;
- struct ggml_tensor * inpL;
- inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
- // inp_pos - contains the positions
- struct ggml_tensor * inp_pos = build_inp_pos();
- // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
- struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
- struct ggml_tensor * pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
- cb(pos, "pos_embd", -1);
- inpL = ggml_add(ctx0, inpL, pos);
- cb(inpL, "inpL", -1);
- for (int il = 0; il < n_layer; ++il) {
- cur = llm_build_norm(ctx0, inpL, hparams,
- model.layers[il].attn_norm,
- model.layers[il].attn_norm_b,
- LLM_NORM, cb, il);
- cb(cur, "attn_norm", il);
- // self-attention
- {
- cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
- cb(cur, "wqkv", il);
- cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
- cb(cur, "bqkv", il);
- struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
- struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
- struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
- cb(Qcur, "Qcur", il);
- cb(Kcur, "Kcur", il);
- cb(Vcur, "Vcur", il);
- Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
- cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
- model.layers[il].wo, model.layers[il].bo,
- Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
- }
- if (il == n_layer - 1) {
- // skip computing output for unused tokens
- struct ggml_tensor * inp_out_ids = build_inp_out_ids();
- cur = ggml_get_rows(ctx0, cur, inp_out_ids);
- inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
- }
- // add the input
- struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
- cb(ffn_inp, "ffn_inp", il);
- // FF
- {
- cur = llm_build_norm(ctx0, ffn_inp, hparams,
- model.layers[il].ffn_norm,
- model.layers[il].ffn_norm_b,
- LLM_NORM, cb, il);
- cb(cur, "ffn_norm", il);
- cur = llm_build_ffn(ctx0, cur,
- model.layers[il].ffn_up, model.layers[il].ffn_up_b,
- NULL, NULL,
- model.layers[il].ffn_down, model.layers[il].ffn_down_b,
- NULL,
- LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
- cb(cur, "ffn_out", il);
- }
- inpL = ggml_add(ctx0, cur, ffn_inp);
- cb(inpL, "l_out", il);
- }
- cur = llm_build_norm(ctx0, inpL, hparams,
- model.output_norm,
- model.output_norm_b,
- LLM_NORM, cb, -1);
- cb(cur, "result_norm", -1);
- cur = ggml_mul_mat(ctx0, model.output, cur);
- cb(cur, "result_output", -1);
- ggml_build_forward_expand(gf, cur);
- return gf;
- }
- struct ggml_cgraph * build_persimmon() {
- struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
- const int64_t n_embd_head = hparams.n_embd_head_v;
- GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
- GGML_ASSERT(n_embd_head/2 == hparams.n_rot);
- struct ggml_tensor * cur;
- struct ggml_tensor * inpL;
- inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
- // inp_pos - contains the positions
- struct ggml_tensor * inp_pos = build_inp_pos();
- // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
- struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
- for (int il = 0; il < n_layer; ++il) {
- struct ggml_tensor * residual = inpL;
- cur = llm_build_norm(ctx0, inpL, hparams,
- model.layers[il].attn_norm,
- model.layers[il].attn_norm_b,
- LLM_NORM, cb, il);
- cb(cur, "attn_norm", il);
- // self attention
- {
- cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
- cb(cur, "wqkv", il);
- cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
- cb(cur, "bqkv", il);
- // split qkv
- GGML_ASSERT(n_head_kv == n_head);
- struct ggml_tensor * tmpqkv = ggml_reshape_4d(ctx0, cur, n_embd_head, 3, n_head, n_tokens);
- cb(tmpqkv, "tmpqkv", il);
- struct ggml_tensor * tmpqkv_perm = ggml_cont(ctx0, ggml_permute(ctx0, tmpqkv, 0, 3, 1, 2));
- cb(tmpqkv_perm, "tmpqkv", il);
- struct ggml_tensor * tmpq = ggml_view_3d(
- ctx0, tmpqkv_perm, n_embd_head, n_head, n_tokens,
- ggml_element_size(tmpqkv_perm) * n_embd_head,
- ggml_element_size(tmpqkv_perm) * n_embd_head * n_head,
- 0
- );
- cb(tmpq, "tmpq", il);
- struct ggml_tensor * tmpk = ggml_view_3d(
- ctx0, tmpqkv_perm, n_embd_head, n_head, n_tokens,
- ggml_element_size(tmpqkv_perm) * n_embd_head,
- ggml_element_size(tmpqkv_perm) * n_embd_head * n_head,
- ggml_element_size(tmpqkv_perm) * n_embd_head * n_head * n_tokens
- );
- cb(tmpk, "tmpk", il);
- // Q/K Layernorm
- tmpq = llm_build_norm(ctx0, tmpq, hparams,
- model.layers[il].attn_q_norm,
- model.layers[il].attn_q_norm_b,
- LLM_NORM, cb, il);
- cb(tmpq, "tmpq", il);
- tmpk = llm_build_norm(ctx0, tmpk, hparams,
- model.layers[il].attn_k_norm,
- model.layers[il].attn_k_norm_b,
- LLM_NORM, cb, il);
- cb(tmpk, "tmpk", il);
- // RoPE the first n_rot of q/k, pass the other half, and concat.
- struct ggml_tensor * qrot = ggml_view_3d(
- ctx0, tmpq, n_rot, n_head, n_tokens,
- ggml_element_size(tmpq) * n_embd_head,
- ggml_element_size(tmpq) * n_embd_head * n_head,
- 0
- );
- cb(qrot, "qrot", il);
- struct ggml_tensor * krot = ggml_view_3d(
- ctx0, tmpk, n_rot, n_head, n_tokens,
- ggml_element_size(tmpk) * n_embd_head,
- ggml_element_size(tmpk) * n_embd_head * n_head,
- 0
- );
- cb(krot, "krot", il);
- // get the second half of tmpq, e.g tmpq[n_rot:, :, :]
- struct ggml_tensor * qpass = ggml_view_3d(
- ctx0, tmpq, n_rot, n_head, n_tokens,
- ggml_element_size(tmpq) * n_embd_head,
- ggml_element_size(tmpq) * n_embd_head * n_head,
- ggml_element_size(tmpq) * n_rot
- );
- cb(qpass, "qpass", il);
- struct ggml_tensor * kpass = ggml_view_3d(
- ctx0, tmpk, n_rot, n_head, n_tokens,
- ggml_element_size(tmpk) * n_embd_head,
- ggml_element_size(tmpk) * n_embd_head * n_head,
- ggml_element_size(tmpk) * n_rot
- );
- cb(kpass, "kpass", il);
- struct ggml_tensor * qrotated = ggml_rope_custom(
- ctx0, qrot, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
- freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
- );
- cb(qrotated, "qrotated", il);
- struct ggml_tensor * krotated = ggml_rope_custom(
- ctx0, krot, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
- freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
- );
- cb(krotated, "krotated", il);
- // ggml currently only supports concatenation on dim=2
- // so we need to permute qrot, qpass, concat, then permute back.
- qrotated = ggml_cont(ctx0, ggml_permute(ctx0, qrotated, 2, 1, 0, 3));
- cb(qrotated, "qrotated", il);
- krotated = ggml_cont(ctx0, ggml_permute(ctx0, krotated, 2, 1, 0, 3));
- cb(krotated, "krotated", il);
- qpass = ggml_cont(ctx0, ggml_permute(ctx0, qpass, 2, 1, 0, 3));
- cb(qpass, "qpass", il);
- kpass = ggml_cont(ctx0, ggml_permute(ctx0, kpass, 2, 1, 0, 3));
- cb(kpass, "kpass", il);
- struct ggml_tensor * Qcur = ggml_concat(ctx0, qrotated, qpass);
- cb(Qcur, "Qcur", il);
- struct ggml_tensor * Kcur = ggml_concat(ctx0, krotated, kpass);
- cb(Kcur, "Kcur", il);
- struct ggml_tensor * Q = ggml_cont(ctx0, ggml_permute(ctx0, Qcur, 2, 1, 0, 3));
- cb(Q, "Q", il);
- Kcur = ggml_cont(ctx0, ggml_permute(ctx0, Kcur, 2, 1, 0, 3));
- cb(Kcur, "Kcur", il);
- struct ggml_tensor * Vcur = ggml_view_3d(
- ctx0, tmpqkv_perm, n_embd_head, n_head, n_tokens,
- ggml_element_size(tmpqkv_perm) * n_embd_head,
- ggml_element_size(tmpqkv_perm) * n_embd_head * n_head,
- ggml_element_size(tmpqkv_perm) * n_embd_head * n_head * n_tokens * 2
- );
- cb(Vcur, "Vcur", il);
- cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
- model.layers[il].wo, model.layers[il].bo,
- Kcur, Vcur, Q, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
- }
- if (il == n_layer - 1) {
- // skip computing output for unused tokens
- struct ggml_tensor * inp_out_ids = build_inp_out_ids();
- cur = ggml_get_rows(ctx0, cur, inp_out_ids);
- residual = ggml_get_rows(ctx0, residual, inp_out_ids);
- }
- struct ggml_tensor * ffn_inp = ggml_add(ctx0, residual, cur);
- cb(ffn_inp, "ffn_inp", il);
- // feed-forward network
- {
- cur = llm_build_norm(ctx0, ffn_inp, hparams,
- model.layers[il].ffn_norm,
- model.layers[il].ffn_norm_b,
- LLM_NORM, cb, il);
- cb(cur, "ffn_norm", il);
- cur = llm_build_ffn(ctx0, cur,
- model.layers[il].ffn_up, model.layers[il].ffn_up_b,
- NULL, NULL,
- model.layers[il].ffn_down, model.layers[il].ffn_down_b,
- NULL,
- LLM_FFN_RELU_SQR, LLM_FFN_SEQ, cb, il);
- cb(cur, "ffn_out", il);
- }
- cur = ggml_add(ctx0, cur, ffn_inp);
- cb(cur, "l_out", il);
- inpL = cur;
- }
- cur = inpL;
- cur = llm_build_norm(ctx0, cur, hparams,
- model.output_norm,
- model.output_norm_b,
- LLM_NORM, cb, -1);
- cb(cur, "result_norm", -1);
- cur = ggml_mul_mat(ctx0, model.output, cur);
- cb(cur, "result_output", -1);
- ggml_build_forward_expand(gf, cur);
- return gf;
- }
- struct ggml_cgraph * build_refact() {
- struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
- const int64_t n_embd_head = hparams.n_embd_head_v;
- GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
- struct ggml_tensor * cur;
- struct ggml_tensor * inpL;
- inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
- // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
- struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
- for (int il = 0; il < n_layer; ++il) {
- struct ggml_tensor * inpSA = inpL;
- cur = llm_build_norm(ctx0, inpL, hparams,
- model.layers[il].attn_norm, NULL,
- LLM_NORM_RMS, cb, il);
- cb(cur, "attn_norm", il);
- // self-attention
- {
- struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
- cb(Qcur, "Qcur", il);
- struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
- cb(Kcur, "Kcur", il);
- struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
- cb(Vcur, "Vcur", il);
- Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
- cb(Kcur, "Kcur", il);
- Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
- cb(Qcur, "Qcur", il);
- cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
- model.layers[il].wo, NULL,
- Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
- }
- if (il == n_layer - 1) {
- // skip computing output for unused tokens
- struct ggml_tensor * inp_out_ids = build_inp_out_ids();
- cur = ggml_get_rows(ctx0, cur, inp_out_ids);
- inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
- }
- struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
- cb(ffn_inp, "ffn_inp", il);
- // feed-forward network
- {
- cur = llm_build_norm(ctx0, ffn_inp, hparams,
- model.layers[il].ffn_norm, NULL,
- LLM_NORM_RMS, cb, il);
- cb(cur, "ffn_norm", il);
- cur = llm_build_ffn(ctx0, cur,
- model.layers[il].ffn_up, NULL,
- model.layers[il].ffn_gate, NULL,
- model.layers[il].ffn_down, NULL,
- NULL,
- LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
- cb(cur, "ffn_out", il);
- }
- cur = ggml_add(ctx0, cur, ffn_inp);
- cb(cur, "l_out", il);
- // input for next layer
- inpL = cur;
- }
- cur = inpL;
- cur = llm_build_norm(ctx0, cur, hparams,
- model.output_norm, NULL,
- LLM_NORM_RMS, cb, -1);
- cb(cur, "result_norm", -1);
- // lm_head
- cur = ggml_mul_mat(ctx0, model.output, cur);
- cb(cur, "result_output", -1);
- ggml_build_forward_expand(gf, cur);
- return gf;
- }
- struct ggml_cgraph * build_bert() {
- struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
- const int64_t n_embd_head = hparams.n_embd_head_v;
- const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
- GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
- struct ggml_tensor * cur;
- struct ggml_tensor * inpL;
- struct ggml_tensor * inp_pos = nullptr;
- if (model.arch != LLM_ARCH_JINA_BERT_V2) {
- inp_pos = build_inp_pos();
- }
- struct ggml_tensor * inp_mean = build_inp_mean();
- struct ggml_tensor * inp_cls = build_inp_cls();
- // construct input embeddings (token, type, position)
- inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
- // token types are hardcoded to zero ("Sentence A")
- struct ggml_tensor * type_row0 = ggml_view_1d(ctx0, model.type_embd, n_embd, 0);
- inpL = ggml_add(ctx0, inpL, type_row0);
- if (model.arch == LLM_ARCH_BERT) {
- inpL = ggml_add(ctx0, ggml_get_rows(ctx0, model.pos_embd, inp_pos), inpL);
- }
- cb(inpL, "inp_embd", -1);
- // embed layer norm
- inpL = llm_build_norm(ctx0, inpL, hparams, model.tok_norm, model.tok_norm_b, LLM_NORM, cb, -1);
- cb(inpL, "inp_norm", -1);
- // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
- struct ggml_tensor * KQ_mask = build_inp_KQ_mask(false);
- // iterate layers
- for (int il = 0; il < n_layer; ++il) {
- struct ggml_tensor * cur = inpL;
- struct ggml_tensor * Qcur;
- struct ggml_tensor * Kcur;
- struct ggml_tensor * Vcur;
- // self-attention
- if (model.arch == LLM_ARCH_BERT || model.arch == LLM_ARCH_JINA_BERT_V2) {
- Qcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wq, cur), model.layers[il].bq);
- cb(Qcur, "Qcur", il);
- if (model.layers[il].attn_q_norm) {
- Qcur = llm_build_norm(ctx0, Qcur, hparams,
- model.layers[il].attn_q_norm,
- model.layers[il].attn_q_norm_b,
- LLM_NORM, cb, il);
- }
- Kcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wk, cur), model.layers[il].bk);
- cb(Kcur, "Kcur", il);
- if (model.layers[il].attn_k_norm) {
- Kcur = llm_build_norm(ctx0, Kcur, hparams,
- model.layers[il].attn_k_norm,
- model.layers[il].attn_k_norm_b,
- LLM_NORM, cb, il);
- }
- Vcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wv, cur), model.layers[il].bv);
- cb(Vcur, "Vcur", il);
- Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
- Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
- } else {
- // compute Q and K and RoPE them
- cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
- cb(cur, "wqkv", il);
- Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
- Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
- Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
- cb(Qcur, "Qcur", il);
- cb(Kcur, "Kcur", il);
- cb(Vcur, "Vcur", il);
- Qcur = ggml_rope_custom(
- ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
- n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- cb(Qcur, "Qcur", il);
- Kcur = ggml_rope_custom(
- ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
- n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- cb(Kcur, "Kcur", il);
- }
- struct ggml_tensor * q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
- struct ggml_tensor * k = ggml_cont(ctx0, ggml_permute(ctx0, Kcur, 0, 2, 1, 3));
- struct ggml_tensor * kq = ggml_mul_mat(ctx0, k, q);
- cb(kq, "kq", il);
- kq = ggml_soft_max_ext(ctx0, kq, KQ_mask, 1.0f/sqrtf(float(n_embd_head)), hparams.f_max_alibi_bias);
- cb(kq, "kq_soft_max_ext", il);
- struct ggml_tensor * v = ggml_cont(ctx0, ggml_transpose(ctx0, ggml_reshape_2d(ctx0, Vcur, n_embd_gqa, n_tokens)));
- cb(v, "v", il);
- struct ggml_tensor * kqv = ggml_mul_mat(ctx0, ggml_reshape_3d(ctx0, v, n_tokens, n_embd_head, n_head_kv), kq);
- cb(kqv, "kqv", il);
- struct ggml_tensor * kqv_merged = ggml_permute(ctx0, kqv, 0, 2, 1, 3);
- cb(kqv_merged, "kqv_merged", il);
- cur = ggml_cont_2d(ctx0, kqv_merged, n_embd_gqa, n_tokens);
- cb(cur, "kqv_merged_cont", il);
- ggml_build_forward_expand(gf, cur);
- cur = ggml_mul_mat(ctx0, model.layers[il].wo, cur);
- if (model.layers[il].bo) {
- cb(cur, "kqv_wo", il);
- }
- if (model.layers[il].bo) {
- cur = ggml_add(ctx0, cur, model.layers[il].bo);
- }
- cb(cur, "kqv_out", il);
- if (il == n_layer - 1 && pooling_type == LLAMA_POOLING_TYPE_NONE) {
- // skip computing output for unused tokens
- struct ggml_tensor * inp_out_ids = build_inp_out_ids();
- cur = ggml_get_rows(ctx0, cur, inp_out_ids);
- inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
- }
- // re-add the layer input
- cur = ggml_add(ctx0, cur, inpL);
- // attention layer norm
- cur = llm_build_norm(ctx0, cur, hparams, model.layers[il].attn_out_norm, model.layers[il].attn_out_norm_b, LLM_NORM, cb, il);
- struct ggml_tensor * ffn_inp = cur;
- cb(ffn_inp, "ffn_inp", il);
- // feed-forward network
- if (model.arch == LLM_ARCH_BERT) {
- cur = llm_build_ffn(ctx0, cur,
- model.layers[il].ffn_up, model.layers[il].ffn_up_b,
- NULL, NULL,
- model.layers[il].ffn_down, model.layers[il].ffn_down_b,
- NULL,
- LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
- } else if (model.arch == LLM_ARCH_JINA_BERT_V2) {
- cur = llm_build_ffn(ctx0, cur,
- model.layers[il].ffn_up, NULL,
- model.layers[il].ffn_gate, NULL,
- model.layers[il].ffn_down, model.layers[il].ffn_down_b,
- NULL,
- LLM_FFN_GELU, LLM_FFN_PAR, cb, il);
- } else {
- cur = llm_build_ffn(ctx0, cur,
- model.layers[il].ffn_up, NULL,
- model.layers[il].ffn_gate, NULL,
- model.layers[il].ffn_down, NULL,
- NULL,
- LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
- }
- cb(cur, "ffn_out", il);
- // attentions bypass the intermediate layer
- cur = ggml_add(ctx0, cur, ffn_inp);
- // output layer norm
- cur = llm_build_norm(ctx0, cur, hparams, model.layers[il].layer_out_norm, model.layers[il].layer_out_norm_b, LLM_NORM, cb, il);
- // input for next layer
- inpL = cur;
- }
- // final output
- cur = inpL;
- cb(cur, "result_embd", -1);
- // pooling layer
- switch (pooling_type) {
- case LLAMA_POOLING_TYPE_NONE:
- {
- // nop
- } break;
- case LLAMA_POOLING_TYPE_MEAN:
- {
- cur = ggml_mul_mat(ctx0, ggml_cont(ctx0, ggml_transpose(ctx0, cur)), inp_mean);
- cb(cur, "result_embd_pooled", -1);
- } break;
- case LLAMA_POOLING_TYPE_CLS:
- {
- cur = ggml_get_rows(ctx0, cur, inp_cls);
- cb(cur, "result_embd_pooled", -1);
- } break;
- case LLAMA_POOLING_TYPE_UNSPECIFIED:
- {
- GGML_ASSERT(false && "Invalid pooling type");
- } break;
- }
- ggml_build_forward_expand(gf, cur);
- return gf;
- }
- struct ggml_cgraph * build_bloom() {
- struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
- const int64_t n_embd_head = hparams.n_embd_head_v;
- const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
- GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
- struct ggml_tensor * cur;
- struct ggml_tensor * inpL;
- inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
- // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
- struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
- inpL = llm_build_norm(ctx0, inpL, hparams,
- model.tok_norm,
- model.tok_norm_b,
- LLM_NORM, cb, -1);
- cb(inpL, "inp_norm", -1);
- for (int il = 0; il < n_layer; ++il) {
- cur = llm_build_norm(ctx0, inpL, hparams,
- model.layers[il].attn_norm,
- model.layers[il].attn_norm_b,
- LLM_NORM, cb, il);
- cb(cur, "attn_norm", il);
- // self-attention
- {
- cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
- cb(cur, "wqkv", il);
- cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
- cb(cur, "bqkv", il);
- struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
- struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
- struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
- cb(Qcur, "Qcur", il);
- cb(Kcur, "Kcur", il);
- cb(Vcur, "Vcur", il);
- Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
- cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
- model.layers[il].wo, model.layers[il].bo,
- Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
- }
- if (il == n_layer - 1) {
- // skip computing output for unused tokens
- struct ggml_tensor * inp_out_ids = build_inp_out_ids();
- cur = ggml_get_rows(ctx0, cur, inp_out_ids);
- inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
- }
- // Add the input
- struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
- cb(ffn_inp, "ffn_inp", il);
- // FF
- {
- cur = llm_build_norm(ctx0, ffn_inp, hparams,
- model.layers[il].ffn_norm,
- model.layers[il].ffn_norm_b,
- LLM_NORM, cb, il);
- cb(cur, "ffn_norm", il);
- cur = llm_build_ffn(ctx0, cur,
- model.layers[il].ffn_up, model.layers[il].ffn_up_b,
- NULL, NULL,
- model.layers[il].ffn_down, model.layers[il].ffn_down_b,
- NULL,
- LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
- cb(cur, "ffn_out", il);
- }
- inpL = ggml_add(ctx0, cur, ffn_inp);
- cb(inpL, "l_out", il);
- }
- cur = llm_build_norm(ctx0, inpL, hparams,
- model.output_norm,
- model.output_norm_b,
- LLM_NORM, cb, -1);
- cb(cur, "result_norm", -1);
- cur = ggml_mul_mat(ctx0, model.output, cur);
- cb(cur, "result_output", -1);
- ggml_build_forward_expand(gf, cur);
- return gf;
- }
- struct ggml_cgraph * build_mpt() {
- struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
- const int64_t n_embd_head = hparams.n_embd_head_v;
- const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
- GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
- struct ggml_tensor * cur;
- struct ggml_tensor * pos;
- struct ggml_tensor * inpL;
- inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
- // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
- struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
- if (model.pos_embd) {
- // inp_pos - contains the positions
- struct ggml_tensor * inp_pos = build_inp_pos();
- pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
- cb(pos, "pos_embd", -1);
- inpL = ggml_add(ctx0, inpL, pos);
- cb(inpL, "inpL", -1);
- }
- for (int il = 0; il < n_layer; ++il) {
- struct ggml_tensor * attn_norm;
- attn_norm = llm_build_norm(ctx0, inpL, hparams,
- model.layers[il].attn_norm,
- model.layers[il].attn_norm_b,
- LLM_NORM, cb, il);
- cb(attn_norm, "attn_norm", il);
- // self-attention
- {
- cur = attn_norm;
- cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
- cb(cur, "wqkv", il);
- if (model.layers[il].bqkv){
- cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
- cb(cur, "bqkv", il);
- }
- if (hparams.f_clamp_kqv > 0.0f) {
- cur = ggml_clamp(ctx0, cur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
- cb(cur, "wqkv_clamped", il);
- }
- struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
- struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
- struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
- cb(Qcur, "Qcur", il);
- cb(Kcur, "Kcur", il);
- cb(Vcur, "Vcur", il);
- // Q/K Layernorm
- if (model.layers[il].attn_q_norm) {
- Qcur = llm_build_norm(ctx0, Qcur, hparams,
- model.layers[il].attn_q_norm,
- model.layers[il].attn_q_norm_b,
- LLM_NORM, cb, il);
- cb(Qcur, "Qcur", il);
- Kcur = llm_build_norm(ctx0, Kcur, hparams,
- model.layers[il].attn_k_norm,
- model.layers[il].attn_k_norm_b,
- LLM_NORM, cb, il);
- cb(Kcur, "Kcur", il);
- Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
- Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
- cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
- model.layers[il].wo, model.layers[il].bo,
- Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
- } else {
- Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
- cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
- model.layers[il].wo, model.layers[il].bo,
- Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
- }
- }
- if (il == n_layer - 1) {
- // skip computing output for unused tokens
- struct ggml_tensor * inp_out_ids = build_inp_out_ids();
- cur = ggml_get_rows(ctx0, cur, inp_out_ids);
- inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
- }
- // Add the input
- struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
- cb(ffn_inp, "ffn_inp", il);
- // feed forward
- {
- cur = llm_build_norm(ctx0, ffn_inp, hparams,
- model.layers[il].ffn_norm,
- model.layers[il].ffn_norm_b,
- LLM_NORM, cb, il);
- cb(cur, "ffn_norm", il);
- cur = llm_build_ffn(ctx0, cur,
- model.layers[il].ffn_up, model.layers[il].ffn_up_b,
- NULL, NULL,
- model.layers[il].ffn_down, model.layers[il].ffn_down_b,
- model.layers[il].ffn_act,
- LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
- cb(cur, "ffn_out", il);
- }
- cur = ggml_add(ctx0, cur, ffn_inp);
- cb(cur, "l_out", il);
- // input for next layer
- inpL = cur;
- }
- cur = inpL;
- cur = llm_build_norm(ctx0, cur, hparams,
- model.output_norm,
- model.output_norm_b,
- LLM_NORM, cb, -1);
- cb(cur, "result_norm", -1);
- cur = ggml_mul_mat(ctx0, model.output, cur);
- cb(cur, "result_output", -1);
- ggml_build_forward_expand(gf, cur);
- return gf;
- }
- struct ggml_cgraph * build_stablelm() {
- struct ggml_cgraph * gf = ggml_new_graph(ctx0);
- const int64_t n_embd_head = hparams.n_embd_head_v;
- GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
- struct ggml_tensor * cur;
- struct ggml_tensor * inpL;
- inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
- // inp_pos - contains the positions
- struct ggml_tensor * inp_pos = build_inp_pos();
- // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
- struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
- for (int il = 0; il < n_layer; ++il) {
- // norm
- cur = llm_build_norm(ctx0, inpL, hparams,
- model.layers[il].attn_norm,
- model.layers[il].attn_norm_b,
- LLM_NORM, cb, il);
- cb(cur, "attn_norm", il);
- struct ggml_tensor * inpSA = cur;
- // self-attention
- {
- // compute Q and K and RoPE them
- struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
- cb(Qcur, "Qcur", il);
- if (model.layers[il].bq) {
- Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
- cb(Qcur, "Qcur", il);
- }
- struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
- cb(Kcur, "Kcur", il);
- if (model.layers[il].bk) {
- Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
- cb(Kcur, "Kcur", il);
- }
- struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
- cb(Vcur, "Vcur", il);
- if (model.layers[il].bv) {
- Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
- cb(Vcur, "Vcur", il);
- }
- Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
- cb(Qcur, "Qcur", il);
- Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
- cb(Kcur, "Kcur", il);
- if (model.layers[il].attn_q_norm) {
- Qcur = llm_build_norm(ctx0, Qcur, hparams,
- model.layers[il].attn_q_norm,
- NULL,
- LLM_NORM, cb, il);
- cb(Qcur, "Qcur", il);
- }
- if (model.layers[il].attn_k_norm) {
- Kcur = llm_build_norm(ctx0, Kcur, hparams,
- model.layers[il].attn_k_norm,
- NULL,
- LLM_NORM, cb, il);
- cb(Kcur, "Kcur", il);
- }
- Qcur = ggml_rope_custom(
- ctx0, Qcur, inp_pos,
- n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- cb(Qcur, "Qcur", il);
- Kcur = ggml_rope_custom(
- ctx0, Kcur, inp_pos,
- n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- cb(Kcur, "Kcur", il);
- cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
- model.layers[il].wo, NULL,
- Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
- }
- if (il == n_layer - 1) {
- // skip computing output for unused tokens
- struct ggml_tensor * inp_out_ids = build_inp_out_ids();
- cur = ggml_get_rows(ctx0, cur, inp_out_ids);
- inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
- inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
- }
- struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
- cb(ffn_inp, "ffn_inp", il);
- // feed-forward network
- {
- if (model.layers[il].ffn_norm) {
- cur = llm_build_norm(ctx0, ffn_inp, hparams,
- model.layers[il].ffn_norm,
- model.layers[il].ffn_norm_b,
- LLM_NORM, cb, il);
- cb(cur, "ffn_norm", il);
- } else {
- // parallel residual
- cur = inpSA;
- }
- cur = llm_build_ffn(ctx0, cur,
- model.layers[il].ffn_up, NULL,
- model.layers[il].ffn_gate, NULL,
- model.layers[il].ffn_down, NULL,
- NULL,
- LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
- cb(cur, "ffn_out", il);
- }
- cur = ggml_add(ctx0, cur, ffn_inp);
- cb(cur, "l_out", il);
- // input for next layer
- inpL = cur;
- }
- cur = inpL;
- cur = llm_build_norm(ctx0, cur, hparams,
- model.output_norm,
- model.output_norm_b,
- LLM_NORM, cb, -1);
- cb(cur, "result_norm", -1);
- // lm_head
- cur = ggml_mul_mat(ctx0, model.output, cur);
- cb(cur, "result_output", -1);
- ggml_build_forward_expand(gf, cur);
- return gf;
- }
- struct ggml_cgraph * build_qwen() {
- struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
- const int64_t n_embd_head = hparams.n_embd_head_v;
- GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
- struct ggml_tensor * cur;
- struct ggml_tensor * inpL;
- inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
- // inp_pos - contains the positions
- struct ggml_tensor * inp_pos = build_inp_pos();
- // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
- struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
- for (int il = 0; il < n_layer; ++il) {
- struct ggml_tensor * inpSA = inpL;
- cur = llm_build_norm(ctx0, inpL, hparams,
- model.layers[il].attn_norm, NULL,
- LLM_NORM_RMS, cb, il);
- cb(cur, "attn_norm", il);
- // self-attention
- {
- cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
- cb(cur, "wqkv", il);
- cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
- cb(cur, "bqkv", il);
- struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
- struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
- struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 2*sizeof(float)*(n_embd)));
- cb(Qcur, "Qcur", il);
- cb(Kcur, "Kcur", il);
- cb(Vcur, "Vcur", il);
- Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
- Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
- // using mode = 2 for neox mode
- Qcur = ggml_rope_custom(
- ctx0, Qcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
- freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
- );
- cb(Qcur, "Qcur", il);
- Kcur = ggml_rope_custom(
- ctx0, Kcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
- freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
- );
- cb(Kcur, "Kcur", il);
- cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
- model.layers[il].wo, NULL,
- Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
- }
- if (il == n_layer - 1) {
- // skip computing output for unused tokens
- struct ggml_tensor * inp_out_ids = build_inp_out_ids();
- cur = ggml_get_rows(ctx0, cur, inp_out_ids);
- inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
- }
- struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
- cb(ffn_inp, "ffn_inp", il);
- // feed-forward forward
- {
- cur = llm_build_norm(ctx0, ffn_inp, hparams,
- model.layers[il].ffn_norm, NULL,
- LLM_NORM_RMS, cb, il);
- cb(cur, "ffn_norm", il);
- cur = llm_build_ffn(ctx0, cur,
- model.layers[il].ffn_up, NULL,
- model.layers[il].ffn_gate, NULL,
- model.layers[il].ffn_down, NULL,
- NULL,
- LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
- cb(cur, "ffn_out", il);
- }
- cur = ggml_add(ctx0, cur, ffn_inp);
- cb(cur, "l_out", il);
- // input for next layer
- inpL = cur;
- }
- cur = inpL;
- cur = llm_build_norm(ctx0, cur, hparams,
- model.output_norm, NULL,
- LLM_NORM_RMS, cb, -1);
- cb(cur, "result_norm", -1);
- // lm_head
- cur = ggml_mul_mat(ctx0, model.output, cur);
- cb(cur, "result_output", -1);
- ggml_build_forward_expand(gf, cur);
- return gf;
- }
- struct ggml_cgraph * build_qwen2() {
- struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
- const int64_t n_embd_head = hparams.n_embd_head_v;
- GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
- GGML_ASSERT(n_embd_head == hparams.n_rot);
- struct ggml_tensor * cur;
- struct ggml_tensor * inpL;
- inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
- // inp_pos - contains the positions
- struct ggml_tensor * inp_pos = build_inp_pos();
- // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
- struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
- for (int il = 0; il < n_layer; ++il) {
- struct ggml_tensor * inpSA = inpL;
- // norm
- cur = llm_build_norm(ctx0, inpL, hparams,
- model.layers[il].attn_norm, NULL,
- LLM_NORM_RMS, cb, il);
- cb(cur, "attn_norm", il);
- // self-attention
- {
- // compute Q and K and RoPE them
- struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
- cb(Qcur, "Qcur", il);
- Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
- cb(Qcur, "Qcur", il);
- struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
- cb(Kcur, "Kcur", il);
- Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
- cb(Kcur, "Kcur", il);
- struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
- cb(Vcur, "Vcur", il);
- Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
- cb(Vcur, "Vcur", il);
- Qcur = ggml_rope_custom(
- ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
- n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- cb(Qcur, "Qcur", il);
- Kcur = ggml_rope_custom(
- ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
- n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- cb(Kcur, "Kcur", il);
- cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
- model.layers[il].wo, model.layers[il].bo,
- Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
- }
- if (il == n_layer - 1) {
- // skip computing output for unused tokens
- struct ggml_tensor * inp_out_ids = build_inp_out_ids();
- cur = ggml_get_rows(ctx0, cur, inp_out_ids);
- inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
- }
- struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
- cb(ffn_inp, "ffn_inp", il);
- // feed-forward network
- cur = llm_build_norm(ctx0, ffn_inp, hparams,
- model.layers[il].ffn_norm, NULL,
- LLM_NORM_RMS, cb, il);
- cb(cur, "ffn_norm", il);
- cur = llm_build_ffn(ctx0, cur,
- model.layers[il].ffn_up, NULL,
- model.layers[il].ffn_gate, NULL,
- model.layers[il].ffn_down, NULL,
- NULL,
- LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
- cb(cur, "ffn_out", il);
- cur = ggml_add(ctx0, cur, ffn_inp);
- cb(cur, "l_out", il);
- // input for next layer
- inpL = cur;
- }
- cur = inpL;
- cur = llm_build_norm(ctx0, cur, hparams,
- model.output_norm, NULL,
- LLM_NORM_RMS, cb, -1);
- cb(cur, "result_norm", -1);
- // lm_head
- cur = ggml_mul_mat(ctx0, model.output, cur);
- cb(cur, "result_output", -1);
- ggml_build_forward_expand(gf, cur);
- return gf;
- }
- struct ggml_cgraph * build_qwen2moe() {
- struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
- // mutable variable, needed during the last layer of the computation to skip unused tokens
- int32_t n_tokens = this->n_tokens;
- const int64_t n_embd_head = hparams.n_embd_head_v;
- GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
- GGML_ASSERT(n_embd_head == hparams.n_rot);
- struct ggml_tensor * cur;
- struct ggml_tensor * inpL;
- inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
- // inp_pos - contains the positions
- struct ggml_tensor * inp_pos = build_inp_pos();
- // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
- struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
- for (int il = 0; il < n_layer; ++il) {
- struct ggml_tensor * inpSA = inpL;
- // norm
- cur = llm_build_norm(ctx0, inpL, hparams,
- model.layers[il].attn_norm, NULL,
- LLM_NORM_RMS, cb, il);
- cb(cur, "attn_norm", il);
- // self_attention
- {
- // compute Q and K and RoPE them
- struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
- cb(Qcur, "Qcur", il);
- Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
- cb(Qcur, "Qcur", il);
- struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
- cb(Kcur, "Kcur", il);
- Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
- cb(Kcur, "Kcur", il);
- struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
- cb(Vcur, "Vcur", il);
- Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
- cb(Vcur, "Vcur", il);
- Qcur = ggml_rope_custom(
- ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
- n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- cb(Qcur, "Qcur", il);
- Kcur = ggml_rope_custom(
- ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
- n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- cb(Kcur, "Kcur", il);
- cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
- model.layers[il].wo, model.layers[il].bo,
- Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
- }
- if (il == n_layer - 1) {
- // skip computing output for unused tokens
- struct ggml_tensor * inp_out_ids = build_inp_out_ids();
- n_tokens = n_outputs;
- cur = ggml_get_rows(ctx0, cur, inp_out_ids);
- inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
- }
- struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
- cb(ffn_inp, "ffn_inp", il);
- // MoE branch
- cur = llm_build_norm(ctx0, ffn_inp, hparams,
- model.layers[il].ffn_norm, NULL,
- LLM_NORM_RMS, cb, il);
- cb(cur, "ffn_norm", il);
- ggml_tensor * moe_out =
- llm_build_moe_ffn(ctx0, cur,
- model.layers[il].ffn_gate_inp,
- model.layers[il].ffn_up_exps,
- model.layers[il].ffn_gate_exps,
- model.layers[il].ffn_down_exps,
- n_expert, n_expert_used,
- LLM_FFN_SILU, false,
- cb, il);
- cb(cur, "ffn_moe_out", il);
- // FFN shared expert
- {
- ggml_tensor * cur_gate_inp = ggml_mul_mat(ctx0, model.layers[il].ffn_gate_inp_shexp, cur);
- cb(cur_gate_inp, "ffn_shexp_gate_inp", il);
- // sigmoid
- ggml_tensor * cur_gate = ggml_div(ctx0, ggml_silu(ctx0, cur_gate_inp), cur_gate_inp);
- cb(cur_gate, "ffn_shexp_gate", il);
- ggml_tensor * cur_ffn = llm_build_ffn(ctx0, cur,
- model.layers[il].ffn_up_shexp, NULL,
- model.layers[il].ffn_gate_shexp, NULL,
- model.layers[il].ffn_down_shexp, NULL,
- NULL,
- LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
- cb(cur_ffn, "ffn_shexp", il);
- ggml_tensor * ffn_shexp_out = ggml_mul(ctx0, cur_ffn, cur_gate);
- cb(ffn_shexp_out, "ffn_shexp_out", il);
- moe_out = ggml_add(ctx0, moe_out, ffn_shexp_out);
- cb(moe_out, "ffn_out", il);
- cur = moe_out;
- }
- cur = ggml_add(ctx0, cur, ffn_inp);
- cb(cur, "l_out", il);
- // input for next layer
- inpL = cur;
- }
- cur = inpL;
- cur = llm_build_norm(ctx0, cur, hparams,
- model.output_norm, NULL,
- LLM_NORM_RMS, cb, -1);
- cb(cur, "result_norm", -1);
- // lm_head
- cur = ggml_mul_mat(ctx0, model.output, cur);
- cb(cur, "result_output", -1);
- ggml_build_forward_expand(gf, cur);
- return gf;
- }
- struct ggml_cgraph * build_phi2() {
- struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
- const int64_t n_embd_head = hparams.n_embd_head_v;
- const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
- GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
- struct ggml_tensor * cur;
- struct ggml_tensor * attn_norm_output;
- struct ggml_tensor * ffn_output;
- struct ggml_tensor * inpL;
- inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
- // inp_pos - contains the positions
- struct ggml_tensor * inp_pos = build_inp_pos();
- // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
- struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
- for (int il = 0; il < n_layer; ++il) {
- attn_norm_output = llm_build_norm(ctx0, inpL, hparams,
- model.layers[il].attn_norm,
- model.layers[il].attn_norm_b,
- LLM_NORM, cb, il);
- cb(attn_norm_output, "attn_norm", il);
- // self-attention
- {
- struct ggml_tensor * Qcur = nullptr;
- struct ggml_tensor * Kcur = nullptr;
- struct ggml_tensor * Vcur = nullptr;
- if (model.layers[il].wqkv) {
- cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, attn_norm_output);
- cb(cur, "wqkv", il);
- cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
- cb(cur, "bqkv", il);
- Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
- Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
- Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
- } else {
- Qcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wq, attn_norm_output), model.layers[il].bq);
- Kcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wk, attn_norm_output), model.layers[il].bk);
- Vcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wv, attn_norm_output), model.layers[il].bv);
- }
- cb(Qcur, "Qcur", il);
- cb(Kcur, "Kcur", il);
- cb(Vcur, "Vcur", il);
- Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
- Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
- Qcur = ggml_rope_custom(
- ctx0, Qcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
- freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
- );
- cb(Qcur, "Qcur", il);
- // with phi2, we scale the Q to avoid precision issues
- // ref: https://github.com/ml-explore/mlx-examples/blob/08e862336ade809bc37d1035f94b359e7d1a5152/phi2/phi2.py#L64-L66
- Qcur = ggml_scale(ctx0, Qcur, 1.0f/sqrtf(float(n_embd_head)));
- cb(Qcur, "Qcur", il);
- Kcur = ggml_rope_custom(
- ctx0, Kcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
- freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
- );
- cb(Kcur, "Kcur", il);
- cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
- model.layers[il].wo, model.layers[il].bo,
- Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f, cb, il);
- }
- if (il == n_layer - 1) {
- // skip computing output for unused tokens
- struct ggml_tensor * inp_out_ids = build_inp_out_ids();
- cur = ggml_get_rows(ctx0, cur, inp_out_ids);
- inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
- attn_norm_output = ggml_get_rows(ctx0, attn_norm_output, inp_out_ids);
- }
- // FF
- {
- ffn_output = llm_build_ffn(ctx0, attn_norm_output,
- model.layers[il].ffn_up, model.layers[il].ffn_up_b,
- NULL, NULL,
- model.layers[il].ffn_down, model.layers[il].ffn_down_b,
- NULL,
- LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
- cb(ffn_output, "ffn_out", il);
- }
- cur = ggml_add(ctx0, cur, ffn_output);
- cb(cur, "l_out", il);
- cur = ggml_add(ctx0, cur, inpL);
- cb(cur, "l_out", il);
- inpL = cur;
- }
- cur = llm_build_norm(ctx0, inpL, hparams,
- model.output_norm,
- model.output_norm_b,
- LLM_NORM, cb, -1);
- cb(cur, "result_norm", -1);
- cur = ggml_mul_mat(ctx0, model.output, cur);
- cb(cur, "result_output_no_bias", -1);
- cur = ggml_add(ctx0, cur, model.output_b);
- cb(cur, "result_output", -1);
- ggml_build_forward_expand(gf, cur);
- return gf;
- }
- struct ggml_cgraph * build_phi3() {
- struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
- const int64_t n_embd_head = hparams.n_embd_head_v;
- const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
- GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
- struct ggml_tensor * cur;
- struct ggml_tensor * inpL;
- inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
- // inp_pos - contains the positions
- struct ggml_tensor * inp_pos = build_inp_pos();
- // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
- struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
- for (int il = 0; il < n_layer; ++il) {
- auto residual = inpL;
- // self-attention
- {
- struct ggml_tensor* attn_norm_output = llm_build_norm(ctx0, inpL, hparams,
- model.layers[il].attn_norm,
- NULL,
- LLM_NORM_RMS, cb, il);
- cb(attn_norm_output, "attn_norm", il);
- struct ggml_tensor * Qcur = nullptr;
- struct ggml_tensor * Kcur = nullptr;
- struct ggml_tensor * Vcur = nullptr;
- if (model.layers[il].wqkv) {
- cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, attn_norm_output);
- cb(cur, "wqkv", il);
- Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0 * sizeof(float) * (n_embd)));
- Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1 * sizeof(float) * (n_embd)));
- Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1 * sizeof(float) * (n_embd + n_embd_gqa)));
- }
- else {
- Qcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wq, attn_norm_output), model.layers[il].bq);
- Kcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wk, attn_norm_output), model.layers[il].bk);
- Vcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wv, attn_norm_output), model.layers[il].bv);
- }
- cb(Qcur, "Qcur", il);
- cb(Kcur, "Kcur", il);
- cb(Vcur, "Vcur", il);
- Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
- Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
- Qcur = ggml_rope_custom(
- ctx0, Qcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
- freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
- );
- cb(Qcur, "Qcur", il);
- Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head)));
- cb(Qcur, "Qcur", il);
- Kcur = ggml_rope_custom(
- ctx0, Kcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
- freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
- );
- cb(Kcur, "Kcur", il);
- cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
- model.layers[il].wo, model.layers[il].bo,
- Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f, cb, il);
- }
- if (il == n_layer - 1) {
- // skip computing output for unused tokens
- struct ggml_tensor* inp_out_ids = build_inp_out_ids();
- cur = ggml_get_rows(ctx0, cur, inp_out_ids);
- residual = ggml_get_rows(ctx0, residual, inp_out_ids);
- }
- cur = ggml_add(ctx0, cur, residual);
- residual = cur;
- cur = llm_build_norm(ctx0, cur, hparams,
- model.layers[il].ffn_norm, NULL,
- LLM_NORM_RMS, cb, il);
- cb(cur, "ffn_norm", il);
- // FF
- // special-case: the up and gate tensors are merged into a single tensor
- // TOOD: support into llm_build_ffn
- {
- struct ggml_tensor* up = ggml_mul_mat(ctx0, model.layers[il].ffn_up, cur);
- cb(up, "ffn_up", il);
- auto g = ggml_cont(ctx0, ggml_view_2d(ctx0, up, up->ne[0] / 2, up->ne[1], ggml_row_size(up->type, up->ne[0]), 0));
- auto y = ggml_cont(ctx0, ggml_view_2d(ctx0, up, up->ne[0] / 2, up->ne[1], ggml_row_size(up->type, up->ne[0]), up->nb[1] / 2));
- y = ggml_mul(ctx0, y, ggml_silu(ctx0, g));
- cb(y, "ffn_gate", il);
- auto down = ggml_mul_mat(ctx0, model.layers[il].ffn_down, y);
- cb(down, "ffn_down", il);
- cur = down;
- cb(cur, "ffn_out", il);
- }
- cur = ggml_add(ctx0, residual, cur);
- cb(cur, "l_out", il);
- inpL = cur;
- }
- cur = llm_build_norm(ctx0, inpL, hparams,
- model.output_norm,
- NULL,
- LLM_NORM_RMS, cb, -1);
- cb(cur, "result_norm", -1);
- cur = ggml_mul_mat(ctx0, model.output, cur);
- cb(cur, "result_output", -1);
- ggml_build_forward_expand(gf, cur);
- return gf;
- }
- struct ggml_cgraph * build_plamo() {
- struct ggml_cgraph * gf = ggml_new_graph(ctx0);
- const int64_t n_embd_head = hparams.n_embd_head_v;
- GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
- GGML_ASSERT(n_embd_head == hparams.n_rot);
- struct ggml_tensor * cur;
- struct ggml_tensor * inpL;
- inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
- // inp_pos - contains the positions
- struct ggml_tensor * inp_pos = build_inp_pos();
- // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
- struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
- for (int il = 0; il < n_layer; ++il) {
- // norm
- cur = llm_build_norm(ctx0, inpL, hparams,
- model.layers[il].attn_norm, NULL,
- LLM_NORM_RMS, cb, il);
- cb(cur, "attn_norm", il);
- struct ggml_tensor * attention_norm = cur;
- // self-attention
- {
- // compute Q and K and RoPE them
- struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
- cb(Qcur, "Qcur", il);
- struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
- cb(Kcur, "Kcur", il);
- struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
- cb(Vcur, "Vcur", il);
- Qcur = ggml_rope_custom(
- ctx0, ggml_reshape_3d(ctx0, Qcur, n_rot, n_head, n_tokens), inp_pos,
- n_embd_head, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow);
- cb(Qcur, "Qcur", il);
- Kcur = ggml_rope_custom(
- ctx0, ggml_reshape_3d(ctx0, Kcur, n_rot, n_head_kv, n_tokens), inp_pos,
- n_embd_head, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow);
- cb(Kcur, "Kcur", il);
- cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
- model.layers[il].wo, NULL,
- Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
- }
- struct ggml_tensor * sa_out = cur;
- cur = attention_norm;
- if (il == n_layer - 1) {
- // skip computing output for unused tokens
- struct ggml_tensor * inp_out_ids = build_inp_out_ids();
- cur = ggml_get_rows(ctx0, cur, inp_out_ids);
- sa_out = ggml_get_rows(ctx0, sa_out, inp_out_ids);
- inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
- }
- // feed-forward network
- {
- cur = llm_build_ffn(ctx0, cur,
- model.layers[il].ffn_up, NULL,
- model.layers[il].ffn_gate, NULL,
- model.layers[il].ffn_down, NULL,
- NULL,
- LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
- cb(cur, "ffn_out", il);
- }
- cur = ggml_add(ctx0, cur, sa_out);
- cb(cur, "l_out", il);
- cur = ggml_add(ctx0, cur, inpL);
- cb(cur, "l_out", il);
- // input for next layer
- inpL = cur;
- }
- cur = inpL;
- cur = llm_build_norm(ctx0, cur, hparams,
- model.output_norm, NULL,
- LLM_NORM_RMS, cb, -1);
- cb(cur, "result_norm", -1);
- // lm_head
- cur = ggml_mul_mat(ctx0, model.output, cur);
- cb(cur, "result_output", -1);
- ggml_build_forward_expand(gf, cur);
- return gf;
- }
- struct ggml_cgraph * build_gpt2() {
- struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
- const int64_t n_embd_head = hparams.n_embd_head_v;
- const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
- GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
- struct ggml_tensor * cur;
- struct ggml_tensor * pos;
- struct ggml_tensor * inpL;
- inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
- // inp_pos - contains the positions
- struct ggml_tensor * inp_pos = build_inp_pos();
- // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
- struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
- pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
- cb(pos, "pos_embd", -1);
- inpL = ggml_add(ctx0, inpL, pos);
- cb(inpL, "inpL", -1);
- for (int il = 0; il < n_layer; ++il) {
- cur = llm_build_norm(ctx0, inpL, hparams,
- model.layers[il].attn_norm,
- model.layers[il].attn_norm_b,
- LLM_NORM, cb, il);
- cb(cur, "attn_norm", il);
- // self-attention
- {
- cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
- cb(cur, "wqkv", il);
- cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
- cb(cur, "bqkv", il);
- struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
- struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
- struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
- cb(Qcur, "Qcur", il);
- cb(Kcur, "Kcur", il);
- cb(Vcur, "Vcur", il);
- Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
- cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
- model.layers[il].wo, model.layers[il].bo,
- Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
- }
- if (il == n_layer - 1) {
- // skip computing output for unused tokens
- struct ggml_tensor * inp_out_ids = build_inp_out_ids();
- cur = ggml_get_rows(ctx0, cur, inp_out_ids);
- inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
- }
- // add the input
- struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
- cb(ffn_inp, "ffn_inp", il);
- // FF
- {
- cur = llm_build_norm(ctx0, ffn_inp, hparams,
- model.layers[il].ffn_norm,
- model.layers[il].ffn_norm_b,
- LLM_NORM, cb, il);
- cb(cur, "ffn_norm", il);
- cur = llm_build_ffn(ctx0, cur,
- model.layers[il].ffn_up, model.layers[il].ffn_up_b,
- NULL, NULL,
- model.layers[il].ffn_down, model.layers[il].ffn_down_b,
- NULL,
- LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
- cb(cur, "ffn_out", il);
- }
- inpL = ggml_add(ctx0, cur, ffn_inp);
- cb(inpL, "l_out", il);
- }
- cur = llm_build_norm(ctx0, inpL, hparams,
- model.output_norm,
- model.output_norm_b,
- LLM_NORM, cb, -1);
- cb(cur, "result_norm", -1);
- cur = ggml_mul_mat(ctx0, model.output, cur);
- cb(cur, "result_output", -1);
- ggml_build_forward_expand(gf, cur);
- return gf;
- }
- struct ggml_cgraph * build_codeshell() {
- struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
- const int64_t n_embd_head = hparams.n_embd_head_v;
- const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
- GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
- GGML_ASSERT(n_embd_head == hparams.n_rot);
- struct ggml_tensor * cur;
- struct ggml_tensor * inpL;
- inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
- // inp_pos - contains the positions
- struct ggml_tensor * inp_pos = build_inp_pos();
- // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
- struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
- for (int il = 0; il < n_layer; ++il) {
- cur = llm_build_norm(ctx0, inpL, hparams,
- model.layers[il].attn_norm,
- model.layers[il].attn_norm_b,
- LLM_NORM, cb, il);
- cb(cur, "attn_norm", il);
- // self-attention
- {
- cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
- cb(cur, "wqkv", il);
- cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
- cb(cur, "bqkv", il);
- struct ggml_tensor * tmpq = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
- struct ggml_tensor * tmpk = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
- struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
- cb(tmpq, "tmpq", il);
- cb(tmpk, "tmpk", il);
- cb(Vcur, "Vcur", il);
- struct ggml_tensor * Qcur = ggml_rope_custom(
- ctx0, ggml_reshape_3d(ctx0, tmpq, n_embd_head, n_head, n_tokens), inp_pos,
- n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- cb(Qcur, "Qcur", il);
- struct ggml_tensor * Kcur = ggml_rope_custom(
- ctx0, ggml_reshape_3d(ctx0, tmpk, n_embd_head, n_head_kv, n_tokens), inp_pos,
- n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- cb(Kcur, "Kcur", il);
- cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
- model.layers[il].wo, model.layers[il].bo,
- Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
- }
- if (il == n_layer - 1) {
- // skip computing output for unused tokens
- struct ggml_tensor * inp_out_ids = build_inp_out_ids();
- cur = ggml_get_rows(ctx0, cur, inp_out_ids);
- inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
- }
- // add the input
- struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
- cb(ffn_inp, "ffn_inp", il);
- // FF
- {
- cur = llm_build_norm(ctx0, ffn_inp, hparams,
- model.layers[il].ffn_norm,
- model.layers[il].ffn_norm_b,
- LLM_NORM, cb, il);
- cb(cur, "ffn_norm", il);
- cur = llm_build_ffn(ctx0, cur,
- model.layers[il].ffn_up, model.layers[il].ffn_up_b,
- NULL, NULL,
- model.layers[il].ffn_down, model.layers[il].ffn_down_b,
- NULL,
- LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
- cb(cur, "ffn_out", il);
- }
- inpL = ggml_add(ctx0, cur, ffn_inp);
- cb(inpL, "l_out", il);
- }
- cur = llm_build_norm(ctx0, inpL, hparams,
- model.output_norm,
- model.output_norm_b,
- LLM_NORM, cb, -1);
- cb(cur, "result_norm", -1);
- cur = ggml_mul_mat(ctx0, model.output, cur);
- cb(cur, "result_output", -1);
- ggml_build_forward_expand(gf, cur);
- return gf;
- }
- struct ggml_cgraph * build_orion() {
- struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
- const int64_t n_embd_head = hparams.n_embd_head_v;
- GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
- GGML_ASSERT(n_embd_head == hparams.n_rot);
- struct ggml_tensor * cur;
- struct ggml_tensor * inpL;
- inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
- // inp_pos - contains the positions
- struct ggml_tensor * inp_pos = build_inp_pos();
- // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
- struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
- for (int il = 0; il < n_layer; ++il) {
- struct ggml_tensor * inpSA = inpL;
- // norm
- cur = llm_build_norm(ctx0, inpL, hparams,
- model.layers[il].attn_norm, model.layers[il].attn_norm_b,
- LLM_NORM, cb, il);
- cb(cur, "attn_norm", il);
- // self-attention
- {
- // compute Q and K and RoPE them
- struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
- cb(Qcur, "Qcur", il);
- // if (model.layers[il].bq) {
- // Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
- // cb(Qcur, "Qcur", il);
- // }
- struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
- cb(Kcur, "Kcur", il);
- // if (model.layers[il].bk) {
- // Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
- // cb(Kcur, "Kcur", il);
- // }
- struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
- cb(Vcur, "Vcur", il);
- // if (model.layers[il].bv) {
- // Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
- // cb(Vcur, "Vcur", il);
- // }
- Qcur = ggml_rope_custom(
- ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
- n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- cb(Qcur, "Qcur", il);
- Kcur = ggml_rope_custom(
- ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
- n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- cb(Kcur, "Kcur", il);
- cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
- model.layers[il].wo, NULL,
- Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
- }
- if (il == n_layer - 1) {
- // skip computing output for unused tokens
- struct ggml_tensor * inp_out_ids = build_inp_out_ids();
- cur = ggml_get_rows(ctx0, cur, inp_out_ids);
- inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
- }
- struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
- cb(ffn_inp, "ffn_inp", il);
- // feed-forward network
- cur = llm_build_norm(ctx0, ffn_inp, hparams,
- model.layers[il].ffn_norm, model.layers[il].ffn_norm_b,
- LLM_NORM, cb, il);
- cb(cur, "ffn_norm", il);
- cur = llm_build_ffn(ctx0, cur,
- model.layers[il].ffn_up, NULL,
- model.layers[il].ffn_gate, NULL,
- model.layers[il].ffn_down, NULL,
- NULL,
- LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
- cb(cur, "ffn_out", il);
- cur = ggml_add(ctx0, cur, ffn_inp);
- cb(cur, "l_out", il);
- // input for next layer
- inpL = cur;
- }
- cur = inpL;
- cur = llm_build_norm(ctx0, cur, hparams,
- model.output_norm, model.output_norm_b,
- LLM_NORM, cb, -1);
- cb(cur, "result_norm", -1);
- // lm_head
- cur = ggml_mul_mat(ctx0, model.output, cur);
- cb(cur, "result_output", -1);
- ggml_build_forward_expand(gf, cur);
- return gf;
- }
- struct ggml_cgraph * build_internlm2() {
- struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
- const int64_t n_embd_head = hparams.n_embd_head_v;
- GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
- GGML_ASSERT(n_embd_head == hparams.n_rot);
- struct ggml_tensor * cur;
- struct ggml_tensor * inpL;
- inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
- // inp_pos - contains the positions
- struct ggml_tensor * inp_pos = build_inp_pos();
- // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
- struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
- for (int il = 0; il < n_layer; ++il) {
- struct ggml_tensor * inpSA = inpL;
- // norm
- cur = llm_build_norm(ctx0, inpL, hparams,
- model.layers[il].attn_norm, NULL,
- LLM_NORM_RMS, cb, il);
- cb(cur, "attn_norm", il);
- // self-attention
- {
- // compute Q and K and RoPE them
- struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
- cb(Qcur, "Qcur", il);
- if (model.layers[il].bq) {
- Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
- cb(Qcur, "Qcur", il);
- }
- struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
- cb(Kcur, "Kcur", il);
- if (model.layers[il].bk) {
- Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
- cb(Kcur, "Kcur", il);
- }
- struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
- cb(Vcur, "Vcur", il);
- if (model.layers[il].bv) {
- Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
- cb(Vcur, "Vcur", il);
- }
- Qcur = ggml_rope_custom(
- ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
- n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- cb(Qcur, "Qcur", il);
- Kcur = ggml_rope_custom(
- ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
- n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- cb(Kcur, "Kcur", il);
- cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
- model.layers[il].wo, model.layers[il].bo,
- Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
- }
- if (il == n_layer - 1) {
- // skip computing output for unused tokens
- struct ggml_tensor * inp_out_ids = build_inp_out_ids();
- cur = ggml_get_rows(ctx0, cur, inp_out_ids);
- inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
- }
- struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
- cb(ffn_inp, "ffn_inp", il);
- // feed-forward network
- cur = llm_build_norm(ctx0, ffn_inp, hparams,
- model.layers[il].ffn_norm, NULL,
- LLM_NORM_RMS, cb, il);
- cb(cur, "ffn_norm", il);
- cur = llm_build_ffn(ctx0, cur,
- model.layers[il].ffn_up, NULL,
- model.layers[il].ffn_gate, NULL,
- model.layers[il].ffn_down, NULL,
- NULL,
- LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
- cb(cur, "ffn_out", il);
- cur = ggml_add(ctx0, cur, ffn_inp);
- cb(cur, "l_out", il);
- // input for next layer
- inpL = cur;
- }
- cur = inpL;
- cur = llm_build_norm(ctx0, cur, hparams,
- model.output_norm, NULL,
- LLM_NORM_RMS, cb, -1);
- cb(cur, "result_norm", -1);
- // lm_head
- cur = ggml_mul_mat(ctx0, model.output, cur);
- cb(cur, "result_output", -1);
- ggml_build_forward_expand(gf, cur);
- return gf;
- }
- // ref: https://arxiv.org/abs/2203.03466
- // https://github.com/ggerganov/llama.cpp/issues/5276#issuecomment-1925774738
- // based on the original build_llama() function
- struct ggml_cgraph * build_minicpm() {
- struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
- const int64_t n_embd_head = hparams.n_embd_head_v;
- GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
- GGML_ASSERT(n_embd_head == hparams.n_rot);
- const int64_t n_embd = hparams.n_embd;
- //TODO: if the model varies, these parameters need to be read from the model
- const int64_t n_embd_base = 256;
- const float scale_embd = 12.0f;
- const float scale_depth = 1.4f;
- struct ggml_tensor * cur;
- struct ggml_tensor * inpL;
- inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
- // scale the input embeddings
- inpL = ggml_scale(ctx0, inpL, scale_embd);
- cb(inpL, "inp_scaled", -1);
- // inp_pos - contains the positions
- struct ggml_tensor * inp_pos = build_inp_pos();
- // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
- struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
- for (int il = 0; il < n_layer; ++il) {
- struct ggml_tensor * inpSA = inpL;
- // norm
- cur = llm_build_norm(ctx0, inpL, hparams,
- model.layers[il].attn_norm, NULL,
- LLM_NORM_RMS, cb, il);
- cb(cur, "attn_norm", il);
- // self-attention
- {
- // compute Q and K and RoPE them
- struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
- cb(Qcur, "Qcur", il);
- if (model.layers[il].bq) {
- Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
- cb(Qcur, "Qcur", il);
- }
- struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
- cb(Kcur, "Kcur", il);
- if (model.layers[il].bk) {
- Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
- cb(Kcur, "Kcur", il);
- }
- struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
- cb(Vcur, "Vcur", il);
- if (model.layers[il].bv) {
- Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
- cb(Vcur, "Vcur", il);
- }
- Qcur = ggml_rope_custom(
- ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
- n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- cb(Qcur, "Qcur", il);
- Kcur = ggml_rope_custom(
- ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
- n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- cb(Kcur, "Kcur", il);
- cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
- model.layers[il].wo, model.layers[il].bo,
- Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
- }
- if (il == n_layer - 1) {
- // skip computing output for unused tokens
- struct ggml_tensor * inp_out_ids = build_inp_out_ids();
- cur = ggml_get_rows(ctx0, cur, inp_out_ids);
- inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
- }
- // scale_res - scale the hidden states for residual connection
- const float scale_res = scale_depth/sqrtf(float(n_layer));
- cur = ggml_scale(ctx0, cur, scale_res);
- cb(cur, "hidden_scaled", -1);
- struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
- cb(ffn_inp, "ffn_inp", il);
- // feed-forward network
- {
- cur = llm_build_norm(ctx0, ffn_inp, hparams,
- model.layers[il].ffn_norm, NULL,
- LLM_NORM_RMS, cb, il);
- cb(cur, "ffn_norm", il);
- cur = llm_build_ffn(ctx0, cur,
- model.layers[il].ffn_up, NULL,
- model.layers[il].ffn_gate, NULL,
- model.layers[il].ffn_down, NULL,
- NULL,
- LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
- cb(cur, "ffn_out", il);
- }
- // scale the hidden states for residual connection
- cur = ggml_scale(ctx0, cur, scale_res);
- cb(cur, "hidden_scaled_ffn", -1);
- cur = ggml_add(ctx0, cur, ffn_inp);
- cb(cur, "l_out", il);
- // input for next layer
- inpL = cur;
- }
- cur = inpL;
- cur = llm_build_norm(ctx0, cur, hparams,
- model.output_norm, NULL,
- LLM_NORM_RMS, cb, -1);
- cb(cur, "result_norm", -1);
- // lm_head scaling
- const float scale_lmhead = float(n_embd_base)/float(n_embd);
- cur = ggml_scale(ctx0, cur, scale_lmhead);
- cb(cur, "lmhead_scaling", -1);
- // lm_head
- cur = ggml_mul_mat(ctx0, model.tok_embd, cur);
- cb(cur, "result_output", -1);
- ggml_build_forward_expand(gf, cur);
- return gf;
- }
- struct ggml_cgraph * build_gemma() {
- struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
- const int64_t n_embd_head_k = hparams.n_embd_head_k;
- struct ggml_tensor * cur;
- struct ggml_tensor * inpL;
- inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
- inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd));
- cb(inpL, "inp_scaled", -1);
- // inp_pos - contains the positions
- struct ggml_tensor * inp_pos = build_inp_pos();
- // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
- struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
- for (int il = 0; il < n_layer; ++il) {
- // norm
- cur = llm_build_norm(ctx0, inpL, hparams,
- model.layers[il].attn_norm, NULL,
- LLM_NORM_RMS, cb, il);
- cb(cur, "attn_norm", il);
- // self-attention
- {
- // compute Q and K and RoPE them
- struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
- cb(Qcur, "Qcur", il);
- struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
- cb(Kcur, "Kcur", il);
- struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
- cb(Vcur, "Vcur", il);
- Qcur = ggml_rope_custom(
- ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head_k, n_head, n_tokens), inp_pos,
- n_embd_head_k, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow);
- cb(Qcur, "Qcur", il);
- Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head_k)));
- cb(Qcur, "Qcur_scaled", il);
- Kcur = ggml_rope_custom(
- ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head_k, n_head_kv, n_tokens), inp_pos,
- n_embd_head_k, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow);
- cb(Kcur, "Kcur", il);
- cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
- model.layers[il].wo, NULL,
- Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f, cb, il);
- }
- if (il == n_layer - 1) {
- // skip computing output for unused tokens
- struct ggml_tensor * inp_out_ids = build_inp_out_ids();
- cur = ggml_get_rows(ctx0, cur, inp_out_ids);
- inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
- }
- struct ggml_tensor * sa_out = ggml_add(ctx0, cur, inpL);
- cb(sa_out, "sa_out", il);
- cur = llm_build_norm(ctx0, sa_out, hparams,
- model.layers[il].ffn_norm, NULL,
- LLM_NORM_RMS, cb, il);
- cb(cur, "ffn_norm", il);
- // feed-forward network
- {
- cur = llm_build_ffn(ctx0, cur,
- model.layers[il].ffn_up, NULL,
- model.layers[il].ffn_gate, NULL,
- model.layers[il].ffn_down, NULL,
- NULL,
- LLM_FFN_GELU, LLM_FFN_PAR, cb, il);
- cb(cur, "ffn_out", il);
- }
- cur = ggml_add(ctx0, cur, sa_out);
- cb(cur, "l_out", il);
- // input for next layer
- inpL = cur;
- }
- cur = inpL;
- cur = llm_build_norm(ctx0, cur, hparams,
- model.output_norm, NULL,
- LLM_NORM_RMS, cb, -1);
- cb(cur, "result_norm", -1);
- // lm_head
- cur = ggml_mul_mat(ctx0, model.output, cur);
- cb(cur, "result_output", -1);
- ggml_build_forward_expand(gf, cur);
- return gf;
- }
- struct ggml_cgraph * build_starcoder2() {
- struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
- const int64_t n_embd_head = hparams.n_embd_head_v;
- GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
- GGML_ASSERT(n_embd_head == hparams.n_rot);
- struct ggml_tensor * cur;
- struct ggml_tensor * inpL;
- inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
- // inp_pos - contains the positions
- struct ggml_tensor * inp_pos = build_inp_pos();
- // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
- struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
- for (int il = 0; il < n_layer; ++il) {
- struct ggml_tensor * inpSA = inpL;
- // norm
- cur = llm_build_norm(ctx0, inpL, hparams,
- model.layers[il].attn_norm, model.layers[il].attn_norm_b,
- LLM_NORM, cb, il);
- cb(cur, "attn_norm", il);
- // self-attention
- {
- // compute Q and K and RoPE them
- struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
- cb(Qcur, "Qcur", il);
- if (model.layers[il].bq) {
- Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
- cb(Qcur, "Qcur", il);
- }
- struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
- cb(Kcur, "Kcur", il);
- if (model.layers[il].bk) {
- Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
- cb(Kcur, "Kcur", il);
- }
- struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
- cb(Vcur, "Vcur", il);
- if (model.layers[il].bv) {
- Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
- cb(Vcur, "Vcur", il);
- }
- Qcur = ggml_rope_custom(
- ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
- n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- cb(Qcur, "Qcur", il);
- Kcur = ggml_rope_custom(
- ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
- n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- cb(Kcur, "Kcur", il);
- cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
- model.layers[il].wo, model.layers[il].bo,
- Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
- }
- if (il == n_layer - 1) {
- // skip computing output for unused tokens
- struct ggml_tensor * inp_out_ids = build_inp_out_ids();
- cur = ggml_get_rows(ctx0, cur, inp_out_ids);
- inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
- }
- struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
- cb(ffn_inp, "ffn_inp", il);
- // feed-forward network
- cur = llm_build_norm(ctx0, ffn_inp, hparams,
- model.layers[il].ffn_norm, model.layers[il].ffn_norm_b,
- LLM_NORM, cb, il);
- cb(cur, "ffn_norm", il);
- cur = llm_build_ffn(ctx0, cur,
- model.layers[il].ffn_up, model.layers[il].ffn_up_b,
- NULL, NULL,
- model.layers[il].ffn_down, model.layers[il].ffn_down_b,
- NULL,
- LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
- cb(cur, "ffn_out", il);
- cur = ggml_add(ctx0, cur, ffn_inp);
- cb(cur, "l_out", il);
- // input for next layer
- inpL = cur;
- }
- cur = inpL;
- cur = llm_build_norm(ctx0, cur, hparams,
- model.output_norm, model.output_norm_b,
- LLM_NORM, cb, -1);
- cb(cur, "result_norm", -1);
- // lm_head
- cur = ggml_mul_mat(ctx0, model.output, cur);
- cb(cur, "result_output", -1);
- ggml_build_forward_expand(gf, cur);
- return gf;
- }
- struct ggml_cgraph * build_mamba() {
- struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
- const int64_t d_model = n_embd;
- const int64_t d_conv = hparams.ssm_d_conv;
- const int64_t d_inner = hparams.ssm_d_inner;
- GGML_ASSERT(2 * d_model == d_inner);
- const int64_t d_state = hparams.ssm_d_state;
- const int64_t dt_rank = hparams.ssm_dt_rank;
- struct ggml_tensor * cur;
- struct ggml_tensor * inpL;
- // {n_embd, n_tokens}
- inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
- struct ggml_tensor * state_mask = build_inp_s_mask();
- struct ggml_tensor * state_seq = build_inp_s_seq();
- for (int il = 0; il < n_layer; ++il) {
- // (ab)using the KV cache to store the states
- struct ggml_tensor * conv_states = ggml_reshape_2d(ctx0, kv_self.k_l[il], hparams.n_embd_k_s(), kv_self.size);
- struct ggml_tensor * ssm_states = ggml_reshape_2d(ctx0, kv_self.v_l[il], hparams.n_embd_v_s(), kv_self.size);
- // clear states of sequences which are starting at the beginning of this batch
- {
- conv_states = ggml_mul(ctx0,
- ggml_view_2d(ctx0, conv_states, conv_states->ne[0], n_kv, conv_states->nb[1], kv_head*conv_states->nb[1]),
- state_mask);
- ssm_states = ggml_mul(ctx0,
- ggml_view_2d(ctx0, ssm_states, ssm_states->ne[0], n_kv, ssm_states->nb[1], kv_head*ssm_states->nb[1]),
- state_mask);
- }
- conv_states = ggml_reshape_3d(ctx0, conv_states, d_conv - 1, d_inner, n_kv);
- ssm_states = ggml_reshape_3d(ctx0, ssm_states, d_state, d_inner, n_kv);
- // norm
- cur = llm_build_norm(ctx0, inpL, hparams,
- model.layers[il].attn_norm, NULL,
- LLM_NORM_RMS, cb, il);
- cb(cur, "attn_norm", il);
- // {n_embd, 2*d_inner} * {n_embd, n_tokens} => {2*d_inner, n_tokens}
- struct ggml_tensor * xz = ggml_mul_mat(ctx0, model.layers[il].ssm_in, cur);
- // split the above in two
- // => {d_inner, n_tokens}
- struct ggml_tensor * x = ggml_view_2d(ctx0, xz, d_inner, xz->ne[1], xz->nb[1], 0);
- struct ggml_tensor * z = ggml_view_2d(ctx0, xz, d_inner, xz->ne[1], xz->nb[1], ggml_element_size(xz)*d_inner);
- // conv
- {
- // Custom operator which is needed only to ease simultaneous sequence processing.
- // For a single sequence, the equivalent is to concatenate the columns of conv_states and x,
- // then make a self-overlapping view of that over d_conv columns at each stride in the 3rd dimension,
- // then element-wise multiply that with the conv1d weigth,
- // then sum the elements of each row,
- // (the last two steps are a dot product over rows (also doable with mul_mat))
- // then permute away the ne[0] dimension,
- // and then you're left with the resulting x tensor.
- // The new conv_states is the last (d_conv - 1) columns
- // of the last 3rd dimensional "layer" of the self-overlapping view.
- // For simultaneous sequences, it's more complicated.
- struct ggml_tensor * x_conv = ggml_ssm_conv(ctx0, conv_states, x, model.layers[il].ssm_conv1d, state_seq);
- // store last (d_conv - 1) columns of the conv_state part of x_conv back into the KV cache
- ggml_build_forward_expand(gf,
- ggml_cpy(ctx0,
- ggml_view_2d(ctx0, x_conv, d_conv - 1, d_inner*n_kv, d_conv*ggml_element_size(x_conv), (1+d_inner*n_tokens)*ggml_element_size(x_conv)),
- ggml_view_1d(ctx0, kv_self.k_l[il], (d_conv - 1)*(d_inner)*(n_kv), kv_head*(d_conv - 1)*(d_inner)*ggml_element_size(x_conv))));
- // extract x from x_conv
- x = ggml_view_2d(ctx0, x_conv, d_inner, n_tokens, d_inner*ggml_element_size(x_conv), 0);
- // bias
- x = ggml_add(ctx0, x, model.layers[il].ssm_conv1d_b);
- x = ggml_silu(ctx0, x);
- }
- // ssm
- {
- // {d_inner, dt_rank + 2*d_state} * {d_inner, n_tokens} => {dt_rank + 2*d_state, n_tokens}
- struct ggml_tensor * x_db = ggml_mul_mat(ctx0, model.layers[il].ssm_x, x);
- // split
- struct ggml_tensor * dt = ggml_view_2d(ctx0, x_db, dt_rank, n_tokens, x_db->nb[1], 0);
- struct ggml_tensor * B = ggml_view_2d(ctx0, x_db, d_state, n_tokens, x_db->nb[1], ggml_element_size(x_db)*dt_rank);
- struct ggml_tensor * C = ggml_view_2d(ctx0, x_db, d_state, n_tokens, x_db->nb[1], ggml_element_size(x_db)*(dt_rank+d_state));
- // {dt_rank, d_inner} * {dt_rank, n_tokens} => {d_inner, n_tokens}
- dt = ggml_mul_mat(ctx0, model.layers[il].ssm_dt, dt);
- dt = ggml_add(ctx0, dt, model.layers[il].ssm_dt_b);
- // Custom operator to optimize the parallel associative scan
- // as described in the Annex D of the Mamba paper.
- // => {d_inner, n_tokens} and {d_state, d_inner, n_kv} combined,
- // because only a single tensor can be returned.
- struct ggml_tensor * y_ssm_states = ggml_ssm_scan(ctx0, ssm_states, x, dt, model.layers[il].ssm_a, B, C, state_seq);
- // store last states (the second part of y_ssm_states)
- ggml_build_forward_expand(gf,
- ggml_cpy(ctx0,
- ggml_view_1d(ctx0, y_ssm_states, d_state*d_inner*n_kv, d_inner*n_tokens*ggml_element_size(y_ssm_states)),
- ggml_view_1d(ctx0, kv_self.v_l[il], d_state*d_inner*n_kv, kv_head*d_state*d_inner*ggml_element_size(ssm_states))));
- struct ggml_tensor * y = ggml_view_2d(ctx0, y_ssm_states, d_inner, n_tokens, d_inner*ggml_element_size(y_ssm_states), 0);
- if (il == n_layer - 1) {
- // skip computing output for unused tokens
- struct ggml_tensor * inp_out_ids = build_inp_out_ids();
- x = ggml_get_rows(ctx0, x, inp_out_ids);
- y = ggml_get_rows(ctx0, y, inp_out_ids);
- z = ggml_get_rows(ctx0, z, inp_out_ids);
- inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
- }
- // {d_inner, n_tokens} * {d_inner} => {d_inner, n_tokens}
- y = ggml_add(ctx0, y, ggml_mul(ctx0, x, model.layers[il].ssm_d));
- y = ggml_mul(ctx0, y, ggml_silu(ctx0, z));
- // {d_inner, n_embd} * {d_inner, n_tokens} => {n_embd, n_tokens}
- cur = ggml_mul_mat(ctx0, model.layers[il].ssm_out, y);
- }
- // residual
- cur = ggml_add(ctx0, cur, inpL);
- cb(cur, "l_out", il);
- // input for next layer
- inpL = cur;
- }
- // final rmsnorm
- cur = llm_build_norm(ctx0, inpL, hparams,
- model.output_norm, NULL,
- LLM_NORM_RMS, cb, -1);
- cb(cur, "result_norm", -1);
- // lm_head
- cur = ggml_mul_mat(ctx0, model.output, cur);
- cb(cur, "result_output", -1);
- ggml_build_forward_expand(gf, cur);
- return gf;
- }
- struct ggml_cgraph * build_command_r() {
- struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
- const int64_t n_embd_head = hparams.n_embd_head_v;
- GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
- const float f_logit_scale = hparams.f_logit_scale;
- struct ggml_tensor * cur;
- struct ggml_tensor * inpL;
- inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
- // inp_pos - contains the positions
- struct ggml_tensor * inp_pos = build_inp_pos();
- // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
- struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
- for (int il = 0; il < n_layer; ++il) {
- // norm
- cur = llm_build_norm(ctx0, inpL, hparams,
- model.layers[il].attn_norm, NULL,
- LLM_NORM, cb, il);
- cb(cur, "attn_norm", il);
- struct ggml_tensor * ffn_inp = cur;
- // self-attention
- {
- // compute Q and K and RoPE them
- struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
- cb(Qcur, "Qcur", il);
- if (model.layers[il].bq) {
- Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
- cb(Qcur, "Qcur", il);
- }
- struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
- cb(Kcur, "Kcur", il);
- if (model.layers[il].bk) {
- Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
- cb(Kcur, "Kcur", il);
- }
- struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
- cb(Vcur, "Vcur", il);
- if (model.layers[il].bv) {
- Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
- cb(Vcur, "Vcur", il);
- }
- if (model.layers[il].attn_q_norm) {
- Qcur = ggml_view_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens,
- ggml_element_size(Qcur) * n_embd_head,
- ggml_element_size(Qcur) * n_embd_head * n_head,
- 0);
- cb(Qcur, "Qcur", il);
- Kcur = ggml_view_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens,
- ggml_element_size(Kcur) * n_embd_head,
- ggml_element_size(Kcur) * n_embd_head * n_head_kv,
- 0);
- cb(Kcur, "Kcur", il);
- Qcur = llm_build_norm(ctx0, Qcur, hparams,
- model.layers[il].attn_q_norm,
- NULL,
- LLM_NORM, cb, il);
- cb(Qcur, "Qcur", il);
- Kcur = llm_build_norm(ctx0, Kcur, hparams,
- model.layers[il].attn_k_norm,
- NULL,
- LLM_NORM, cb, il);
- cb(Kcur, "Kcur", il);
- }
- Qcur = ggml_rope_custom(
- ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
- n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- cb(Qcur, "Qcur", il);
- Kcur = ggml_rope_custom(
- ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
- n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- cb(Kcur, "Kcur", il);
- cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
- model.layers[il].wo, model.layers[il].bo,
- Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
- }
- if (il == n_layer - 1) {
- // skip computing output for unused tokens
- struct ggml_tensor * inp_out_ids = build_inp_out_ids();
- cur = ggml_get_rows(ctx0, cur, inp_out_ids);
- inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
- ffn_inp = ggml_get_rows(ctx0, ffn_inp, inp_out_ids);
- }
- struct ggml_tensor * attn_out = cur;
- // feed-forward network
- {
- cur = llm_build_ffn(ctx0, ffn_inp,
- model.layers[il].ffn_up, NULL,
- model.layers[il].ffn_gate, NULL,
- model.layers[il].ffn_down, NULL,
- NULL,
- LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
- cb(cur, "ffn_out", il);
- }
- // add together residual + FFN + self-attention
- cur = ggml_add(ctx0, cur, inpL);
- cur = ggml_add(ctx0, cur, attn_out);
- cb(cur, "l_out", il);
- // input for next layer
- inpL = cur;
- }
- cur = inpL;
- cur = llm_build_norm(ctx0, cur, hparams,
- model.output_norm, NULL,
- LLM_NORM, cb, -1);
- cb(cur, "result_norm", -1);
- // lm_head
- cur = ggml_mul_mat(ctx0, model.output, cur);
- if (f_logit_scale) {
- cur = ggml_scale(ctx0, cur, f_logit_scale);
- }
- cb(cur, "result_output", -1);
- ggml_build_forward_expand(gf, cur);
- return gf;
- }
- // ref: https://allenai.org/olmo
- // based on the original build_llama() function, changes:
- // * non-parametric layer norm
- // * clamp qkv
- // * removed bias
- // * removed MoE
- struct ggml_cgraph * build_olmo() {
- struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
- // mutable variable, needed during the last layer of the computation to skip unused tokens
- int32_t n_tokens = this->n_tokens;
- const int64_t n_embd_head = hparams.n_embd_head_v;
- GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
- GGML_ASSERT(n_embd_head == hparams.n_rot);
- struct ggml_tensor * cur;
- struct ggml_tensor * inpL;
- inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
- // inp_pos - contains the positions
- struct ggml_tensor * inp_pos = build_inp_pos();
- // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
- struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
- for (int il = 0; il < n_layer; ++il) {
- struct ggml_tensor * inpSA = inpL;
- // norm
- cur = llm_build_norm(ctx0, inpL, hparams,
- NULL, NULL,
- LLM_NORM, cb, il);
- cb(cur, "attn_norm", il);
- // self-attention
- {
- // compute Q and K and RoPE them
- struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
- cb(Qcur, "Qcur", il);
- if (hparams.f_clamp_kqv > 0.0f) {
- Qcur = ggml_clamp(ctx0, Qcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
- cb(Qcur, "Qcur", il);
- }
- struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
- cb(Kcur, "Kcur", il);
- if (hparams.f_clamp_kqv > 0.0f) {
- Kcur = ggml_clamp(ctx0, Kcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
- cb(Kcur, "Kcur", il);
- }
- struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
- cb(Vcur, "Vcur", il);
- if (hparams.f_clamp_kqv > 0.0f) {
- Vcur = ggml_clamp(ctx0, Vcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
- cb(Vcur, "Vcur", il);
- }
- Qcur = ggml_rope_custom(
- ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
- n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- cb(Qcur, "Qcur", il);
- Kcur = ggml_rope_custom(
- ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
- n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- cb(Kcur, "Kcur", il);
- cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
- model.layers[il].wo, nullptr,
- Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
- }
- if (il == n_layer - 1) {
- // skip computing output for unused tokens
- struct ggml_tensor * inp_out_ids = build_inp_out_ids();
- n_tokens = n_outputs;
- cur = ggml_get_rows(ctx0, cur, inp_out_ids);
- inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
- }
- struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
- cb(ffn_inp, "ffn_inp", il);
- // feed-forward network
- cur = llm_build_norm(ctx0, ffn_inp, hparams,
- NULL, NULL,
- LLM_NORM, cb, il);
- cb(cur, "ffn_norm", il);
- cur = llm_build_ffn(ctx0, cur,
- model.layers[il].ffn_up, NULL,
- model.layers[il].ffn_gate, NULL,
- model.layers[il].ffn_down, NULL,
- NULL,
- LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
- cb(cur, "ffn_out", il);
- cur = ggml_add(ctx0, cur, ffn_inp);
- cb(cur, "ffn_out", il);
- ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
- if (layer_dir != nullptr) {
- cur = ggml_add(ctx0, cur, layer_dir);
- }
- cb(cur, "l_out", il);
- // input for next layer
- inpL = cur;
- }
- cur = inpL;
- cur = llm_build_norm(ctx0, cur, hparams,
- NULL, NULL,
- LLM_NORM, cb, -1);
- cb(cur, "result_norm", -1);
- // lm_head
- cur = ggml_mul_mat(ctx0, model.output, cur);
- cb(cur, "result_output", -1);
- ggml_build_forward_expand(gf, cur);
- return gf;
- }
- };
- static struct ggml_cgraph * llama_build_graph_defrag(llama_context & lctx, const std::vector<uint32_t> & ids) {
- llama_batch dummy;
- dummy.n_tokens = 0;
- llm_build_cb cb = [&](struct ggml_tensor * , const char * , int ) { };
- struct llm_build_context llm(lctx, dummy, cb, false);
- llm.init();
- struct ggml_cgraph * result = llm.build_defrag(ids);
- llm.free();
- return result;
- }
- static struct ggml_cgraph * llama_build_graph_k_shift(llama_context & lctx) {
- llama_batch dummy;
- dummy.n_tokens = 0;
- llm_build_cb cb = [&](struct ggml_tensor * , const char * , int ) { };
- struct llm_build_context llm(lctx, dummy, cb, false);
- llm.init();
- struct ggml_cgraph * result = llm.build_k_shift();
- llm.free();
- return result;
- }
- static struct ggml_cgraph * llama_build_graph_s_copy(llama_context & lctx) {
- llama_batch dummy;
- dummy.n_tokens = 0;
- llm_build_cb cb = [&](struct ggml_tensor * , const char * , int ) { };
- struct llm_build_context llm(lctx, dummy, cb, false);
- llm.init();
- struct ggml_cgraph * result = llm.build_s_copy();
- llm.free();
- return result;
- }
- static struct ggml_cgraph * llama_build_graph(
- llama_context & lctx,
- const llama_batch & batch,
- bool worst_case) {
- const auto & model = lctx.model;
- // this callback allows us to apply custom logic to each tensor (e.g. ggml-alloc, offloading, etc.)
- llm_build_cb cb = [&](struct ggml_tensor * cur, const char * name, int il) {
- if (il >= 0) {
- ggml_format_name(cur, "%s-%d", name, il);
- } else {
- ggml_set_name(cur, name);
- }
- if (!lctx.cparams.offload_kqv) {
- if (strcmp(name, "kqv_merged_cont") == 0) {
- // all nodes between the KV store and the attention output are run on the CPU
- ggml_backend_sched_set_tensor_backend(lctx.sched, cur, lctx.backend_cpu);
- }
- }
- // norm may be automatically assigned to the backend of the previous layer, increasing data transfer between backends
- // FIXME: fix in ggml_backend_sched
- const bool full_offload = lctx.model.n_gpu_layers > (int)lctx.model.hparams.n_layer;
- if (batch.n_tokens < 32 || full_offload) {
- if (il != -1 && strcmp(name, "norm") == 0) {
- for (auto * backend : lctx.backends) {
- if (ggml_backend_buft_supports_backend(lctx.model.buft_layer[il].buft, backend)) {
- ggml_backend_sched_set_tensor_backend(lctx.sched, cur, backend);
- break;
- }
- }
- }
- }
- };
- struct ggml_cgraph * result = NULL;
- struct llm_build_context llm(lctx, batch, cb, worst_case);
- llm.init();
- switch (model.arch) {
- case LLM_ARCH_LLAMA:
- {
- result = llm.build_llama();
- } break;
- case LLM_ARCH_BAICHUAN:
- {
- result = llm.build_baichuan();
- } break;
- case LLM_ARCH_FALCON:
- {
- result = llm.build_falcon();
- } break;
- case LLM_ARCH_GROK:
- {
- result = llm.build_grok();
- } break;
- case LLM_ARCH_STARCODER:
- {
- result = llm.build_starcoder();
- } break;
- case LLM_ARCH_PERSIMMON:
- {
- result = llm.build_persimmon();
- } break;
- case LLM_ARCH_REFACT:
- {
- result = llm.build_refact();
- } break;
- case LLM_ARCH_BERT:
- case LLM_ARCH_JINA_BERT_V2:
- case LLM_ARCH_NOMIC_BERT:
- {
- result = llm.build_bert();
- } break;
- case LLM_ARCH_BLOOM:
- {
- result = llm.build_bloom();
- } break;
- case LLM_ARCH_MPT:
- {
- result = llm.build_mpt();
- } break;
- case LLM_ARCH_STABLELM:
- {
- result = llm.build_stablelm();
- } break;
- case LLM_ARCH_QWEN:
- {
- result = llm.build_qwen();
- } break;
- case LLM_ARCH_QWEN2:
- {
- result = llm.build_qwen2();
- } break;
- case LLM_ARCH_QWEN2MOE:
- {
- result = llm.build_qwen2moe();
- } break;
- case LLM_ARCH_PHI2:
- {
- result = llm.build_phi2();
- } break;
- case LLM_ARCH_PHI3:
- {
- result = llm.build_phi3();
- } break;
- case LLM_ARCH_PLAMO:
- {
- result = llm.build_plamo();
- } break;
- case LLM_ARCH_GPT2:
- {
- result = llm.build_gpt2();
- } break;
- case LLM_ARCH_CODESHELL:
- {
- result = llm.build_codeshell();
- } break;
- case LLM_ARCH_ORION:
- {
- result = llm.build_orion();
- } break;
- case LLM_ARCH_INTERNLM2:
- {
- result = llm.build_internlm2();
- } break;
- case LLM_ARCH_MINICPM:
- {
- result = llm.build_minicpm();
- } break;
- case LLM_ARCH_GEMMA:
- {
- result = llm.build_gemma();
- } break;
- case LLM_ARCH_STARCODER2:
- {
- result = llm.build_starcoder2();
- } break;
- case LLM_ARCH_MAMBA:
- {
- result = llm.build_mamba();
- } break;
- case LLM_ARCH_XVERSE:
- {
- result = llm.build_xverse();
- } break;
- case LLM_ARCH_COMMAND_R:
- {
- result = llm.build_command_r();
- } break;
- case LLM_ARCH_DBRX:
- {
- result = llm.build_dbrx();
- } break;
- case LLM_ARCH_OLMO:
- {
- result = llm.build_olmo();
- } break;
- default:
- GGML_ASSERT(false);
- }
- llm.free();
- return result;
- }
- static void llama_set_k_shift(llama_context & lctx) {
- const int64_t kv_size = lctx.kv_self.size;
- assert(ggml_backend_buffer_is_host(lctx.inp_K_shift->buffer));
- int32_t * data = (int32_t *) lctx.inp_K_shift->data;
- for (int i = 0; i < kv_size; ++i) {
- data[i] = lctx.kv_self.cells[i].delta;
- }
- }
- static void llama_set_s_copy(llama_context & lctx) {
- const int64_t kv_size = lctx.kv_self.size;
- assert(ggml_backend_buffer_is_host(lctx.inp_s_copy->buffer));
- int32_t * data = (int32_t *) lctx.inp_s_copy->data;
- for (int i = 0; i < kv_size; ++i) {
- data[i] = lctx.kv_self.cells[i].src;
- }
- }
- static void llama_set_inputs(llama_context & lctx, const llama_batch & batch) {
- //
- // set input data
- //
- const auto & hparams = lctx.model.hparams;
- const auto & cparams = lctx.cparams;
- const auto & kv_self = lctx.kv_self;
- if (batch.token) {
- const int64_t n_tokens = batch.n_tokens;
- ggml_backend_tensor_set(lctx.inp_tokens, batch.token, 0, n_tokens*ggml_element_size(lctx.inp_tokens));
- }
- if (batch.embd) {
- const int64_t n_embd = hparams.n_embd;
- const int64_t n_tokens = batch.n_tokens;
- ggml_backend_tensor_set(lctx.inp_embd, batch.embd, 0, n_tokens*n_embd*ggml_element_size(lctx.inp_embd));
- }
- if (batch.pos && lctx.inp_pos) {
- const int64_t n_tokens = batch.n_tokens;
- ggml_backend_tensor_set(lctx.inp_pos, batch.pos, 0, n_tokens*ggml_element_size(lctx.inp_pos));
- }
- if (hparams.causal_attn || cparams.pooling_type == LLAMA_POOLING_TYPE_NONE) {
- GGML_ASSERT(lctx.inp_out_ids && "every model that can must skip unused outputs");
- const int64_t n_tokens = batch.n_tokens;
- GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_out_ids->buffer));
- int32_t * data = (int32_t *) lctx.inp_out_ids->data;
- if (lctx.n_outputs == n_tokens) {
- for (int i = 0; i < n_tokens; ++i) {
- data[i] = i;
- }
- } else if (batch.logits) {
- int32_t n_outputs = 0;
- for (int i = 0; i < n_tokens; ++i) {
- if (batch.logits[i]) {
- data[n_outputs++] = i;
- }
- }
- // the graph needs to have been passed the correct number of outputs
- GGML_ASSERT(lctx.n_outputs == n_outputs);
- } else if (lctx.n_outputs == 1) {
- // only keep last output
- data[0] = n_tokens - 1;
- } else {
- GGML_ASSERT(lctx.n_outputs == 0);
- }
- }
- GGML_ASSERT(
- // (!a || b) is a logical implication (a -> b)
- // !hparams.causal_attn -> !cparams.causal_attn
- (hparams.causal_attn || !cparams.causal_attn) &&
- "causal attention with embedding models is not supported"
- );
- if (lctx.inp_KQ_mask) {
- // NOTE: hparams.causal_attn indicates the model is capable of generation and uses the kv cache.
- if (cparams.causal_attn) {
- const int64_t n_kv = kv_self.n;
- const int64_t n_tokens = batch.n_tokens;
- GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_KQ_mask->buffer));
- float * data = (float *) lctx.inp_KQ_mask->data;
- // For causal attention, use only the previous KV cells
- // of the correct sequence for each token of the batch.
- // It's assumed that if a token in the batch has multiple sequences, they are equivalent.
- for (int h = 0; h < 1; ++h) {
- for (int j = 0; j < n_tokens; ++j) {
- const llama_pos pos = batch.pos[j];
- const llama_seq_id seq_id = batch.seq_id[j][0];
- for (int i = 0; i < n_kv; ++i) {
- float f;
- if (!lctx.kv_self.cells[i].has_seq_id(seq_id) || lctx.kv_self.cells[i].pos > pos) {
- f = -INFINITY;
- } else {
- if (hparams.use_alibi) {
- f = -fabs(lctx.kv_self.cells[i].pos - pos);
- } else {
- f = 0.0f;
- }
- }
- data[h*(n_kv*n_tokens) + j*n_kv + i] = f;
- }
- }
- for (int i = n_tokens; i < GGML_PAD(n_tokens, GGML_KQ_MASK_PAD); ++i) {
- for (int j = 0; j < n_kv; ++j) {
- data[h*(n_kv*n_tokens) + i*n_kv + j] = -INFINITY;
- }
- }
- }
- } else {
- // when using kv cache, the mask needs to match the kv cache size
- const int64_t n_tokens = batch.n_tokens;
- const int64_t n_stride = hparams.causal_attn ? kv_self.n : n_tokens;
- GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_KQ_mask->buffer));
- float * data = (float *) lctx.inp_KQ_mask->data;
- for (int h = 0; h < 1; ++h) {
- for (int j = 0; j < n_tokens; ++j) {
- const llama_seq_id seq_id = batch.seq_id[j][0];
- for (int i = 0; i < n_tokens; ++i) {
- float f = -INFINITY;
- for (int s = 0; s < batch.n_seq_id[i]; ++s) {
- if (batch.seq_id[i][s] == seq_id) {
- if (hparams.use_alibi) {
- f = -fabs(batch.pos[i] - batch.pos[j]);
- } else {
- f = 0.0f;
- }
- break;
- }
- }
- data[h*(n_tokens*n_tokens) + j*n_stride + i] = f;
- }
- for (int i = n_tokens; i < n_stride; ++i) {
- data[h*(n_tokens*n_tokens) + j*n_stride + i] = -INFINITY;
- }
- }
- }
- }
- }
- if (cparams.pooling_type == LLAMA_POOLING_TYPE_MEAN) {
- const int64_t n_tokens = batch.n_tokens;
- GGML_ASSERT(lctx.inp_mean);
- GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_mean->buffer));
- float * data = (float *) lctx.inp_mean->data;
- memset(lctx.inp_mean->data, 0, n_tokens * n_tokens * ggml_element_size(lctx.inp_mean));
- std::vector<uint64_t> sum(n_tokens, 0);
- for (int i = 0; i < n_tokens; ++i) {
- const llama_seq_id seq_id = batch.seq_id[i][0];
- GGML_ASSERT(seq_id < n_tokens && "seq_id cannot be larger than n_tokens with pooling_type == MEAN");
- sum[seq_id] += 1;
- }
- std::vector<float> div(n_tokens, 0.0f);
- for (int i = 0; i < n_tokens; ++i) {
- const uint64_t s = sum[i];
- if (s > 0) {
- div[i] = 1.0f/float(s);
- }
- }
- for (int i = 0; i < n_tokens; ++i) {
- const llama_seq_id seq_id = batch.seq_id[i][0];
- data[seq_id*n_tokens + i] = div[seq_id];
- }
- }
- if (cparams.pooling_type == LLAMA_POOLING_TYPE_CLS) {
- const int64_t n_tokens = batch.n_tokens;
- GGML_ASSERT(lctx.inp_cls);
- GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_cls->buffer));
- uint32_t * data = (uint32_t *) lctx.inp_cls->data;
- memset(lctx.inp_cls->data, 0, n_tokens * ggml_element_size(lctx.inp_cls));
- for (int i = 0; i < n_tokens; ++i) {
- const llama_seq_id seq_id = batch.seq_id[i][0];
- const llama_pos pos = batch.pos[i];
- GGML_ASSERT(seq_id < n_tokens && "seq_id cannot be larger than n_tokens with pooling_type == CLS");
- if (pos == 0) {
- data[seq_id] = i;
- }
- }
- }
- if (kv_self.recurrent) {
- const int64_t n_kv = kv_self.n;
- if (lctx.inp_s_mask) {
- GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_s_mask->buffer));
- float * data = (float *) lctx.inp_s_mask->data;
- // states which are not affected by the current batch are left untouched
- for (int i = 0; i < n_kv; ++i) {
- llama_seq_id seq_id = i + lctx.kv_self.head;
- llama_kv_cell & kv_cell = lctx.kv_self.cells[seq_id];
- bool has_self_seq = kv_cell.has_seq_id(seq_id);
- data[i] = (float) has_self_seq;
- // ensure current sequences will be kept
- if (!has_self_seq && kv_cell.pos >= 0) {
- kv_cell.seq_id.insert(seq_id);
- }
- }
- }
- // For Mamba (and other recurrent architectures),
- // update the correct state(s)/sequence(s) for each token of the batch.
- // Like with the KQ_mask, if a token in the batch has multiple sequences,
- // they are assumed to be equivalent (not here, but in ggml_ssm_scan and ggml_ssm_conv).
- if (lctx.inp_s_seq) {
- const int64_t n_tokens = batch.n_tokens;
- GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_s_seq->buffer));
- int32_t * data = (int32_t *) lctx.inp_s_seq->data;
- for (int j = 0; j < n_tokens; ++j) {
- const int32_t n_seq = batch.n_seq_id[j];
- GGML_ASSERT(0 < n_seq); // a token should be part of at least 1 sequence
- for (int i = 0; i < n_kv; ++i) {
- if (i < n_seq) {
- // for this type of model, the head is the minimum seq_id of the batch
- data[j*n_kv + i] = batch.seq_id[j][i] - kv_self.head;
- } else {
- data[j*n_kv + i] = -1;
- }
- }
- }
- }
- }
- }
- // Make sure enough space is available for outputs.
- // Returns max number of outputs for which space was reserved.
- static size_t llama_output_reserve(llama_context & lctx, size_t n_outputs) {
- const auto & cparams = lctx.cparams;
- const auto & hparams = lctx.model.hparams;
- const size_t n_outputs_max = std::max(n_outputs, (size_t) cparams.n_seq_max);
- const auto n_batch = cparams.n_batch;
- const auto n_vocab = hparams.n_vocab;
- const auto n_embd = hparams.n_embd;
- // TODO: use a per-batch flag for logits presence instead
- const bool has_logits = cparams.causal_attn;
- const bool has_embd = cparams.embeddings && (hparams.causal_attn || cparams.pooling_type == LLAMA_POOLING_TYPE_NONE);
- const size_t logits_size = has_logits ? n_vocab*n_outputs_max : 0;
- const size_t embd_size = has_embd ? n_embd*n_outputs_max : 0;
- if (lctx.output_ids.empty()) {
- // init, never resized afterwards
- lctx.output_ids.resize(n_batch);
- }
- const size_t prev_size = lctx.buf_output ? ggml_backend_buffer_get_size(lctx.buf_output) : 0;
- const size_t new_size = (logits_size + embd_size) * sizeof(float);
- // alloc only when more than the current capacity is required
- // TODO: also consider shrinking the buffer
- if (!lctx.buf_output || prev_size < new_size) {
- if (lctx.buf_output) {
- #ifndef NDEBUG
- // This doesn't happen often, but may be annoying in some cases (like the HellaSwag benchmark)
- LLAMA_LOG_INFO("%s: reallocating output buffer from size %.02f MiB to %.02f MiB\n", __func__, prev_size / 1024.0 / 1024.0, new_size / 1024.0 / 1024.0);
- #endif
- ggml_backend_buffer_free(lctx.buf_output);
- lctx.buf_output = nullptr;
- lctx.logits = nullptr;
- lctx.embd = nullptr;
- }
- lctx.buf_output = ggml_backend_buft_alloc_buffer(llama_default_buffer_type_cpu(true), new_size);
- if (lctx.buf_output == nullptr) {
- LLAMA_LOG_ERROR("%s: failed to allocate output buffer of size %.2f MiB\n", __func__, new_size / (1024.0 * 1024.0));
- return 0;
- }
- }
- float * output_base = (float *) ggml_backend_buffer_get_base(lctx.buf_output);
- lctx.logits = has_logits ? output_base : nullptr;
- lctx.embd = has_embd ? output_base + logits_size : nullptr;
- lctx.output_size = n_outputs_max;
- lctx.logits_size = logits_size;
- lctx.embd_size = embd_size;
- // set all ids as invalid (negative)
- std::fill(lctx.output_ids.begin(), lctx.output_ids.end(), -1);
- ggml_backend_buffer_clear(lctx.buf_output, 0);
- lctx.n_outputs = 0;
- return n_outputs_max;
- }
- static void llama_graph_compute(
- llama_context & lctx,
- ggml_cgraph * gf,
- int n_threads) {
- #ifdef GGML_USE_MPI
- const int64_t n_layer = lctx.model.hparams.n_layer;
- ggml_mpi_graph_compute_pre(lctx.ctx_mpi, gf, n_layer);
- #endif
- #ifdef GGML_USE_METAL
- if (ggml_backend_is_metal(lctx.backend_metal)) {
- ggml_backend_metal_set_n_cb(lctx.backend_metal, n_threads);
- }
- #endif
- if (lctx.backend_cpu != nullptr) {
- ggml_backend_cpu_set_n_threads(lctx.backend_cpu, n_threads);
- ggml_backend_cpu_set_abort_callback(lctx.backend_cpu, lctx.abort_callback, lctx.abort_callback_data);
- }
- ggml_backend_sched_graph_compute_async(lctx.sched, gf);
- // fprintf(stderr, "splits: %d\n", ggml_backend_sched_get_n_splits(lctx.sched));
- #ifdef GGML_USE_MPI
- ggml_mpi_graph_compute_post(lctx.ctx_mpi, gf, n_layer);
- #endif
- }
- // decode a batch of tokens by evaluating the transformer
- //
- // - lctx: llama context
- // - batch: batch to evaluate
- //
- // return 0 on success
- // return positive int on warning
- // return negative int on error
- //
- static int llama_decode_internal(
- llama_context & lctx,
- llama_batch batch_all) { // TODO: rename back to batch
- const uint32_t n_tokens_all = batch_all.n_tokens;
- if (n_tokens_all == 0) {
- LLAMA_LOG_ERROR("%s: n_tokens == 0", __func__);
- return -1;
- }
- const auto & model = lctx.model;
- const auto & hparams = model.hparams;
- const auto & cparams = lctx.cparams;
- GGML_ASSERT((!batch_all.token && batch_all.embd) || (batch_all.token && !batch_all.embd)); // NOLINT
- GGML_ASSERT(n_tokens_all <= cparams.n_batch);
- GGML_ASSERT((cparams.causal_attn || cparams.n_ubatch >= n_tokens_all) && "non-causal attention requires n_ubatch >= n_tokens");
- if (lctx.t_compute_start_us == 0) {
- lctx.t_compute_start_us = ggml_time_us();
- }
- lctx.n_queued_tokens += n_tokens_all;
- #ifdef GGML_USE_MPI
- // TODO: needs fix after #3228
- GGML_ASSERT(false && "not implemented");
- //ggml_mpi_eval_init(lctx.ctx_mpi, &n_tokens, &n_past, &n_threads);
- #endif
- auto & kv_self = lctx.kv_self;
- const int64_t n_embd = hparams.n_embd;
- const int64_t n_vocab = hparams.n_vocab;
- uint32_t n_outputs = 0;
- uint32_t n_outputs_prev = 0;
- const auto n_ubatch = cparams.n_ubatch;
- std::vector<llama_pos> pos;
- std::vector<int32_t> n_seq_id;
- std::vector<llama_seq_id *> seq_id_arr;
- std::vector<std::vector<llama_seq_id>> seq_id;
- // count outputs
- if (batch_all.logits) {
- for (uint32_t i = 0; i < n_tokens_all; ++i) {
- n_outputs += batch_all.logits[i] != 0;
- }
- } else if (lctx.logits_all || (cparams.embeddings && cparams.pooling_type != LLAMA_POOLING_TYPE_NONE)) {
- n_outputs = n_tokens_all;
- } else {
- // keep last output only
- n_outputs = 1;
- }
- // reserve output buffer
- if (llama_output_reserve(lctx, n_outputs) < n_outputs) {
- LLAMA_LOG_ERROR("%s: could not reserve space for batch with %u outputs\n", __func__, n_outputs);
- return -2;
- };
- // set output mappings
- if (batch_all.logits) {
- int32_t i_logits = 0;
- for (uint32_t i = 0; i < n_tokens_all; ++i) {
- if (batch_all.logits[i]) {
- lctx.output_ids[i] = i_logits++;
- }
- }
- } else {
- for (uint32_t i = 0; i < n_outputs; ++i) {
- lctx.output_ids[i] = i;
- }
- }
- for (uint32_t cur_token = 0; cur_token < n_tokens_all; cur_token += n_ubatch) {
- const uint32_t n_tokens = std::min(n_ubatch, n_tokens_all - cur_token);
- llama_batch u_batch = {
- /* .n_tokens = */ (int32_t) n_tokens,
- /* .token = */ batch_all.token ? batch_all.token + cur_token : nullptr,
- /* .embd = */ batch_all.embd ? batch_all.embd + cur_token*n_embd : nullptr,
- /* .pos = */ batch_all.pos ? batch_all.pos + cur_token : nullptr,
- /* .n_seq_id = */ batch_all.n_seq_id ? batch_all.n_seq_id + cur_token : nullptr,
- /* .seq_id = */ batch_all.seq_id ? batch_all.seq_id + cur_token : nullptr,
- /* .logits = */ batch_all.logits ? batch_all.logits + cur_token : nullptr,
- /* .all_pos_0 = */ batch_all.all_pos_0 + (llama_pos) cur_token*batch_all.all_pos_1,
- /* .all_pos_1 = */ batch_all.all_pos_1,
- /* .all_seq_id = */ batch_all.all_seq_id,
- };
- // count the outputs in this u_batch
- {
- int32_t n_outputs_new = 0;
- if (u_batch.logits) {
- for (uint32_t i = 0; i < n_tokens; i++) {
- n_outputs_new += u_batch.logits[i] != 0;
- }
- } else if (n_outputs == n_tokens_all) {
- n_outputs_new = n_tokens;
- } else {
- // keep last output only
- if (cur_token + n_tokens >= n_tokens_all) {
- n_outputs_new = 1;
- }
- }
- // needs to happen before the graph is built
- lctx.n_outputs = n_outputs_new;
- }
- int n_threads = n_tokens == 1 ? cparams.n_threads : cparams.n_threads_batch;
- GGML_ASSERT(n_threads > 0);
- // helpers for smoother batch API transition
- // after deprecating the llama_eval calls, these will be removed
- if (u_batch.pos == nullptr) {
- pos.resize(n_tokens);
- for (uint32_t i = 0; i < n_tokens; i++) {
- pos[i] = u_batch.all_pos_0 + i*u_batch.all_pos_1;
- }
- u_batch.pos = pos.data();
- }
- if (u_batch.seq_id == nullptr) {
- n_seq_id.resize(n_tokens);
- seq_id.resize(n_tokens);
- seq_id_arr.resize(n_tokens);
- for (uint32_t i = 0; i < n_tokens; i++) {
- n_seq_id[i] = 1;
- seq_id[i].resize(1);
- seq_id[i][0] = u_batch.all_seq_id;
- seq_id_arr[i] = seq_id[i].data();
- }
- u_batch.n_seq_id = n_seq_id.data();
- u_batch.seq_id = seq_id_arr.data();
- }
- // non-causal masks do not use the KV cache
- if (hparams.causal_attn) {
- llama_kv_cache_update(&lctx);
- // if we have enough unused cells before the current head ->
- // better to start searching from the beginning of the cache, hoping to fill it
- if (kv_self.head > kv_self.used + 2*n_tokens) {
- kv_self.head = 0;
- }
- if (!llama_kv_cache_find_slot(kv_self, u_batch)) {
- return 1;
- }
- if (!kv_self.recurrent) {
- // a heuristic, to avoid attending the full cache if it is not yet utilized
- // after enough generations, the benefit from this heuristic disappears
- // if we start defragmenting the cache, the benefit from this will be more important
- const uint32_t pad = llama_kv_cache_get_padding(cparams);
- kv_self.n = std::min(kv_self.size, std::max(pad, GGML_PAD(llama_kv_cache_cell_max(kv_self), pad)));
- //kv_self.n = llama_kv_cache_cell_max(kv_self);
- }
- }
- //printf("kv_self.n = %5d, kv_self.used = %5d, kv_self.head = %5d\n", kv_self.n, kv_self.used, kv_self.head);
- ggml_backend_sched_reset(lctx.sched);
- ggml_backend_sched_set_eval_callback(lctx.sched, lctx.cparams.cb_eval, lctx.cparams.cb_eval_user_data);
- ggml_cgraph * gf = llama_build_graph(lctx, u_batch, false);
- // the output is always the last tensor in the graph
- struct ggml_tensor * res = gf->nodes[gf->n_nodes - 1];
- struct ggml_tensor * embd = gf->nodes[gf->n_nodes - 2];
- if (lctx.n_outputs == 0) {
- // no output
- res = nullptr;
- embd = nullptr;
- } else if (!hparams.causal_attn) {
- res = nullptr; // do not extract logits for embedding models such as BERT
- // token or sequence embeddings
- embd = gf->nodes[gf->n_nodes - 1];
- GGML_ASSERT(strcmp(embd->name, "result_embd") == 0 || strcmp(embd->name, "result_embd_pooled") == 0);
- } else if (cparams.embeddings) {
- // the embeddings could be in the second to last tensor, or any of the previous tensors
- int i_embd = gf->n_nodes - 2;
- for (int i = 3; strcmp(embd->name, "result_norm") != 0; ++i) {
- i_embd = gf->n_nodes - i;
- if (i_embd < 0) { break; }
- embd = gf->nodes[i_embd];
- }
- GGML_ASSERT(i_embd >= 0 && "missing result_norm tensor");
- // TODO: use a per-batch flag to know when to skip logits while keeping embeddings
- if (!cparams.causal_attn) {
- res = nullptr; // do not extract logits when not needed
- // skip computing logits
- // TODO: is this safe?
- gf->n_nodes = i_embd + 1;
- }
- } else {
- embd = nullptr; // do not extract embeddings when not needed
- GGML_ASSERT(strcmp(res->name, "result_output") == 0 && "missing result_output tensor");
- }
- // LLAMA_LOG_INFO("graph build time: %.3f ms (%d nodes, %d leafs)\n", (ggml_time_us() - t_start_us)/1000.0, gf->n_nodes, gf->n_leafs);
- // for big prompts, if BLAS is enabled, it is better to use only one thread
- // otherwise, the threads are spin-lock waiting for the BLAS calls and are degrading the performance
- // TODO: this is mostly important for Apple Silicon where CBLAS is still performing very well
- // we still need some threads to process all non-mul_mat ops, but not too much to avoid interfering
- // with the BLAS calls. need a better solution
- // MoE Special Case: This logic applies when hparams.n_expert == 0, i.e. the model is NOT an MoE model. When an MoE is
- // being processed then Accelerate/BLAS will not be involved, so capping would limit performance.
- if (n_tokens >= 32 && hparams.n_expert == 0 && ggml_cpu_has_blas() && !ggml_cpu_has_gpublas()) {
- n_threads = std::min(4, n_threads);
- }
- ggml_backend_sched_alloc_graph(lctx.sched, gf);
- llama_set_inputs(lctx, u_batch);
- llama_graph_compute(lctx, gf, n_threads);
- // update the kv ring buffer
- {
- kv_self.head += n_tokens;
- // Ensure kv cache head points to a valid index.
- if (kv_self.head >= kv_self.size) {
- kv_self.head = 0;
- }
- }
- #ifdef GGML_PERF
- // print timing information per ggml operation (for debugging purposes)
- // requires GGML_PERF to be defined
- ggml_graph_print(gf);
- #endif
- // plot the computation graph in dot format (for debugging purposes)
- //if (n_past%100 == 0) {
- // ggml_graph_dump_dot(gf, NULL, "llama.dot");
- //}
- // extract logits
- if (res) {
- ggml_backend_t backend_res = ggml_backend_sched_get_tensor_backend(lctx.sched, res);
- GGML_ASSERT(backend_res != nullptr);
- GGML_ASSERT(lctx.logits != nullptr);
- float * logits_out = lctx.logits + n_outputs_prev*n_vocab;
- const int32_t n_outputs_new = lctx.n_outputs;
- if (n_outputs_new) {
- GGML_ASSERT( n_outputs_prev + n_outputs_new <= n_outputs);
- GGML_ASSERT((n_outputs_prev + n_outputs_new)*n_vocab <= (int64_t) lctx.logits_size);
- ggml_backend_tensor_get_async(backend_res, res, logits_out, 0, n_outputs_new*n_vocab*sizeof(float));
- }
- }
- // extract embeddings
- if (embd) {
- ggml_backend_t backend_embd = ggml_backend_sched_get_tensor_backend(lctx.sched, embd);
- GGML_ASSERT(backend_embd != nullptr);
- switch (cparams.pooling_type) {
- case LLAMA_POOLING_TYPE_NONE:
- {
- // extract token embeddings
- GGML_ASSERT(lctx.embd != nullptr);
- float * embd_out = lctx.embd + n_outputs_prev*n_embd;
- const int32_t n_outputs_new = lctx.n_outputs;
- if (n_outputs_new) {
- GGML_ASSERT( n_outputs_prev + n_outputs_new <= n_outputs);
- GGML_ASSERT((n_outputs_prev + n_outputs_new)*n_embd <= (int64_t) lctx.embd_size);
- ggml_backend_tensor_get_async(backend_embd, embd, embd_out, 0, n_outputs_new*n_embd*sizeof(float));
- }
- } break;
- case LLAMA_POOLING_TYPE_CLS:
- case LLAMA_POOLING_TYPE_MEAN:
- {
- GGML_ASSERT(strcmp(embd->name, "result_embd_pooled") == 0);
- // extract sequence embeddings
- auto & embd_seq_out = lctx.embd_seq;
- embd_seq_out.clear();
- for (uint32_t i = 0; i < n_tokens; i++) {
- const llama_seq_id seq_id = u_batch.seq_id[i][0];
- if (embd_seq_out.find(seq_id) != embd_seq_out.end()) {
- continue;
- }
- embd_seq_out[seq_id].resize(n_embd);
- ggml_backend_tensor_get_async(backend_embd, embd, embd_seq_out[seq_id].data(), (n_embd*seq_id)*sizeof(float), n_embd*sizeof(float));
- }
- } break;
- case LLAMA_POOLING_TYPE_UNSPECIFIED:
- {
- GGML_ASSERT(false && "unknown pooling type");
- } break;
- }
- }
- n_outputs_prev += lctx.n_outputs;
- }
- // set to total number of outputs in the batch, for use in llama_get_logits_ith
- lctx.n_outputs = n_outputs;
- // wait for the computation to finish (automatically done when obtaining the model output)
- //llama_synchronize(&lctx);
- // decide if we need to defrag the kv cache
- if (cparams.causal_attn && cparams.defrag_thold >= 0.0f) {
- const float fragmentation = kv_self.n >= 128 ? 1.0f - float(kv_self.used)/float(kv_self.n) : 0.0f;
- // queue defragmentation for next llama_kv_cache_update
- if (fragmentation > cparams.defrag_thold) {
- //LLAMA_LOG_INFO("fragmentation: %.2f\n", fragmentation);
- llama_kv_cache_defrag(kv_self);
- }
- }
- // Reset state for the next token before backend sync, to allow the CPU activities in the reset to
- // overlap with device computation.
- ggml_backend_sched_reset(lctx.sched);
- return 0;
- }
- // find holes from the beginning of the KV cache and fill them by moving data from the end of the cache
- static void llama_kv_cache_defrag_internal(struct llama_context & lctx) {
- auto & kv_self = lctx.kv_self;
- const auto & hparams = lctx.model.hparams;
- const uint32_t n_layer = hparams.n_layer;
- const uint32_t n_kv = llama_kv_cache_cell_max(kv_self);
- const uint32_t n_used = kv_self.used;
- assert(n_used <= n_kv);
- //const int64_t t_start = ggml_time_us();
- // number of cells moved
- uint32_t n_moves = 0;
- // each move requires 6*n_layer tensors (see build_defrag)
- // - source view, destination view, copy operation
- // - x2 for keys and values
- //const uint32_t max_moves = LLAMA_MAX_NODES/(6*n_layer);
- // TODO: tmp fix https://github.com/ggerganov/llama.cpp/issues/6685#issuecomment-2057579516
- const uint32_t max_moves = (LLAMA_MAX_NODES - 2*n_layer)/(6*n_layer);
- // determine which KV cells to move where
- //
- // cell i moves to ids[i]
- //
- // if ids[i] == i || ids[i] == n_kv, then cell i is not moved
- //
- std::vector<uint32_t> ids(n_kv, n_kv);
- for (uint32_t i0 = 0; i0 < n_used; ++i0) {
- const auto & cell0 = kv_self.cells[i0];
- if (!cell0.is_empty()) {
- ids[i0] = i0;
- continue;
- }
- // found a hole - fill it with data from the end of the cache
- uint32_t nh = 1;
- // determine the size of the hole
- while (i0 + nh < n_used && kv_self.cells[i0 + nh].is_empty()) {
- nh++;
- }
- uint32_t nf = 0;
- uint32_t is = n_kv - 1;
- // starting from the end, find nh non-empty cells
- for (; is > i0; --is) {
- const auto & cell1 = kv_self.cells[is];
- if (cell1.is_empty() || ids[is] != n_kv) {
- continue;
- }
- // non-empty cell which is not yet moved
- nf++;
- if (nf == nh) {
- break;
- }
- }
- // this can only happen if `n_used` is not accurate, which would be a bug
- GGML_ASSERT(nf == nh && "KV defrag bug: nf != nh");
- nf = 0;
- uint32_t i1 = is;
- // are we moving a continuous block of memory?
- bool cont = false;
- // should we stop searching for the next move?
- bool stop = false;
- // go back and move the nf cells to the hole
- for (; i1 < n_kv; ++i1) {
- auto & cell1 = kv_self.cells[i1];
- if (cell1.is_empty() || ids[i1] != n_kv) {
- if (n_moves == max_moves) {
- stop = true;
- break;
- }
- cont = false;
- continue;
- }
- // this cell goes to (i0 + nf)
- ids[i1] = i0 + nf;
- // move the cell meta data
- kv_self.cells[i0 + nf] = cell1;
- // clear the old cell and move the head there
- cell1 = llama_kv_cell();
- kv_self.head = n_used;
- if (!cont) {
- n_moves++;
- cont = true;
- }
- nf++;
- if (nf == nh) {
- break;
- }
- }
- if (stop || n_moves == max_moves) {
- break;
- }
- //LLAMA_LOG_INFO("(tmp log) KV defrag: move [%u, %u) to [%u, %u)\n", is, i1 + 1, i0, i0 + nh);
- i0 += nh - 1;
- }
- if (n_moves == 0) {
- return;
- }
- //LLAMA_LOG_INFO("(tmp log) KV defrag cell moves: %u\n", n_moves);
- //LLAMA_LOG_INFO("expected gf nodes: %u\n", 6*n_moves*n_layer);
- #if 0
- // CPU defrag
- //
- // TODO: optimizations are possible:
- // - multiple threads
- // - avoid copying to the host memory when already there
- //
- // likely not worth the effort, as we have ggml_graph based defrag
- //
- const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa();
- const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa();
- const uint32_t kv_size = kv_self.size;
- std::vector<uint8_t> buf_k;
- std::vector<uint8_t> buf_v;
- for (uint32_t il = 0; il < n_layer; ++il) {
- const size_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa);
- const size_t k_size = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*kv_size);
- const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type);
- const size_t v_size = ggml_row_size (kv_self.v_l[il]->type, n_embd_v_gqa*kv_size);
- buf_k.resize(k_size);
- buf_v.resize(v_size);
- ggml_backend_tensor_get(kv_self.k_l[il], buf_k.data(), 0, buf_k.size());
- ggml_backend_tensor_get(kv_self.v_l[il], buf_v.data(), 0, buf_v.size());
- // batch move [i, i+nm) to [id, id+nm)
- // note: cells can move only to a lower index
- for (uint32_t i = 0; i < n_kv; ++i) {
- const uint32_t id = ids[i];
- if (i == id || id == n_kv) {
- continue;
- }
- uint32_t nm = 1;
- while (i + nm < n_kv && ids[i + nm] == id + nm) {
- nm++;
- }
- // move keys
- {
- const int64_t os = i*k_size_row;
- const int64_t od = id*k_size_row;
- memcpy(buf_k.data() + od, buf_k.data() + os, nm*k_size_row);
- }
- // move values (note: they are transposed)
- {
- const int64_t os = i;
- const int64_t od = id;
- for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
- memcpy(buf_v.data() + (od + j*kv_size)*v_size_el, buf_v.data() + (os + j*kv_size)*v_size_el, nm*v_size_el);
- }
- }
- i += nm - 1;
- }
- ggml_backend_tensor_set(kv_self.k_l[il], buf_k.data(), 0, buf_k.size());
- ggml_backend_tensor_set(kv_self.v_l[il], buf_v.data(), 0, buf_v.size());
- }
- #else
- // ggml_graph defrag
- ggml_backend_sched_reset(lctx.sched);
- ggml_cgraph * gf = llama_build_graph_defrag(lctx, ids);
- llama_graph_compute(lctx, gf, lctx.cparams.n_threads);
- #endif
- //const int64_t t_end = ggml_time_us();
- //LLAMA_LOG_INFO("(tmp log) KV defrag time: %.3f ms\n", (t_end - t_start)/1000.0);
- }
- static void llama_kv_cache_update_internal(struct llama_context & lctx) {
- bool need_reserve = false;
- // apply K-shift if needed
- if (lctx.model.hparams.rope_type != LLAMA_ROPE_TYPE_NONE && lctx.kv_self.has_shift) {
- {
- ggml_backend_sched_reset(lctx.sched);
- ggml_cgraph * gf = llama_build_graph_k_shift(lctx);
- ggml_backend_sched_alloc_graph(lctx.sched, gf);
- llama_set_k_shift(lctx);
- llama_graph_compute(lctx, gf, lctx.cparams.n_threads);
- need_reserve = true;
- }
- {
- auto & kv_self = lctx.kv_self;
- kv_self.has_shift = false;
- for (uint32_t i = 0; i < kv_self.size; ++i) {
- kv_self.cells[i].delta = 0;
- }
- }
- }
- if (lctx.kv_self.recurrent && lctx.kv_self.do_copy) {
- {
- ggml_backend_sched_reset(lctx.sched);
- ggml_cgraph * gf = llama_build_graph_s_copy(lctx);
- ggml_backend_sched_alloc_graph(lctx.sched, gf);
- llama_set_s_copy(lctx);
- llama_graph_compute(lctx, gf, lctx.cparams.n_threads);
- need_reserve = true;
- }
- {
- auto & kv_self = lctx.kv_self;
- kv_self.do_copy = false;
- for (uint32_t i = 0; i < kv_self.size; ++i) {
- kv_self.cells[i].src = i;
- }
- }
- }
- // defragment the KV cache if needed
- if (lctx.kv_self.do_defrag) {
- llama_kv_cache_defrag_internal(lctx);
- need_reserve = true;
- lctx.kv_self.do_defrag = false;
- }
- // reserve a worst case graph again
- if (need_reserve) {
- // TODO: extract to a function
- // build worst-case graph
- int n_tokens = (int)std::min(lctx.cparams.n_ctx, lctx.cparams.n_ubatch);
- int n_past = lctx.cparams.n_ctx - n_tokens;
- llama_token token = llama_token_bos(&lctx.model); // not actually used by llama_build_graph, but required to choose between token and embedding inputs graph
- ggml_cgraph * gf = llama_build_graph(lctx, llama_batch_get_one(&token, n_tokens, n_past, 0), true);
- // initialize scheduler with the worst-case graph
- ggml_backend_sched_reset(lctx.sched);
- if (!ggml_backend_sched_reserve(lctx.sched, gf)) {
- LLAMA_LOG_ERROR("%s: failed to allocate compute buffers\n", __func__);
- }
- }
- }
- //
- // tokenizer
- //
- static enum llama_vocab_type llama_vocab_get_type(const llama_vocab & vocab) {
- return vocab.type;
- }
- static bool llama_is_normal_token(const llama_vocab & vocab, llama_token id) {
- GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
- return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_NORMAL;
- }
- static bool llama_is_unknown_token(const llama_vocab & vocab, llama_token id) {
- GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
- return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_UNKNOWN;
- }
- static bool llama_is_control_token(const llama_vocab & vocab, llama_token id) {
- GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
- return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_CONTROL;
- }
- static bool llama_is_byte_token(const llama_vocab & vocab, llama_token id) {
- GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
- return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_BYTE;
- }
- static bool llama_is_user_defined_token(const llama_vocab& vocab, llama_token id) {
- GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
- return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_USER_DEFINED;
- }
- static uint8_t llama_token_to_byte(const llama_vocab& vocab, llama_token id) {
- GGML_ASSERT(llama_vocab_get_type(vocab) != LLAMA_VOCAB_TYPE_NONE);
- GGML_ASSERT(llama_is_byte_token(vocab, id));
- const auto & token_data = vocab.id_to_token.at(id);
- switch (llama_vocab_get_type(vocab)) {
- case LLAMA_VOCAB_TYPE_SPM: {
- auto buf = token_data.text.substr(3, 2);
- return strtol(buf.c_str(), NULL, 16);
- }
- case LLAMA_VOCAB_TYPE_BPE: {
- GGML_ASSERT(false);
- return unicode_utf8_to_byte(token_data.text); // TODO: why is this here after GGML_ASSERT?
- }
- case LLAMA_VOCAB_TYPE_WPM: {
- GGML_ASSERT(false);
- }
- default:
- GGML_ASSERT(false);
- }
- }
- static llama_token llama_byte_to_token(const llama_vocab & vocab, uint8_t ch) {
- GGML_ASSERT(llama_vocab_get_type(vocab) != LLAMA_VOCAB_TYPE_NONE);
- static const char * hex = "0123456789ABCDEF";
- switch (llama_vocab_get_type(vocab)) {
- case LLAMA_VOCAB_TYPE_SPM: {
- const char buf[7] = { '<', '0', 'x', hex[ch >> 4], hex[ch & 15], '>', 0 };
- auto token = vocab.token_to_id.find(buf);
- if (token != vocab.token_to_id.end()) {
- return (*token).second;
- }
- // Try to fall back to just the byte as a string
- const char buf2[2] = { (char)ch, 0 };
- return vocab.token_to_id.at(buf2);
- }
- case LLAMA_VOCAB_TYPE_WPM:
- case LLAMA_VOCAB_TYPE_BPE: {
- return vocab.token_to_id.at(unicode_byte_to_utf8(ch));
- }
- default:
- GGML_ASSERT(false);
- }
- }
- static void llama_escape_whitespace(std::string & text) {
- replace_all(text, " ", "\xe2\x96\x81");
- }
- static void llama_unescape_whitespace(std::string & word) {
- replace_all(word, "\xe2\x96\x81", " ");
- }
- struct llm_symbol {
- using index = int;
- index prev;
- index next;
- const char * text;
- size_t n;
- };
- static_assert(std::is_trivially_copyable<llm_symbol>::value, "llm_symbol is not trivially copyable");
- // SPM tokenizer
- // original implementation:
- // https://github.com/ggerganov/llama.cpp/commit/074bea2eb1f1349a0118239c4152914aecaa1be4
- struct llm_bigram_spm {
- struct comparator {
- bool operator()(llm_bigram_spm & l, llm_bigram_spm & r) {
- return (l.score < r.score) || (l.score == r.score && l.left > r.left);
- }
- };
- using queue_storage = std::vector<llm_bigram_spm>;
- using queue = std::priority_queue<llm_bigram_spm, queue_storage, comparator>;
- llm_symbol::index left;
- llm_symbol::index right;
- float score;
- size_t size;
- };
- struct llm_tokenizer_spm {
- llm_tokenizer_spm(const llama_vocab & vocab) : vocab(vocab) {}
- void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
- // split string into utf8 chars
- int index = 0;
- size_t offs = 0;
- while (offs < text.size()) {
- llm_symbol sym;
- size_t len = utf8_len(text[offs]);
- sym.text = text.c_str() + offs;
- sym.n = std::min(len, text.size() - offs);
- offs += sym.n;
- sym.prev = index - 1;
- sym.next = offs == text.size() ? -1 : index + 1;
- index++;
- symbols.emplace_back(sym);
- }
- // seed the work queue with all possible 2-character tokens.
- for (size_t i = 1; i < symbols.size(); ++i) {
- try_add_bigram(i - 1, i);
- }
- // keep substituting the highest frequency pairs for as long as we can.
- while (!work_queue.empty()) {
- auto bigram = work_queue.top();
- work_queue.pop();
- auto & left_sym = symbols[bigram.left];
- auto & right_sym = symbols[bigram.right];
- // if one of the symbols already got merged, skip it.
- if (left_sym.n == 0 || right_sym.n == 0 ||
- left_sym.n + right_sym.n != bigram.size) {
- continue;
- }
- // merge the right sym into the left one
- left_sym.n += right_sym.n;
- right_sym.n = 0;
- //LLAMA_LOG_INFO("left = '%*s' size = %zu\n", (int) left_sym.n, left_sym.text, bigram.size);
- // remove the right sym from the chain
- left_sym.next = right_sym.next;
- if (right_sym.next >= 0) {
- symbols[right_sym.next].prev = bigram.left;
- }
- // find more substitutions
- try_add_bigram(left_sym.prev, bigram.left);
- try_add_bigram(bigram.left, left_sym.next);
- }
- for (int i = 0; i != -1; i = symbols[i].next) {
- auto & symbol = symbols[i];
- resegment(symbol, output);
- }
- }
- private:
- void resegment(llm_symbol & symbol, std::vector<llama_vocab::id> & output) {
- auto text = std::string(symbol.text, symbol.n);
- auto token = vocab.token_to_id.find(text);
- // Do we need to support is_unused?
- if (token != vocab.token_to_id.end()) {
- output.push_back((*token).second);
- return;
- }
- const auto p = rev_merge.find(text);
- if (p == rev_merge.end()) {
- // output any symbols that did not form tokens as bytes.
- output.reserve(output.size() + symbol.n);
- for (int j = 0; j < (int)symbol.n; ++j) {
- llama_vocab::id token_id = llama_byte_to_token(vocab, symbol.text[j]);
- output.push_back(token_id);
- }
- return;
- }
- resegment(symbols[p->second.first], output);
- resegment(symbols[p->second.second], output);
- }
- void try_add_bigram(int left, int right) {
- if (left == -1 || right == -1) {
- return;
- }
- const std::string text = std::string(symbols[left].text, symbols[left].n + symbols[right].n);
- auto token = vocab.token_to_id.find(text);
- if (token == vocab.token_to_id.end()) {
- return;
- }
- if (static_cast<size_t>((*token).second) >= vocab.id_to_token.size()) {
- return;
- }
- const auto & tok_data = vocab.id_to_token[(*token).second];
- llm_bigram_spm bigram;
- bigram.left = left;
- bigram.right = right;
- bigram.score = tok_data.score;
- bigram.size = text.size();
- work_queue.push(bigram);
- // Do we need to support is_unused?
- rev_merge[text] = std::make_pair(left, right);
- }
- const llama_vocab & vocab;
- std::vector<llm_symbol> symbols;
- llm_bigram_spm::queue work_queue;
- std::map<std::string, std::pair<int, int>> rev_merge;
- };
- // BPE tokenizer
- // adapted from https://github.com/cmp-nct/ggllm.cpp [MIT License]
- // tried to simplify unicode stuff, so most likely does not work 100% correctly!
- // TODO: there are a lot of common parts between spm and bpe tokenizers, should be refactored and reused
- struct llm_bigram_bpe {
- struct comparator {
- bool operator()(const llm_bigram_bpe & l, const llm_bigram_bpe & r) const {
- return l.rank > r.rank || (l.rank == r.rank && l.left > r.left);
- }
- };
- using queue_storage = std::vector<llm_bigram_bpe>;
- using queue = std::priority_queue<llm_bigram_bpe, queue_storage, comparator>;
- llm_symbol::index left;
- llm_symbol::index right;
- std::string text;
- int rank;
- size_t size;
- };
- struct llm_tokenizer_bpe {
- llm_tokenizer_bpe(const llama_vocab & vocab): vocab(vocab) {}
- void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
- int final_prev_index = -1;
- bool ignore_merges = false;
- std::vector<std::string> word_collection;
- switch (vocab.type) {
- case LLAMA_VOCAB_TYPE_BPE:
- switch (vocab.type_pre) {
- case LLAMA_VOCAB_PRE_TYPE_LLAMA3:
- ignore_merges = true;
- word_collection = unicode_regex_split(text, {
- // original regex from tokenizer.json
- //"(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
- // adapted: https://github.com/ggerganov/llama.cpp/pull/6920#issuecomment-2080233989
- "(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
- });
- break;
- case LLAMA_VOCAB_PRE_TYPE_DBRX:
- word_collection = unicode_regex_split(text, {
- // same as llama3
- "(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
- });
- break;
- case LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_LLM:
- word_collection = unicode_regex_split(text, {
- "[\r\n]",
- "\\s?[A-Za-zµÀ-ÖØ-öø-ƺƼ-ƿDŽ-ʓʕ-ʯͰ-ͳͶͷͻ-ͽͿΆΈ-ΊΌΎ-ΡΣ-ϵϷ-ҁҊ-ԯԱ-ՖႠ-ჅᎠ-Ᏽᏸ-ᏽᲐ-ᲺᲽ-Ჿᴀ-ᴫᵫ-ᵷᵹ-ᶚḀ-ἕἘ-Ἕἠ-ὅὈ-Ὅὐ-ὗὙὛὝὟ-ώᾀ-ᾴᾶ-ᾼιῂ-ῄῆ-ῌῐ-ΐῖ-Ίῠ-Ῥῲ-ῴῶ-ῼℂℇℊ-ℓℕℙ-ℝℤΩℨK-ℭℯ-ℴℹℼ-ℿⅅ-ⅉⅎↃↄⰀ-ⱻⱾ-ⳤⳫ-ⳮⳲⳳꙀ-ꙭꚀ-ꚛꜢ-ꝯꝱ-ꞇꞋ-ꞎꭰ-ꮿff-stﬓ-ﬗA-Za-z𐐀-𐑏𐒰-𐓓𐓘-𐓻𐲀-𐲲𐳀-𐳲𑢠-𑣟𞤀-𞥃]+",
- "\\s?[!-/:-~!-/:-~‘-‟ -。]+",
- "\\s+$",
- "[一-龥ࠀ-一가-]+",
- "\\p{N}+",
- });
- break;
- case LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_CODER:
- word_collection = unicode_regex_split(text, {
- "[\r\n]",
- "\\s?\\p{L}+",
- "\\s?\\p{P}+",
- "[一-龥ࠀ-一가-]+",
- "\\p{N}",
- });
- break;
- case LLAMA_VOCAB_PRE_TYPE_FALCON:
- word_collection = unicode_regex_split(text, {
- "[\\p{P}\\$\\+<=>\\^~\\|]+",
- "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
- "[0-9][0-9][0-9]",
- });
- break;
- case LLAMA_VOCAB_PRE_TYPE_MPT:
- // TODO: MPT pre-tokenization regexes are unknown
- // the following are close, but not exact. run the following:
- // ./bin/test-tokenizer-0 ../models/ggml-vocab-mpt.gguf
- GGML_ASSERT("MPT pre-tokenization regexes are unknown - fixes needed");
- word_collection = unicode_regex_split(text, {
- "\\s?\\p{L}+",
- "\\s?\\p{P}+",
- "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
- });
- break;
- case LLAMA_VOCAB_PRE_TYPE_STARCODER:
- case LLAMA_VOCAB_PRE_TYPE_REFACT:
- case LLAMA_VOCAB_PRE_TYPE_COMMAND_R:
- word_collection = unicode_regex_split(text, {
- "\\p{N}",
- "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
- });
- break;
- case LLAMA_VOCAB_PRE_TYPE_GPT2:
- case LLAMA_VOCAB_PRE_TYPE_OLMO:
- word_collection = unicode_regex_split(text, {
- "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
- });
- break;
- case LLAMA_VOCAB_PRE_TYPE_QWEN2:
- word_collection = unicode_regex_split(text, {
- // original regex from tokenizer.json
- // "(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+"
- "(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
- });
- break;
- default:
- // default regex for BPE tokenization pre-processing
- word_collection = unicode_regex_split(text, {
- "[\\p{P}\\$\\+<=>\\^~\\|]+",
- "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
- "\\p{N}+",
- "[0-9][0-9][0-9]",
- });
- break;
- }
- break;
- default:
- GGML_ASSERT(false);
- break;
- }
- symbols_final.clear();
- for (auto & word : word_collection) {
- work_queue = llm_bigram_bpe::queue();
- symbols.clear();
- int index = 0;
- size_t offset = 0;
- if (ignore_merges && vocab.token_to_id.find(word) != vocab.token_to_id.end()) {
- symbols.emplace_back(llm_symbol{-1, -1, word.c_str(), word.size()});
- offset = word.size();
- }
- while (offset < word.size()) {
- llm_symbol sym;
- size_t char_len = std::min(word.size() - offset, (size_t) ::utf8_len(word[offset]));
- sym.text = word.c_str() + offset;
- sym.n = char_len;
- offset += sym.n;
- sym.prev = index - 1;
- sym.next = offset == word.size() ? -1 : index + 1;
- index++;
- symbols.emplace_back(sym);
- }
- for (size_t i = 1; i < symbols.size(); ++i) {
- add_new_bigram(i - 1, i);
- }
- // build token(s)
- while (!work_queue.empty()) {
- auto bigram = work_queue.top();
- work_queue.pop();
- auto & left_symbol = symbols[bigram.left];
- auto & right_symbol = symbols[bigram.right];
- if (left_symbol.n == 0 || right_symbol.n == 0) {
- continue;
- }
- std::string left_token = std::string(left_symbol.text, left_symbol.n);
- std::string right_token = std::string(right_symbol.text, right_symbol.n);
- if (left_token + right_token != bigram.text) {
- continue; // Skip this bigram if it's outdated
- }
- // merge the right sym into the left one
- left_symbol.n += right_symbol.n;
- right_symbol.n = 0;
- // remove the right sym from the chain
- left_symbol.next = right_symbol.next;
- if (right_symbol.next >= 0) {
- symbols[right_symbol.next].prev = bigram.left;
- }
- add_new_bigram(left_symbol.prev, bigram.left); // left side of current symbol
- add_new_bigram(bigram.left, left_symbol.next); // right side of current symbol
- }
- // add the finished tokens to the final list keeping correct order for next and prev
- for (auto & sym : symbols) {
- if (sym.n > 0) {
- sym.prev = final_prev_index;
- sym.next = -1;
- if (final_prev_index != -1) {
- symbols_final[final_prev_index].next = symbols_final.size();
- }
- symbols_final.emplace_back(sym);
- final_prev_index = symbols_final.size() - 1;
- }
- }
- }
- symbols = symbols_final;
- if (!symbols.empty()) {
- for (int i = 0; i != -1; i = symbols[i].next) {
- auto & symbol = symbols[i];
- if (symbol.n == 0) {
- continue;
- }
- const std::string str = std::string(symbol.text, symbol.n);
- const auto token = vocab.token_to_id.find(str);
- if (token == vocab.token_to_id.end()) {
- for (auto j = str.begin(); j != str.end(); ++j) {
- std::string byte_str(1, *j);
- auto token_multibyte = vocab.token_to_id.find(byte_str);
- if (token_multibyte == vocab.token_to_id.end()) {
- throw std::runtime_error("ERROR: byte not found in vocab");
- }
- output.push_back((*token_multibyte).second);
- }
- } else {
- output.push_back((*token).second);
- }
- }
- }
- }
- private:
- void add_new_bigram(int left, int right) {
- if (left == -1 || right == -1) {
- return;
- }
- std::string left_token = std::string(symbols[left].text, symbols[left].n);
- std::string right_token = std::string(symbols[right].text, symbols[right].n);
- int rank_found = -1;
- rank_found = vocab.find_bpe_rank(left_token, right_token);
- if (rank_found < 0) {
- return;
- }
- llm_bigram_bpe bigram;
- bigram.left = left;
- bigram.right = right;
- bigram.text = left_token + right_token;
- bigram.size = left_token.size() + right_token.size();
- bigram.rank = rank_found;
- work_queue.push(bigram);
- }
- const llama_vocab & vocab;
- std::vector<llm_symbol> symbols;
- std::vector<llm_symbol> symbols_final;
- llm_bigram_bpe::queue work_queue;
- };
- struct llm_tokenizer_wpm {
- llm_tokenizer_wpm(const llama_vocab & vocab): vocab(vocab) {}
- void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
- auto * token_map = &vocab.token_to_id;
- // normalize and split by whitespace
- std::vector<std::string> words = preprocess(text);
- // bos token prepended already
- // find the longest tokens that form the words
- for (const std::string &word : words) {
- // skip empty words
- if (word.size() == 0) {
- continue;
- }
- // prepend phantom space
- std::string word1 = "\xe2\x96\x81" + word;
- int n = word1.size();
- // we're at the start of a new word
- int i = 0;
- bool match_any = false;
- // move through character position in word
- while (i < n) {
- // loop through possible match length
- bool match = false;
- for (int j = n; j > i; j--) {
- auto it = token_map->find(word1.substr(i, j - i));
- if (it != token_map->end()) {
- output.push_back(it->second);
- match = true;
- match_any = true;
- i = j;
- break;
- }
- }
- // must be an unknown character
- if (!match) {
- i++;
- }
- }
- // we didn't find any matches for this word
- if (!match_any) {
- output.push_back(vocab.special_unk_id);
- }
- }
- }
- std::vector<std::string> preprocess(const std::string & text) {
- std::vector<uint32_t> cpts_nfd = unicode_cpts_normalize_nfd(unicode_cpts_from_utf8(text));
- // strip accents, strip control, uniformize whitespace,
- // to lowercase, pad chinese characters, pad punctuation
- std::string new_str = "";
- for (uint32_t code : cpts_nfd) {
- const codepoint_flags flags = unicode_cpt_flags(code);
- if (flags.is_accent_mark || flags.is_control) {
- continue;
- }
- code = unicode_tolower(code);
- if (flags.is_separator || flags.is_whitespace) { //####FIXME: is_separator ?
- code = ' ';
- }
- std::string s = unicode_cpt_to_utf8(code);
- if (flags.is_punctuation || is_ascii_punct(code) || is_chinese_char(code)) {
- new_str += " ";
- new_str += s;
- new_str += " ";
- } else {
- new_str += s;
- }
- }
- // split by whitespace
- uint64_t l = 0;
- uint64_t r = 0;
- std::vector<std::string> words;
- while (r < new_str.size()) {
- // if is whitespace
- if (isspace(new_str[r], std::locale::classic())) {
- if (r > l) words.push_back(new_str.substr(l, (r - l)));
- l = r + 1;
- r = l;
- } else {
- r += 1;
- }
- }
- if (r > l) {
- words.push_back(new_str.substr(l, (r - l)));
- }
- return words;
- }
- bool is_ascii_punct(uint32_t code) {
- if (code > 0xFF) {
- return false;
- }
- auto c = char(static_cast<unsigned char>(code));
- return ispunct(c, std::locale::classic());
- }
- bool is_chinese_char(uint32_t cpt) {
- if ((cpt >= 0x4E00 && cpt <= 0x9FFF) ||
- (cpt >= 0x3400 && cpt <= 0x4DBF) ||
- (cpt >= 0x20000 && cpt <= 0x2A6DF) ||
- (cpt >= 0x2A700 && cpt <= 0x2B73F) ||
- (cpt >= 0x2B740 && cpt <= 0x2B81F) ||
- (cpt >= 0x2B920 && cpt <= 0x2CEAF) || // this should be 0x2B820 but in hf rust code it is 0x2B920
- (cpt >= 0xF900 && cpt <= 0xFAFF) ||
- (cpt >= 0x2F800 && cpt <= 0x2FA1F) ||
- (cpt >= 0x3000 && cpt <= 0x303F) ||
- (cpt >= 0xFF00 && cpt <= 0xFFEF)) {
- return true; // NOLINT
- }
- return false;
- }
- const llama_vocab & vocab;
- };
- typedef enum FRAGMENT_BUFFER_VARIANT_TYPE {
- FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN,
- FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT
- } FRAGMENT_BUFFER_VARIANT_TYPE;
- struct fragment_buffer_variant {
- fragment_buffer_variant(llama_vocab::id _token)
- :
- type(FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN),
- token(_token),
- raw_text(_dummy),
- offset(0),
- length(0) {}
- fragment_buffer_variant(const std::string & _raw_text, int64_t _offset, int64_t _length)
- :
- type(FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT),
- token((llama_vocab::id) - 1),
- raw_text(_raw_text),
- offset(_offset),
- length(_length){
- GGML_ASSERT(_offset >= 0);
- GGML_ASSERT(_length >= 1);
- GGML_ASSERT(offset + length <= raw_text.length());
- }
- const FRAGMENT_BUFFER_VARIANT_TYPE type;
- const llama_vocab::id token;
- const std::string _dummy;
- const std::string & raw_text;
- const uint64_t offset;
- const uint64_t length;
- };
- // #define PRETOKENIZERDEBUG
- static void tokenizer_st_partition(const llama_vocab & vocab, std::forward_list<fragment_buffer_variant> & buffer) {
- // for each special token
- for (const auto & st: vocab.special_tokens_cache) {
- const auto & special_token = st.first;
- const auto & special_id = st.second;
- // for each text fragment
- std::forward_list<fragment_buffer_variant>::iterator it = buffer.begin();
- while (it != buffer.end()) {
- auto & fragment = (*it);
- // if a fragment is text ( not yet processed )
- if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
- auto * raw_text = &(fragment.raw_text);
- auto raw_text_base_offset = fragment.offset;
- auto raw_text_base_length = fragment.length;
- // loop over the text
- while (true) {
- // find the first occurrence of a given special token in this fragment
- // passing offset argument only limit the "search area" but match coordinates
- // are still relative to the source full raw_text
- auto match = raw_text->find(special_token, raw_text_base_offset);
- // no occurrences found, stop processing this fragment for a given special token
- if (match == std::string::npos) break;
- // check if match is within bounds of offset <-> length
- if (match + special_token.length() > raw_text_base_offset + raw_text_base_length) break;
- #ifdef PRETOKENIZERDEBUG
- LLAMA_LOG_WARN("FF: (%ld %ld %ld) '%s'\n", raw_text->length(), raw_text_base_offset, raw_text_base_length, raw_text->substr(raw_text_base_offset, raw_text_base_length).c_str());
- #endif
- auto source = std::distance(buffer.begin(), it);
- // if match is further than base offset
- // then we have some text to the left of it
- if (match > raw_text_base_offset) {
- // left
- const int64_t left_reminder_offset = raw_text_base_offset + 0;
- const int64_t left_reminder_length = match - raw_text_base_offset;
- buffer.emplace_after(it, (*raw_text), left_reminder_offset, left_reminder_length);
- #ifdef PRETOKENIZERDEBUG
- LLAMA_LOG_WARN("FL: (%ld %ld) '%s'\n", left_reminder_offset, left_reminder_length, raw_text->substr(left_reminder_offset, left_reminder_length).c_str());
- #endif
- it++;
- }
- // special token
- buffer.emplace_after(it, special_id);
- it++;
- // right
- if (match + special_token.length() < raw_text_base_offset + raw_text_base_length) {
- const int64_t right_reminder_offset = match + special_token.length();
- const int64_t right_reminder_length = raw_text_base_length - ((match - raw_text_base_offset) + special_token.length());
- buffer.emplace_after(it, (*raw_text), right_reminder_offset, right_reminder_length);
- #ifdef PRETOKENIZERDEBUG
- LLAMA_LOG_WARN("FR: (%ld %ld) '%s'\n", right_reminder_offset, right_reminder_length, raw_text->substr(right_reminder_offset, right_reminder_length).c_str());
- #endif
- it++;
- if (source == 0) {
- buffer.erase_after(buffer.before_begin());
- } else {
- buffer.erase_after(std::next(buffer.begin(), (source-1)));
- }
- // repeat for the right side
- raw_text_base_offset = right_reminder_offset;
- raw_text_base_length = right_reminder_length;
- #ifdef PRETOKENIZERDEBUG
- LLAMA_LOG_WARN("RR: (%ld %ld) '%s'\n", raw_text_base_offset, raw_text_base_length, raw_text->substr(raw_text_base_offset, raw_text_base_length).c_str());
- #endif
- } else {
- if (source == 0) {
- buffer.erase_after(buffer.before_begin());
- } else {
- buffer.erase_after(std::next(buffer.begin(), (source-1)));
- }
- break;
- }
- }
- }
- it++;
- }
- }
- }
- static std::vector<llama_vocab::id> llama_tokenize_internal(const llama_vocab & vocab, std::string raw_text, bool add_special, bool parse_special) {
- std::vector<llama_vocab::id> output;
- std::forward_list<fragment_buffer_variant> fragment_buffer;
- if (!raw_text.empty()) {
- fragment_buffer.emplace_front(raw_text, 0, raw_text.length());
- if (parse_special) tokenizer_st_partition(vocab, fragment_buffer);
- }
- switch (vocab.type) {
- case LLAMA_VOCAB_TYPE_SPM:
- {
- // OG tokenizer behavior:
- //
- // tokenizer.encode('', add_special_tokens=True) returns [1]
- // tokenizer.encode('', add_special_tokens=False) returns []
- if (add_special && vocab.special_add_bos != 0) {
- GGML_ASSERT(vocab.special_bos_id != -1);
- output.push_back(vocab.special_bos_id);
- }
- for (const auto & fragment : fragment_buffer) {
- if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
- // without adding this leading whitespace, we do not get the same results as the original tokenizer
- // TODO: It's likely possible to get rid of this string copy entirely
- // by modifying llm_tokenizer_x to operate with string offsets like pre-tokenizer
- // and passing 'add space prefix' as bool argument
- //
- auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
- if (&fragment == &fragment_buffer.front()) {
- if (vocab.add_space_prefix) {
- raw_text = " " + raw_text; // prefix with space if the first token is not special
- }
- }
- #ifdef PRETOKENIZERDEBUG
- LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
- #endif
- llm_tokenizer_spm tokenizer(vocab);
- llama_escape_whitespace(raw_text);
- tokenizer.tokenize(raw_text, output);
- } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
- output.push_back(fragment.token);
- }
- }
- if (add_special && vocab.special_add_bos != 0 && output.size() >= 2 && output[1] == vocab.special_bos_id) {
- LLAMA_LOG_WARN(
- "%s: Added a BOS token to the prompt as specified by the model but the prompt "
- "also starts with a BOS token. So now the final prompt starts with 2 BOS tokens. "
- "Are you sure this is what you want?\n", __FUNCTION__);
- }
- if (add_special && vocab.special_add_eos == 1) {
- GGML_ASSERT(vocab.special_eos_id != -1);
- output.push_back(vocab.special_eos_id);
- }
- } break;
- case LLAMA_VOCAB_TYPE_BPE:
- {
- if (add_special && vocab.special_add_bos != 0) {
- GGML_ASSERT(vocab.special_bos_id != -1);
- output.push_back(vocab.special_bos_id);
- }
- for (const auto & fragment : fragment_buffer) {
- if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
- auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
- #ifdef PRETOKENIZERDEBUG
- LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
- #endif
- llm_tokenizer_bpe tokenizer(vocab);
- tokenizer.tokenize(raw_text, output);
- } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
- output.push_back(fragment.token);
- }
- }
- if (add_special && vocab.special_add_bos != 0 && output.size() >= 2 && output[1] == vocab.special_bos_id) {
- LLAMA_LOG_WARN(
- "%s: Added a BOS token to the prompt as specified by the model but the prompt "
- "also starts with a BOS token. So now the final prompt starts with 2 BOS tokens. "
- "Are you sure this is what you want?\n", __FUNCTION__);
- }
- if (add_special && vocab.special_add_eos == 1) {
- GGML_ASSERT(vocab.special_add_eos != -1);
- output.push_back(vocab.special_eos_id);
- }
- } break;
- case LLAMA_VOCAB_TYPE_WPM:
- {
- if (add_special) {
- GGML_ASSERT(vocab.special_cls_id != -1);
- output.push_back(vocab.special_cls_id);
- }
- for (const auto & fragment : fragment_buffer) {
- if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
- auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
- #ifdef PRETOKENIZERDEBUG
- LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
- #endif
- llm_tokenizer_wpm tokenizer(vocab);
- tokenizer.tokenize(raw_text, output);
- } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
- output.push_back(fragment.token);
- }
- }
- if (add_special) {
- GGML_ASSERT(vocab.special_sep_id != -1);
- output.push_back(vocab.special_sep_id);
- }
- } break;
- case LLAMA_VOCAB_TYPE_NONE:
- GGML_ASSERT(false);
- }
- return output;
- }
- //
- // grammar - internal
- //
- // Decodes a UTF-8 string which may end in an incomplete sequence. Adds a terminating 0 for use as
- // pointer. If an invalid sequence is encountered, returns `llama_partial_utf8.n_remain == -1`.
- std::pair<std::vector<uint32_t>, llama_partial_utf8> decode_utf8(
- const std::string & src,
- llama_partial_utf8 partial_start) {
- static const int lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 2, 2, 3, 4 };
- const char * pos = src.c_str();
- std::vector<uint32_t> code_points;
- // common english strings have the same number of codepoints and bytes. `+ 1` for the terminating 0.
- code_points.reserve(src.size() + 1);
- uint32_t value = partial_start.value;
- int n_remain = partial_start.n_remain;
- // continue previous decode, if applicable
- while (*pos != 0 && n_remain > 0) {
- uint8_t next_byte = static_cast<uint8_t>(*pos);
- if ((next_byte >> 6) != 2) {
- // invalid sequence, abort
- code_points.push_back(0);
- return std::make_pair(std::move(code_points), llama_partial_utf8{ 0, -1 });
- }
- value = (value << 6) + (next_byte & 0x3F);
- ++pos;
- --n_remain;
- }
- if (partial_start.n_remain > 0 && n_remain == 0) {
- code_points.push_back(value);
- }
- // decode any subsequent utf-8 sequences, which may end in an incomplete one
- while (*pos != 0) {
- uint8_t first_byte = static_cast<uint8_t>(*pos);
- uint8_t highbits = first_byte >> 4;
- n_remain = lookup[highbits] - 1;
- if (n_remain < 0) {
- // invalid sequence, abort
- code_points.clear();
- code_points.push_back(0);
- return std::make_pair(std::move(code_points), llama_partial_utf8{ 0, n_remain });
- }
- uint8_t mask = (1 << (7 - n_remain)) - 1;
- value = first_byte & mask;
- ++pos;
- while (*pos != 0 && n_remain > 0) {
- value = (value << 6) + (static_cast<uint8_t>(*pos) & 0x3F);
- ++pos;
- --n_remain;
- }
- if (n_remain == 0) {
- code_points.push_back(value);
- }
- }
- code_points.push_back(0);
- return std::make_pair(std::move(code_points), llama_partial_utf8{ value, n_remain });
- }
- // returns true iff pos points to the end of one of the definitions of a rule
- static bool llama_grammar_is_end_of_sequence(const llama_grammar_element * pos) {
- switch (pos->type) {
- case LLAMA_GRETYPE_END: return true; // NOLINT
- case LLAMA_GRETYPE_ALT: return true; // NOLINT
- default: return false;
- }
- }
- // returns true iff chr satisfies the char range at pos (regular or inverse range)
- // asserts that pos is pointing to a char range element
- static std::pair<bool, const llama_grammar_element *> llama_grammar_match_char(
- const llama_grammar_element * pos,
- const uint32_t chr) {
- bool found = false;
- bool is_positive_char = pos->type == LLAMA_GRETYPE_CHAR;
- GGML_ASSERT(is_positive_char || pos->type == LLAMA_GRETYPE_CHAR_NOT); // NOLINT
- do {
- if (pos[1].type == LLAMA_GRETYPE_CHAR_RNG_UPPER) {
- // inclusive range, e.g. [a-z]
- found = found || (pos->value <= chr && chr <= pos[1].value);
- pos += 2;
- } else {
- // exact char match, e.g. [a] or "a"
- found = found || pos->value == chr;
- pos += 1;
- }
- } while (pos->type == LLAMA_GRETYPE_CHAR_ALT);
- return std::make_pair(found == is_positive_char, pos);
- }
- // returns true iff some continuation of the given partial UTF-8 sequence could satisfy the char
- // range at pos (regular or inverse range)
- // asserts that pos is pointing to a char range element
- static bool llama_grammar_match_partial_char(
- const llama_grammar_element * pos,
- const llama_partial_utf8 partial_utf8) {
- bool is_positive_char = pos->type == LLAMA_GRETYPE_CHAR;
- GGML_ASSERT(is_positive_char || pos->type == LLAMA_GRETYPE_CHAR_NOT);
- uint32_t partial_value = partial_utf8.value;
- int n_remain = partial_utf8.n_remain;
- // invalid sequence or 7-bit char split across 2 bytes (overlong)
- if (n_remain < 0 || (n_remain == 1 && partial_value < 2)) {
- return false;
- }
- // range of possible code points this partial UTF-8 sequence could complete to
- uint32_t low = partial_value << (n_remain * 6);
- uint32_t high = low | ((1 << (n_remain * 6)) - 1);
- if (low == 0) {
- if (n_remain == 2) {
- low = 1 << 11;
- } else if (n_remain == 3) {
- low = 1 << 16;
- }
- }
- do {
- if (pos[1].type == LLAMA_GRETYPE_CHAR_RNG_UPPER) {
- // inclusive range, e.g. [a-z]
- if (pos->value <= high && low <= pos[1].value) {
- return is_positive_char;
- }
- pos += 2;
- } else {
- // exact char match, e.g. [a] or "a"
- if (low <= pos->value && pos->value <= high) {
- return is_positive_char;
- }
- pos += 1;
- }
- } while (pos->type == LLAMA_GRETYPE_CHAR_ALT);
- return !is_positive_char;
- }
- // transforms a grammar pushdown stack into N possible stacks, all ending
- // at a character range (terminal element)
- static void llama_grammar_advance_stack(
- const std::vector<std::vector<llama_grammar_element>> & rules,
- const std::vector<const llama_grammar_element *> & stack,
- std::vector<std::vector<const llama_grammar_element *>> & new_stacks) {
- if (stack.empty()) {
- if (std::find(new_stacks.begin(), new_stacks.end(), stack) == new_stacks.end()) {
- new_stacks.emplace_back(stack);
- }
- return;
- }
- const llama_grammar_element * pos = stack.back();
- switch (pos->type) {
- case LLAMA_GRETYPE_RULE_REF: {
- const size_t rule_id = static_cast<size_t>(pos->value);
- const llama_grammar_element * subpos = rules[rule_id].data();
- do {
- // init new stack without the top (pos)
- std::vector<const llama_grammar_element *> new_stack(stack.begin(), stack.end() - 1);
- if (!llama_grammar_is_end_of_sequence(pos + 1)) {
- // if this rule ref is followed by another element, add that to stack
- new_stack.push_back(pos + 1);
- }
- if (!llama_grammar_is_end_of_sequence(subpos)) {
- // if alternate is nonempty, add to stack
- new_stack.push_back(subpos);
- }
- llama_grammar_advance_stack(rules, new_stack, new_stacks);
- while (!llama_grammar_is_end_of_sequence(subpos)) {
- // scan to end of alternate def
- subpos++;
- }
- if (subpos->type == LLAMA_GRETYPE_ALT) {
- // there's another alternate def of this rule to process
- subpos++;
- } else {
- break;
- }
- } while (true);
- break;
- }
- case LLAMA_GRETYPE_CHAR:
- case LLAMA_GRETYPE_CHAR_NOT:
- if (std::find(new_stacks.begin(), new_stacks.end(), stack) == new_stacks.end()) {
- // only add the stack if it's not a duplicate of one we already have
- new_stacks.emplace_back(stack);
- }
- break;
- default:
- // end of alternate (LLAMA_GRETYPE_END, LLAMA_GRETYPE_ALT) or middle of char range
- // (LLAMA_GRETYPE_CHAR_ALT, LLAMA_GRETYPE_CHAR_RNG_UPPER); stack should never be left on
- // those
- GGML_ASSERT(false);
- }
- }
- // takes a set of possible pushdown stacks on a grammar, which are required to
- // be positioned at a character range (see `llama_grammar_advance_stack`), and
- // produces the N possible stacks if the given char is accepted at those
- // positions
- void llama_grammar_accept(
- const std::vector<std::vector<llama_grammar_element>> & rules,
- const std::vector<std::vector<const llama_grammar_element *>> & stacks,
- const uint32_t chr,
- std::vector<std::vector<const llama_grammar_element *>> & new_stacks) {
- new_stacks.clear();
- for (const auto & stack : stacks) {
- if (stack.empty()) {
- continue;
- }
- auto match = llama_grammar_match_char(stack.back(), chr);
- if (match.first) {
- const llama_grammar_element * pos = match.second;
- // update top of stack to next element, if any
- std::vector<const llama_grammar_element *> new_stack(stack.begin(), stack.end() - 1);
- if (!llama_grammar_is_end_of_sequence(pos)) {
- new_stack.push_back(pos);
- }
- llama_grammar_advance_stack(rules, new_stack, new_stacks);
- }
- }
- }
- static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates(
- const std::vector<std::vector<llama_grammar_element>> & rules,
- const std::vector<std::vector<const llama_grammar_element *>> & stacks,
- const std::vector<llama_grammar_candidate> & candidates);
- static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates_for_stack(
- const std::vector<std::vector<llama_grammar_element>> & rules,
- const std::vector<const llama_grammar_element *> & stack,
- const std::vector<llama_grammar_candidate> & candidates) {
- std::vector<llama_grammar_candidate> rejects;
- rejects.reserve(candidates.size());
- if (stack.empty()) {
- for (const auto & tok : candidates) {
- if (*tok.code_points != 0 || tok.partial_utf8.n_remain != 0) {
- rejects.push_back(tok);
- }
- }
- return rejects;
- }
- const llama_grammar_element * stack_pos = stack.back();
- std::vector<llama_grammar_candidate> next_candidates;
- next_candidates.reserve(candidates.size());
- for (const auto & tok : candidates) {
- if (*tok.code_points == 0) {
- // reached end of full codepoints in token, reject iff it ended in a partial sequence
- // that cannot satisfy this position in grammar
- if (tok.partial_utf8.n_remain != 0 &&
- !llama_grammar_match_partial_char(stack_pos, tok.partial_utf8)) {
- rejects.push_back(tok);
- }
- } else if (llama_grammar_match_char(stack_pos, *tok.code_points).first) {
- next_candidates.push_back({ tok.index, tok.code_points + 1, tok.partial_utf8 });
- } else {
- rejects.push_back(tok);
- }
- }
- const auto * stack_pos_after = llama_grammar_match_char(stack_pos, 0).second;
- // update top of stack to next element, if any
- std::vector<const llama_grammar_element *> stack_after(stack.begin(), stack.end() - 1);
- if (!llama_grammar_is_end_of_sequence(stack_pos_after)) {
- stack_after.push_back(stack_pos_after);
- }
- std::vector<std::vector<const llama_grammar_element *>> next_stacks;
- llama_grammar_advance_stack(rules, stack_after, next_stacks);
- auto next_rejects = llama_grammar_reject_candidates(rules, next_stacks, next_candidates);
- for (const auto & tok : next_rejects) {
- rejects.push_back({ tok.index, tok.code_points - 1, tok.partial_utf8 });
- }
- return rejects;
- }
- static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates(
- const std::vector<std::vector<llama_grammar_element>> & rules,
- const std::vector<std::vector<const llama_grammar_element *>> & stacks,
- const std::vector<llama_grammar_candidate> & candidates) {
- GGML_ASSERT(!stacks.empty()); // REVIEW
- if (candidates.empty()) {
- return std::vector<llama_grammar_candidate>();
- }
- auto rejects = llama_grammar_reject_candidates_for_stack(rules, stacks.front(), candidates);
- for (size_t i = 1, size = stacks.size(); i < size; ++i) {
- rejects = llama_grammar_reject_candidates_for_stack(rules, stacks[i], rejects);
- }
- return rejects;
- }
- static bool llama_grammar_detect_left_recursion(
- const std::vector<std::vector<llama_grammar_element>> & rules,
- size_t rule_index,
- std::vector<bool> * rules_visited,
- std::vector<bool> * rules_in_progress,
- std::vector<bool> * rules_may_be_empty) {
- if ((*rules_in_progress)[rule_index]) {
- return true;
- }
- (*rules_in_progress)[rule_index] = true;
- const std::vector<llama_grammar_element> & rule = rules[rule_index];
- // First check if the rule might produce the empty string. This could be done combined with the second
- // step but it's more readable as two steps.
- bool at_rule_start = true;
- for (size_t i = 0; i < rule.size(); i++) {
- if (llama_grammar_is_end_of_sequence(&rule[i])) {
- if (at_rule_start) {
- (*rules_may_be_empty)[rule_index] = true;
- break;
- }
- at_rule_start = true;
- } else {
- at_rule_start = false;
- }
- }
- // Second, recurse into leftmost nonterminals (or next-leftmost as long as the previous nonterminal may
- // be empty)
- bool recurse_into_nonterminal = true;
- for (size_t i = 0; i < rule.size(); i++) {
- if (rule[i].type == LLAMA_GRETYPE_RULE_REF && recurse_into_nonterminal) {
- if (llama_grammar_detect_left_recursion(rules, (size_t)rule[i].value, rules_visited, rules_in_progress, rules_may_be_empty)) {
- return true;
- }
- if (!((*rules_may_be_empty)[(size_t)rule[i].value])) {
- recurse_into_nonterminal = false;
- }
- } else if (llama_grammar_is_end_of_sequence(&rule[i])) {
- recurse_into_nonterminal = true;
- } else {
- recurse_into_nonterminal = false;
- }
- }
- (*rules_in_progress)[rule_index] = false;
- (*rules_visited)[rule_index] = true;
- return false;
- }
- //
- // grammar - external
- //
- struct llama_grammar * llama_grammar_init(
- const llama_grammar_element ** rules,
- size_t n_rules,
- size_t start_rule_index) {
- const llama_grammar_element * pos;
- // copy rule definitions into vectors
- std::vector<std::vector<llama_grammar_element>> vec_rules(n_rules);
- for (size_t i = 0; i < n_rules; i++) {
- for (pos = rules[i]; pos->type != LLAMA_GRETYPE_END; pos++) {
- vec_rules[i].push_back(*pos);
- }
- vec_rules[i].push_back({LLAMA_GRETYPE_END, 0});
- }
- // Check for left recursion
- std::vector<bool> rules_visited(n_rules);
- std::vector<bool> rules_in_progress(n_rules);
- std::vector<bool> rules_may_be_empty(n_rules);
- for (size_t i = 0; i < n_rules; i++) {
- if (rules_visited[i]) {
- continue;
- }
- if (llama_grammar_detect_left_recursion(vec_rules, i, &rules_visited, &rules_in_progress, &rules_may_be_empty)) {
- throw std::runtime_error(format("unsupported grammar, left recursion detected for nonterminal at index %zu", i));
- }
- }
- // loop over alternates of start rule to build initial stacks
- std::vector<std::vector<const llama_grammar_element *>> stacks;
- pos = vec_rules[start_rule_index].data();
- do {
- std::vector<const llama_grammar_element *> stack;
- if (!llama_grammar_is_end_of_sequence(pos)) {
- // if alternate is nonempty, add to stack
- stack.push_back(pos);
- }
- llama_grammar_advance_stack(vec_rules, stack, stacks);
- while (!llama_grammar_is_end_of_sequence(pos)) {
- // scan to end of alternate def
- pos++;
- }
- if (pos->type == LLAMA_GRETYPE_ALT) {
- // there's another alternate def of this rule to process
- pos++;
- } else {
- break;
- }
- } while (true);
- // Important: vec_rules has to be moved here, not copied, because stacks contains
- // pointers to elements of vec_rules. If vec_rules were copied into llama_grammar
- // then the pointers would be invalidated when the local vec_rules goes out of scope.
- return new llama_grammar{ std::move(vec_rules), std::move(stacks), {} };
- }
- void llama_grammar_free(struct llama_grammar * grammar) {
- delete grammar;
- }
- struct llama_grammar * llama_grammar_copy(const struct llama_grammar * grammar) {
- llama_grammar * result = new llama_grammar{ grammar->rules, grammar->stacks, grammar->partial_utf8 };
- // redirect elements in stacks to point to new rules
- for (size_t is = 0; is < result->stacks.size(); is++) {
- for (size_t ie = 0; ie < result->stacks[is].size(); ie++) {
- for (size_t ir0 = 0; ir0 < grammar->rules.size(); ir0++) {
- for (size_t ir1 = 0; ir1 < grammar->rules[ir0].size(); ir1++) {
- if (grammar->stacks[is][ie] == &grammar->rules[ir0][ir1]) {
- result->stacks[is][ie] = &result->rules[ir0][ir1];
- }
- }
- }
- }
- }
- return result;
- }
- //
- // sampling
- //
- void llama_set_rng_seed(struct llama_context * ctx, uint32_t seed) {
- if (seed == LLAMA_DEFAULT_SEED) {
- seed = time(NULL);
- }
- ctx->rng.seed(seed);
- }
- void llama_sample_softmax(struct llama_context * ctx, llama_token_data_array * candidates) {
- GGML_ASSERT(candidates->size > 0);
- const int64_t t_start_sample_us = ggml_time_us();
- // Sort the logits in descending order
- if (!candidates->sorted) {
- std::sort(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
- return a.logit > b.logit;
- });
- candidates->sorted = true;
- }
- float max_l = candidates->data[0].logit;
- float cum_sum = 0.0f;
- for (size_t i = 0; i < candidates->size; ++i) {
- float p = expf(candidates->data[i].logit - max_l);
- candidates->data[i].p = p;
- cum_sum += p;
- }
- for (size_t i = 0; i < candidates->size; ++i) {
- candidates->data[i].p /= cum_sum;
- }
- if (ctx) {
- ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
- }
- }
- void llama_sample_top_k(struct llama_context * ctx, llama_token_data_array * candidates, int32_t k, size_t min_keep) {
- // TODO: move bucket sort to separate function so that top_p/tail_free/typical/softmax first is equally fast
- // if (k >= (int32_t)candidates->size) {
- // return;
- // }
- const int64_t t_start_sample_us = ggml_time_us();
- if (k <= 0) {
- k = candidates->size;
- }
- k = std::max(k, (int) min_keep);
- k = std::min(k, (int) candidates->size);
- // Sort scores in descending order
- if (!candidates->sorted) {
- auto comp = [](const llama_token_data & a, const llama_token_data & b) {
- return a.logit > b.logit;
- };
- if (k <= 128) {
- std::partial_sort(candidates->data, candidates->data + k, candidates->data + candidates->size, comp);
- } else {
- constexpr int nbuckets = 128;
- constexpr float bucket_low = -10.0f;
- constexpr float bucket_high = 10.0f;
- constexpr float bucket_scale = nbuckets/(bucket_high - bucket_low);
- constexpr float bucker_inter = -bucket_low * bucket_scale;
- std::vector<int> bucket_idx(candidates->size);
- std::vector<int> histo(nbuckets, 0);
- for (int i = 0; i < (int)candidates->size; ++i) {
- const float val = candidates->data[i].logit;
- int ib = int(bucket_scale * val + bucker_inter); //nbuckets * (val - bucket_low) / (bucket_high - bucket_low);
- ib = std::max(0, std::min(nbuckets-1, ib));
- bucket_idx[i] = ib;
- ++histo[ib];
- }
- int nhave = 0;
- int ib = nbuckets - 1;
- for ( ; ib >= 0; --ib) {
- nhave += histo[ib];
- if (nhave >= k) break;
- }
- std::vector<llama_token_data> tmp_tokens(nhave);
- auto ptr = tmp_tokens.data();
- std::vector<llama_token_data*> bucket_ptrs;
- bucket_ptrs.reserve(nbuckets - ib);
- for (int j = nbuckets - 1; j >= ib; --j) {
- bucket_ptrs.push_back(ptr);
- ptr += histo[j];
- }
- for (int i = 0; i < (int)candidates->size; ++i) {
- int j = bucket_idx[i];
- if (j >= ib) {
- *bucket_ptrs[nbuckets-1-j]++ = candidates->data[i];
- }
- }
- ptr = tmp_tokens.data();
- int ndone = 0;
- for (int j = nbuckets-1; j > ib; --j) {
- std::sort(ptr, ptr + histo[j], comp);
- ptr += histo[j];
- ndone += histo[j];
- }
- std::partial_sort(ptr, ptr + k - ndone, ptr + histo[ib], comp);
- std::memcpy(candidates->data, tmp_tokens.data(), k*sizeof(llama_token_data));
- }
- candidates->sorted = true;
- }
- candidates->size = k;
- if (ctx) {
- ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
- }
- }
- void llama_sample_top_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
- if (p >= 1.0f) {
- return;
- }
- llama_sample_softmax(ctx, candidates);
- const int64_t t_start_sample_us = ggml_time_us();
- // Compute the cumulative probabilities
- float cum_sum = 0.0f;
- size_t last_idx = candidates->size;
- for (size_t i = 0; i < candidates->size; ++i) {
- cum_sum += candidates->data[i].p;
- // Check if the running sum is at least p or if we have kept at least min_keep tokens
- // we set the last index to i+1 to indicate that the current iterate should be included in the set
- if (cum_sum >= p && i + 1 >= min_keep) {
- last_idx = i + 1;
- break;
- }
- }
- // Resize the output vector to keep only the top-p tokens
- candidates->size = last_idx;
- if (ctx) {
- ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
- }
- }
- void llama_sample_min_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
- if (p <= 0.0f || !candidates->size) {
- return;
- }
- const int64_t t_start_sample_us = ggml_time_us();
- bool min_p_applied = false;
- // if the candidates aren't sorted, try the unsorted implementation first
- if (!candidates->sorted) {
- std::vector<llama_token_data> filtered_tokens;
- float max_logit = -FLT_MAX;
- for (size_t i = 0; i < candidates->size; ++i) {
- max_logit = std::max(max_logit, candidates->data[i].logit);
- }
- const float min_logit = max_logit + logf(p); // min logit for p_i >= p * p_max
- for (size_t i = 0; i < candidates->size; ++i) {
- if (candidates->data[i].logit >= min_logit) {
- filtered_tokens.push_back(candidates->data[i]);
- }
- }
- // if we have enough values the operation was a success
- if (filtered_tokens.size() >= min_keep) {
- memcpy(candidates->data, filtered_tokens.data(), filtered_tokens.size()*sizeof(llama_token_data));
- candidates->size = filtered_tokens.size();
- min_p_applied = true;
- }
- }
- // if the candidates are sorted or the unsorted implementation failed, use this implementation
- if (!min_p_applied) {
- // Sort the logits in descending order
- if (!candidates->sorted) {
- std::sort(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
- return a.logit > b.logit;
- });
- candidates->sorted = true;
- }
- const float min_logit = candidates->data[0].logit + logf(p); // min logit for p_i >= p * p_max
- size_t i = 1; // first token always matches
- for (; i < candidates->size; ++i) {
- if (candidates->data[i].logit < min_logit && i >= min_keep) {
- break; // prob too small
- }
- }
- // Resize the output vector to keep only the matching tokens
- candidates->size = i;
- }
- if (ctx) {
- ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
- }
- }
- void llama_sample_tail_free(struct llama_context * ctx, llama_token_data_array * candidates, float z, size_t min_keep) {
- if (z >= 1.0f || candidates->size <= 2) {
- return;
- }
- llama_sample_softmax(nullptr, candidates);
- const int64_t t_start_sample_us = ggml_time_us();
- // Compute the first and second derivatives
- std::vector<float> first_derivatives(candidates->size - 1);
- std::vector<float> second_derivatives(candidates->size - 2);
- for (size_t i = 0; i < first_derivatives.size(); ++i) {
- first_derivatives[i] = candidates->data[i].p - candidates->data[i + 1].p;
- }
- for (size_t i = 0; i < second_derivatives.size(); ++i) {
- second_derivatives[i] = first_derivatives[i] - first_derivatives[i + 1];
- }
- // Calculate absolute value of second derivatives
- for (size_t i = 0; i < second_derivatives.size(); ++i) {
- second_derivatives[i] = std::abs(second_derivatives[i]);
- }
- // Normalize the second derivatives
- {
- const float second_derivatives_sum = std::accumulate(second_derivatives.begin(), second_derivatives.end(), 0.0f);
- if (second_derivatives_sum > 1e-6f) {
- for (float & value : second_derivatives) {
- value /= second_derivatives_sum;
- }
- } else {
- for (float & value : second_derivatives) {
- value = 1.0f / second_derivatives.size();
- }
- }
- }
- float cum_sum = 0.0f;
- size_t last_idx = candidates->size;
- for (size_t i = 0; i < second_derivatives.size(); ++i) {
- cum_sum += second_derivatives[i];
- // Check if the running sum is greater than z or if we have kept at least min_keep tokens
- if (cum_sum > z && i >= min_keep) {
- last_idx = i;
- break;
- }
- }
- // Resize the output vector to keep only the tokens above the tail location
- candidates->size = last_idx;
- if (ctx) {
- ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
- }
- }
- void llama_sample_typical(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
- // Reference implementation:
- // https://github.com/huggingface/transformers/compare/main...cimeister:typical-sampling:typical-pr
- if (p >= 1.0f) {
- return;
- }
- // Compute the softmax of logits and calculate entropy
- llama_sample_softmax(nullptr, candidates);
- const int64_t t_start_sample_us = ggml_time_us();
- float entropy = 0.0f;
- for (size_t i = 0; i < candidates->size; ++i) {
- entropy += -candidates->data[i].p * logf(candidates->data[i].p);
- }
- // Compute the absolute difference between negative log probability and entropy for each candidate
- std::vector<float> shifted_scores;
- for (size_t i = 0; i < candidates->size; ++i) {
- float shifted_score = fabsf(-logf(candidates->data[i].p) - entropy);
- shifted_scores.push_back(shifted_score);
- }
- // Sort tokens based on the shifted_scores and their corresponding indices
- std::vector<size_t> indices(candidates->size);
- std::iota(indices.begin(), indices.end(), 0);
- std::sort(indices.begin(), indices.end(), [&](size_t a, size_t b) {
- return shifted_scores[a] < shifted_scores[b];
- });
- // Compute the cumulative probabilities
- float cum_sum = 0.0f;
- size_t last_idx = indices.size();
- for (size_t i = 0; i < indices.size(); ++i) {
- size_t idx = indices[i];
- cum_sum += candidates->data[idx].p;
- // Check if the running sum is greater than typical or if we have kept at least min_keep tokens
- if (cum_sum > p && i >= min_keep - 1) {
- last_idx = i + 1;
- break;
- }
- }
- // Resize the output vector to keep only the locally typical tokens
- std::vector<llama_token_data> new_candidates;
- for (size_t i = 0; i < last_idx; ++i) {
- size_t idx = indices[i];
- new_candidates.push_back(candidates->data[idx]);
- }
- // Replace the data in candidates with the new_candidates data
- std::copy(new_candidates.begin(), new_candidates.end(), candidates->data);
- candidates->size = new_candidates.size();
- candidates->sorted = false;
- if (ctx) {
- ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
- }
- }
- void llama_sample_entropy(struct llama_context * ctx, llama_token_data_array * candidates_p, float min_temp, float max_temp, float exponent_val) {
- const int64_t t_start_sample_us = ggml_time_us();
- // no need to do anything if there is only one (or zero) candidates
- if(candidates_p->size <= 1) {
- return;
- }
- // Calculate maximum possible entropy
- float max_entropy = -logf(1.0f / candidates_p->size);
- llama_sample_softmax(nullptr, candidates_p);
- // Calculate entropy of the softmax probabilities
- float entropy = 0.0f;
- for (size_t i = 0; i < candidates_p->size; ++i) {
- float prob = candidates_p->data[i].p;
- if (prob > 0.0f) { // Ensure no log(0)
- entropy -= prob * logf(prob);
- }
- }
- // Normalize the entropy (max_entropy cannot be 0 here because we checked candidates_p->size != 1 above)
- float normalized_entropy = entropy / max_entropy;
- // Map the normalized entropy to the desired temperature range using the power function
- float dyn_temp = min_temp + (max_temp - min_temp) * powf(normalized_entropy, exponent_val);
- #ifdef DEBUG
- LLAMA_LOG_INFO("Your text maxtemp value is: %f\n", max_temp);
- LLAMA_LOG_INFO("Entropy: %f\n", entropy);
- LLAMA_LOG_INFO("Max Possible Entropy: %f\n", max_entropy);
- LLAMA_LOG_INFO("Normalized Entropy: %f\n", normalized_entropy);
- LLAMA_LOG_INFO("Exponent: %f\n", exponent_val);
- LLAMA_LOG_INFO("Dynamic Temperature (dyn_temp): %f\n", dyn_temp);
- #endif
- // Apply the dynamically calculated temperature scaling
- for (size_t i = 0; i < candidates_p->size; ++i) {
- candidates_p->data[i].logit /= dyn_temp;
- }
- // Re-compute softmax probabilities after scaling logits with dynamic temperature
- double max_l_double = candidates_p->data[0].logit;
- double cum_sum_double = 0.0;
- for (size_t i = 0; i < candidates_p->size; ++i) {
- double p = exp(candidates_p->data[i].logit - max_l_double);
- candidates_p->data[i].p = p; // Store the scaled probability
- cum_sum_double += p;
- }
- for (size_t i = 0; i < candidates_p->size; ++i) {
- candidates_p->data[i].p /= cum_sum_double; // Re-normalize the probabilities
- }
- #ifdef DEBUG
- // Print the updated top 25 probabilities after temperature scaling
- LLAMA_LOG_INFO("\nUpdated Top 25 Probabilities After Dynamic Temperature Scaling (in percentages):\n");
- for (size_t i = 0; i < 25 && i < candidates_p->size; ++i) {
- LLAMA_LOG_INFO("Token %zu: %f%%\n", i + 1, candidates_p->data[i].p * 100.0f);
- }
- #endif
- if (ctx) {
- ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
- }
- }
- void llama_sample_temp(struct llama_context * ctx, llama_token_data_array * candidates_p, float temp) {
- const int64_t t_start_sample_us = ggml_time_us();
- for (size_t i = 0; i < candidates_p->size; ++i) {
- candidates_p->data[i].logit /= temp;
- }
- if (ctx) {
- ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
- }
- }
- void llama_sample_repetition_penalties(
- struct llama_context * ctx,
- llama_token_data_array * candidates,
- const llama_token * last_tokens,
- size_t penalty_last_n,
- float penalty_repeat,
- float penalty_freq,
- float penalty_present) {
- if (penalty_last_n == 0 || (penalty_repeat == 1.0f && penalty_freq == 0.0f && penalty_present == 0.0f)) {
- return;
- }
- const int64_t t_start_sample_us = ggml_time_us();
- // Create a frequency map to count occurrences of each token in last_tokens
- std::unordered_map<llama_token, int> token_count;
- for (size_t i = 0; i < penalty_last_n; ++i) {
- token_count[last_tokens[i]]++;
- }
- // Apply frequency and presence penalties to the candidates
- for (size_t i = 0; i < candidates->size; ++i) {
- const auto token_iter = token_count.find(candidates->data[i].id);
- if (token_iter == token_count.end()) {
- continue;
- }
- const int count = token_iter->second;
- // The academic publication that described this technique actually just only divided, but that would cause tokens with negative logits to become more likely, which is obviously wrong.
- // This is common fix for this problem, which is to multiply by the penalty instead of dividing.
- if (candidates->data[i].logit <= 0) {
- candidates->data[i].logit *= penalty_repeat;
- } else {
- candidates->data[i].logit /= penalty_repeat;
- }
- candidates->data[i].logit -= float(count) * penalty_freq + float(count > 0) * penalty_present;
- }
- candidates->sorted = false;
- if (ctx) {
- ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
- }
- }
- void llama_sample_grammar(struct llama_context * ctx, llama_token_data_array * candidates, const struct llama_grammar * grammar) {
- GGML_ASSERT(ctx);
- const int64_t t_start_sample_us = ggml_time_us();
- bool allow_eog = false;
- for (const auto & stack : grammar->stacks) {
- if (stack.empty()) {
- allow_eog = true;
- break;
- }
- }
- std::vector<std::pair<std::vector<uint32_t>, llama_partial_utf8>> candidates_decoded;
- candidates_decoded.reserve(candidates->size);
- std::vector<llama_grammar_candidate> candidates_grammar;
- candidates_grammar.reserve(candidates->size);
- for (size_t i = 0; i < candidates->size; ++i) {
- const llama_token id = candidates->data[i].id;
- const std::string piece = llama_token_to_piece(ctx, id, false);
- if (llama_token_is_eog(&ctx->model, id)) {
- if (!allow_eog) {
- candidates->data[i].logit = -INFINITY;
- }
- } else if (piece.empty() || piece[0] == 0) {
- candidates->data[i].logit = -INFINITY;
- } else {
- candidates_decoded.push_back(decode_utf8(piece, grammar->partial_utf8));
- candidates_grammar.push_back({ i, candidates_decoded.back().first.data(), candidates_decoded.back().second });
- }
- }
- const auto rejects = llama_grammar_reject_candidates(grammar->rules, grammar->stacks, candidates_grammar);
- for (const auto & reject : rejects) {
- candidates->data[reject.index].logit = -INFINITY;
- }
- ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
- }
- static void llama_log_softmax(float * array, size_t size) {
- float max_l = *std::max_element(array, array + size);
- float sum = 0.f;
- for (size_t i = 0; i < size; ++i) {
- float p = expf(array[i] - max_l);
- sum += p;
- array[i] = p;
- }
- for (size_t i = 0; i < size; ++i) {
- array[i] = logf(array[i] / sum);
- }
- }
- void llama_sample_apply_guidance(
- struct llama_context * ctx,
- float * logits,
- float * logits_guidance,
- float scale) {
- GGML_ASSERT(ctx);
- const auto t_start_sample_us = ggml_time_us();
- const auto n_vocab = llama_n_vocab(llama_get_model(ctx));
- llama_log_softmax(logits, n_vocab);
- llama_log_softmax(logits_guidance, n_vocab);
- for (int i = 0; i < n_vocab; ++i) {
- auto & l = logits[i];
- const auto & g = logits_guidance[i];
- l = scale * (l - g) + g;
- }
- ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
- }
- llama_token llama_sample_token_mirostat(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, int32_t m, float * mu) {
- GGML_ASSERT(ctx);
- auto N = float(llama_n_vocab(llama_get_model(ctx)));
- int64_t t_start_sample_us;
- t_start_sample_us = ggml_time_us();
- llama_sample_softmax(nullptr, candidates);
- // Estimate s_hat using the most probable m tokens
- float s_hat = 0.0;
- float sum_ti_bi = 0.0;
- float sum_ti_sq = 0.0;
- for (size_t i = 0; i < size_t(m - 1) && i < candidates->size - 1; ++i) {
- float t_i = logf(float(i + 2) / float(i + 1));
- float b_i = logf(candidates->data[i].p / candidates->data[i + 1].p);
- sum_ti_bi += t_i * b_i;
- sum_ti_sq += t_i * t_i;
- }
- s_hat = sum_ti_bi / sum_ti_sq;
- // Compute k from the estimated s_hat and target surprise value
- float epsilon_hat = s_hat - 1;
- float k = powf((epsilon_hat * powf(2, *mu)) / (1 - powf(N, -epsilon_hat)), 1 / s_hat);
- // Sample the next word X using top-k sampling
- llama_sample_top_k(nullptr, candidates, int(k), 1);
- ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
- llama_token X = llama_sample_token(ctx, candidates);
- t_start_sample_us = ggml_time_us();
- // Compute error as the difference between observed surprise and target surprise value
- size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
- return candidate.id == X;
- }));
- float observed_surprise = -log2f(candidates->data[X_idx].p);
- float e = observed_surprise - tau;
- // Update mu using the learning rate and error
- *mu = *mu - eta * e;
- ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
- return X;
- }
- llama_token llama_sample_token_mirostat_v2(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, float * mu) {
- int64_t t_start_sample_us;
- t_start_sample_us = ggml_time_us();
- llama_sample_softmax(ctx, candidates);
- // Truncate the words with surprise values greater than mu
- candidates->size = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
- return -log2f(candidate.p) > *mu;
- }));
- if (candidates->size == 0) {
- candidates->size = 1;
- }
- if (ctx) {
- ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
- }
- // Normalize the probabilities of the remaining words
- llama_sample_softmax(ctx, candidates);
- // Sample the next word X from the remaining words
- llama_token X = llama_sample_token(ctx, candidates);
- t_start_sample_us = ggml_time_us();
- // Compute error as the difference between observed surprise and target surprise value
- size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
- return candidate.id == X;
- }));
- float observed_surprise = -log2f(candidates->data[X_idx].p);
- float e = observed_surprise - tau;
- // Update mu using the learning rate and error
- *mu = *mu - eta * e;
- if (ctx) {
- ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
- }
- return X;
- }
- llama_token llama_sample_token_greedy(struct llama_context * ctx, llama_token_data_array * candidates) {
- const int64_t t_start_sample_us = ggml_time_us();
- // Find max element
- auto * max_iter = std::max_element(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
- return a.logit < b.logit;
- });
- llama_token result = max_iter->id;
- if (ctx) {
- ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
- ctx->n_sample++;
- }
- return result;
- }
- llama_token llama_sample_token_with_rng(struct llama_context * ctx, llama_token_data_array * candidates, std::mt19937 & rng) {
- GGML_ASSERT(ctx);
- const int64_t t_start_sample_us = ggml_time_us();
- llama_sample_softmax(nullptr, candidates);
- std::vector<float> probs;
- probs.reserve(candidates->size);
- for (size_t i = 0; i < candidates->size; ++i) {
- probs.push_back(candidates->data[i].p);
- }
- std::discrete_distribution<> dist(probs.begin(), probs.end());
- int idx = dist(rng);
- llama_token result = candidates->data[idx].id;
- ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
- ctx->n_sample++;
- return result;
- }
- llama_token llama_sample_token(struct llama_context * ctx, llama_token_data_array * candidates) {
- return llama_sample_token_with_rng(ctx, candidates, ctx->rng);
- }
- void llama_grammar_accept_token(struct llama_context * ctx, struct llama_grammar * grammar, llama_token token) {
- const int64_t t_start_sample_us = ggml_time_us();
- if (llama_token_is_eog(&ctx->model, token)) {
- for (const auto & stack : grammar->stacks) {
- if (stack.empty()) {
- return;
- }
- }
- GGML_ASSERT(false);
- }
- const std::string piece = llama_token_to_piece(ctx, token, false);
- // Note terminating 0 in decoded string
- const auto decoded = decode_utf8(piece, grammar->partial_utf8);
- const auto & code_points = decoded.first;
- std::vector<std::vector<const llama_grammar_element *>> tmp_new_stacks;
- for (auto it = code_points.begin(), end = code_points.end() - 1; it != end; ++it) {
- llama_grammar_accept(grammar->rules, grammar->stacks, *it, tmp_new_stacks);
- grammar->stacks = tmp_new_stacks;
- }
- grammar->partial_utf8 = decoded.second;
- GGML_ASSERT(!grammar->stacks.empty());
- ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
- }
- //
- // Beam search
- //
- struct llama_beam {
- std::vector<llama_token> tokens;
- float p; // Cumulative beam probability (renormalized relative to all beams)
- bool eob; // Initialize end-of-beam to false. Callback sets this to true.
- // Sort beams by probability. In case of ties, prefer beams at eob.
- bool operator<(const llama_beam & rhs) const {
- return std::make_pair(p, eob) < std::make_pair(rhs.p, rhs.eob);
- }
- // Shift off first n tokens and discard them.
- void shift_tokens(const size_t n) {
- if (n) {
- std::copy(tokens.begin() + n, tokens.end(), tokens.begin());
- tokens.resize(tokens.size() - n);
- }
- }
- llama_beam_view view() const { return {tokens.data(), tokens.size(), p, eob}; }
- };
- // A struct for calculating logit-related info.
- struct llama_logit_info {
- const float * const logits;
- const int n_vocab;
- const float max_l;
- const float normalizer;
- struct sum_exp {
- float max_l;
- float operator()(float sum, float l) const { return sum + std::exp(l - max_l); }
- };
- llama_logit_info(llama_context * ctx)
- : logits(llama_get_logits(ctx))
- , n_vocab(llama_n_vocab(llama_get_model(ctx)))
- , max_l(*std::max_element(logits, logits + n_vocab))
- , normalizer(1.0f / std::accumulate(logits, logits + n_vocab, 0.0f, sum_exp{max_l}))
- { }
- llama_token_data get_token_data(const llama_token token_id) const {
- constexpr auto p = std::numeric_limits<float>::quiet_NaN(); // never used
- return {token_id, logits[token_id], p};
- }
- // Return top k token_data by logit.
- std::vector<llama_token_data> top_k(size_t k) {
- std::vector<llama_token_data> min_heap; // min-heap by logit
- const llama_token k_min = std::min(static_cast<llama_token>(k), n_vocab);
- min_heap.reserve(k_min);
- for (llama_token token_id = 0 ; token_id < k_min ; ++token_id) {
- min_heap.push_back(get_token_data(token_id));
- }
- auto comp = [](const llama_token_data & a, const llama_token_data & b) { return a.logit > b.logit; };
- std::make_heap(min_heap.begin(), min_heap.end(), comp);
- for (llama_token token_id = k_min ; token_id < n_vocab ; ++token_id) {
- if (min_heap.front().logit < logits[token_id]) {
- std::pop_heap(min_heap.begin(), min_heap.end(), comp);
- min_heap.back().id = token_id;
- min_heap.back().logit = logits[token_id];
- std::push_heap(min_heap.begin(), min_heap.end(), comp);
- }
- }
- return min_heap;
- }
- float probability_from_logit(float logit) const {
- return normalizer * std::exp(logit - max_l);
- }
- };
- struct llama_beam_search_data {
- llama_context * ctx;
- size_t n_beams;
- int n_past;
- int n_predict;
- std::vector<llama_beam> beams;
- std::vector<llama_beam> next_beams;
- // Re-calculated on each loop iteration
- size_t common_prefix_length;
- // Used to communicate to/from callback on beams state.
- std::vector<llama_beam_view> beam_views;
- llama_beam_search_data(llama_context * ctx, size_t n_beams, int n_past, int n_predict)
- : ctx(ctx)
- , n_beams(n_beams)
- , n_past(n_past)
- , n_predict(n_predict)
- , beam_views(n_beams) {
- beams.reserve(n_beams);
- next_beams.reserve(n_beams);
- }
- // Collapse beams to a single beam given by index.
- void collapse_beams(const size_t beam_idx) {
- if (0u < beam_idx) {
- std::swap(beams[0], beams[beam_idx]);
- }
- beams.resize(1);
- }
- // Min-heaps are used to efficiently collect the top-k elements (k=n_beams).
- // The repetitive patterns below reflect the 2 stages of heaps:
- // * Gather elements until the vector is full, then call std::make_heap() on it.
- // * If the heap is full and a new element is found that should be included, pop the
- // least element to the back(), replace it with the new, then push it into the heap.
- void fill_next_beams_by_top_probabilities(llama_beam & beam) {
- // Min-heaps use a greater-than comparator.
- const auto comp = [](const llama_beam & a, const llama_beam & b) { return a.p > b.p; };
- if (beam.eob) {
- // beam is at end-of-sentence, so just copy it to next_beams if its probability is high enough.
- if (next_beams.size() < n_beams) {
- next_beams.push_back(std::move(beam));
- if (next_beams.size() == n_beams) {
- std::make_heap(next_beams.begin(), next_beams.end(), comp);
- }
- } else if (next_beams.front().p < beam.p) {
- std::pop_heap(next_beams.begin(), next_beams.end(), comp);
- next_beams.back() = std::move(beam);
- std::push_heap(next_beams.begin(), next_beams.end(), comp);
- }
- } else {
- // beam is not at end-of-sentence, so branch with next top_k tokens.
- if (!beam.tokens.empty()) {
- llama_decode(ctx, llama_batch_get_one(beam.tokens.data(), beam.tokens.size(), n_past, 0));
- }
- llama_logit_info logit_info(ctx);
- std::vector<llama_token_data> next_tokens = logit_info.top_k(n_beams);
- // Clear the kv slot so that other beams may try different tokens at this position. The llama_decode()
- // call in loop() will conclusively fill in the kv slot once the beams converge at this position.
- llama_kv_cache_seq_rm(ctx, 0, n_past, -1);
- size_t i=0;
- if (next_beams.size() < n_beams) {
- for (; next_beams.size() < n_beams ; ++i) {
- llama_beam next_beam = beam;
- next_beam.tokens.push_back(next_tokens[i].id);
- next_beam.p *= logit_info.probability_from_logit(next_tokens[i].logit);
- next_beams.push_back(std::move(next_beam));
- }
- std::make_heap(next_beams.begin(), next_beams.end(), comp);
- } else {
- for (; next_beams.front().p == 0.0f ; ++i) {
- std::pop_heap(next_beams.begin(), next_beams.end(), comp);
- next_beams.back() = beam;
- next_beams.back().tokens.push_back(next_tokens[i].id);
- next_beams.back().p *= logit_info.probability_from_logit(next_tokens[i].logit);
- std::push_heap(next_beams.begin(), next_beams.end(), comp);
- }
- }
- for (; i < n_beams ; ++i) {
- const float next_p = beam.p * logit_info.probability_from_logit(next_tokens[i].logit);
- if (next_beams.front().p < next_p) {
- std::pop_heap(next_beams.begin(), next_beams.end(), comp);
- next_beams.back() = beam;
- next_beams.back().tokens.push_back(next_tokens[i].id);
- next_beams.back().p = next_p;
- std::push_heap(next_beams.begin(), next_beams.end(), comp);
- }
- }
- }
- }
- // Find common_prefix_length based on beams.
- // Requires beams is not empty.
- size_t find_common_prefix_length() {
- size_t common_prefix_length = beams[0].tokens.size();
- for (size_t i = 1 ; i < beams.size() ; ++i) {
- common_prefix_length = std::min(common_prefix_length, beams[i].tokens.size());
- for (size_t j = 0 ; j < common_prefix_length ; ++j) {
- if (beams[0].tokens[j] != beams[i].tokens[j]) {
- common_prefix_length = j;
- break;
- }
- }
- }
- return common_prefix_length;
- }
- // Construct beams_state to send back to caller via the callback function.
- // Side effect: set common_prefix_length = find_common_prefix_length();
- llama_beams_state get_beams_state(const bool last_call) {
- for (size_t i = 0 ; i < beams.size() ; ++i) {
- beam_views[i] = beams[i].view();
- }
- common_prefix_length = find_common_prefix_length();
- return {beam_views.data(), beams.size(), common_prefix_length, last_call};
- }
- // Loop:
- // * while i < n_predict, AND
- // * any of the beams have not yet reached end-of-beam (eob), AND
- // * the highest probability beam(s) (plural in case of ties) are not at end-of-sentence
- // (since all other beam probabilities can only decrease)
- void loop(const llama_beam_search_callback_fn_t callback, void * const callback_data) {
- beams.push_back({{}, 1.0f, false}); // Start with one empty beam w/ probability = 1.0 and !eob.
- const auto not_eob = [](const llama_beam & beam) { return !beam.eob; };
- for (int i = 0 ; i < n_predict && std::any_of(beams.begin(),beams.end(),not_eob) &&
- !beams[top_beam_index()].eob ; ++i) {
- callback(callback_data, get_beams_state(false)); // Sets common_prefix_length
- update_beams_from_beam_views(); // Update values (p,eob) that callback may have changed.
- if (common_prefix_length) {
- llama_decode(ctx, llama_batch_get_one(beams[0].tokens.data(), common_prefix_length, n_past, 0));
- n_past += common_prefix_length;
- }
- // Zero-out next_beam probabilities to place them last in following min-heap.
- std::for_each(next_beams.begin(), next_beams.end(), [](llama_beam & beam) { beam.p = 0.0f; });
- for (llama_beam & beam : beams) {
- beam.shift_tokens(common_prefix_length);
- fill_next_beams_by_top_probabilities(beam);
- }
- // next_beams become the beams of next/final iteration. Swap them to re-use memory.
- beams.swap(next_beams);
- renormalize_beam_probabilities(beams);
- }
- collapse_beams(top_beam_index());
- callback(callback_data, get_beams_state(true));
- }
- // As beams grow, the cumulative probabilities decrease.
- // Renormalize them to avoid floating point underflow.
- static void renormalize_beam_probabilities(std::vector<llama_beam> & beams) {
- const auto sum_p = [](float sum, llama_beam & beam) { return sum + beam.p; };
- const float inv_sum = 1.0f / std::accumulate(beams.begin(), beams.end(), 0.0f, sum_p);
- std::for_each(beams.begin(), beams.end(), [=](llama_beam & beam) { beam.p *= inv_sum; });
- }
- // Assumes beams is non-empty. Uses llama_beam::operator<() for ordering.
- size_t top_beam_index() {
- return std::max_element(beams.begin(), beams.end()) - beams.begin();
- }
- // Copy (p,eob) for each beam which may have been changed by the callback.
- void update_beams_from_beam_views() {
- for (size_t i = 0 ; i < beams.size() ; ++i) {
- beams[i].p = beam_views[i].p;
- beams[i].eob = beam_views[i].eob;
- }
- }
- };
- void llama_beam_search(llama_context * ctx,
- llama_beam_search_callback_fn_t callback, void * callback_data,
- size_t n_beams, int n_past, int n_predict) {
- assert(ctx);
- const int64_t t_start_sample_us = ggml_time_us();
- llama_beam_search_data beam_search_data(ctx, n_beams, n_past, n_predict);
- beam_search_data.loop(callback, callback_data);
- ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
- ctx->n_sample++;
- }
- //
- // quantization
- //
- struct quantize_state_internal {
- const llama_model & model;
- const llama_model_quantize_params * params;
- int n_attention_wv = 0;
- int n_ffn_down = 0;
- int n_ffn_gate = 0;
- int n_ffn_up = 0;
- int i_attention_wv = 0;
- int i_ffn_down = 0;
- int i_ffn_gate = 0;
- int i_ffn_up = 0;
- int n_k_quantized = 0;
- int n_fallback = 0;
- bool has_imatrix = false;
- // used to figure out if a model shares tok_embd with the output weight
- bool has_output = false;
- quantize_state_internal(const llama_model & model, const llama_model_quantize_params * params)
- : model(model)
- , params(params)
- {}
- };
- static void llama_tensor_dequantize_internal(
- struct ggml_tensor * tensor, std::vector<no_init<float>> & output, std::vector<std::thread> & workers,
- const size_t nelements, const int nthread
- ) {
- if (output.size() < nelements) {
- output.resize(nelements);
- }
- float * f32_output = (float *) output.data();
- ggml_type_traits_t qtype;
- if (ggml_is_quantized(tensor->type)) {
- qtype = ggml_internal_get_type_traits(tensor->type);
- if (qtype.to_float == NULL) {
- throw std::runtime_error(format("type %s unsupported for integer quantization: no dequantization available", ggml_type_name(tensor->type)));
- }
- } else if (tensor->type != GGML_TYPE_F16 &&
- tensor->type != GGML_TYPE_BF16) {
- throw std::runtime_error(format("cannot dequantize/convert tensor type %s", ggml_type_name(tensor->type)));
- }
- if (nthread < 2) {
- if (tensor->type == GGML_TYPE_F16) {
- ggml_fp16_to_fp32_row((ggml_fp16_t *)tensor->data, f32_output, nelements);
- } else if (tensor->type == GGML_TYPE_BF16) {
- ggml_bf16_to_fp32_row((ggml_bf16_t *)tensor->data, f32_output, nelements);
- } else if (ggml_is_quantized(tensor->type)) {
- qtype.to_float(tensor->data, f32_output, nelements);
- } else {
- GGML_ASSERT(false); // unreachable
- }
- return;
- }
- size_t block_size;
- if (tensor->type == GGML_TYPE_F16 ||
- tensor->type == GGML_TYPE_BF16) {
- block_size = 1;
- } else {
- block_size = (size_t)ggml_blck_size(tensor->type);
- }
- size_t block_size_bytes = ggml_type_size(tensor->type);
- GGML_ASSERT(nelements % block_size == 0);
- size_t nblocks = nelements / block_size;
- size_t blocks_per_thread = nblocks / nthread;
- size_t spare_blocks = nblocks - (blocks_per_thread * nthread); // if blocks aren't divisible by thread count
- size_t in_buff_offs = 0;
- size_t out_buff_offs = 0;
- for (int tnum = 0; tnum < nthread; tnum++) {
- size_t thr_blocks = blocks_per_thread + (tnum == nthread - 1 ? spare_blocks : 0); // num blocks for this thread
- size_t thr_elems = thr_blocks * block_size; // number of elements for this thread
- size_t thr_block_bytes = thr_blocks * block_size_bytes; // number of input bytes for this thread
- auto compute = [qtype] (ggml_type typ, uint8_t * inbuf, float * outbuf, int nels) {
- if (typ == GGML_TYPE_F16) {
- ggml_fp16_to_fp32_row((ggml_fp16_t *)inbuf, outbuf, nels);
- } else if (typ == GGML_TYPE_BF16) {
- ggml_bf16_to_fp32_row((ggml_bf16_t *)inbuf, outbuf, nels);
- } else {
- qtype.to_float(inbuf, outbuf, nels);
- }
- };
- workers.emplace_back(compute, tensor->type, (uint8_t *) tensor->data + in_buff_offs, f32_output + out_buff_offs, thr_elems);
- in_buff_offs += thr_block_bytes;
- out_buff_offs += thr_elems;
- }
- for (auto & w : workers) { w.join(); }
- workers.clear();
- }
- static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type new_type, const ggml_tensor * tensor, llama_ftype ftype) {
- const std::string name = ggml_get_name(tensor);
- // TODO: avoid hardcoded tensor names - use the TN_* constants
- const llm_arch arch = qs.model.arch;
- const auto tn = LLM_TN(arch);
- auto use_more_bits = [](int i_layer, int num_layers) -> bool {
- return i_layer < num_layers/8 || i_layer >= 7*num_layers/8 || (i_layer - num_layers/8)%3 == 2;
- };
- const int n_expert = std::max(1, (int)qs.model.hparams.n_expert);
- auto layer_info = [n_expert] (int i_layer, int n_layer, const char * name) {
- if (n_expert > 1) {
- // Believe it or not, "experts" in the FFN of Mixtral-8x7B are not consecutive, but iccasionally randomly
- // sprinkled in the model. Hence, simply dividing i_ffn_down by n_expert does not work
- // for getting the current layer as I initially thought, and we need to resort to parsing the
- // tensor name.
- if (sscanf(name, "blk.%d.", &i_layer) != 1) {
- throw std::runtime_error(format("Failed to determine layer for tensor %s", name));
- }
- if (i_layer < 0 || i_layer >= n_layer) {
- throw std::runtime_error(format("Bad layer %d for tensor %s. Must be in [0, %d)", i_layer, name, n_layer));
- }
- }
- return std::make_pair(i_layer, n_layer);
- };
- // for arches that share the same tensor between the token embeddings and the output, we quantize the token embeddings
- // with the quantization of the output tensor
- if (name == tn(LLM_TENSOR_OUTPUT, "weight") || (!qs.has_output && name == tn(LLM_TENSOR_TOKEN_EMBD, "weight"))) {
- if (qs.params->output_tensor_type < GGML_TYPE_COUNT) {
- new_type = qs.params->output_tensor_type;
- } else {
- int nx = tensor->ne[0];
- if (arch == LLM_ARCH_FALCON || nx % QK_K != 0) {
- new_type = GGML_TYPE_Q8_0;
- }
- else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS ||
- ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ||
- ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) {
- new_type = GGML_TYPE_Q5_K;
- }
- else if (new_type != GGML_TYPE_Q8_0) {
- new_type = GGML_TYPE_Q6_K;
- }
- }
- } else if (name == "token_embd.weight") {
- if (qs.params->token_embedding_type < GGML_TYPE_COUNT) {
- new_type = qs.params->token_embedding_type;
- } else {
- if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS ||
- ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) {
- new_type = GGML_TYPE_Q2_K;
- }
- else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M) {
- new_type = GGML_TYPE_IQ3_S;
- }
- else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
- new_type = GGML_TYPE_IQ3_S;
- }
- }
- } else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ1_S ||
- ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) {
- if (name.find("attn_v.weight") != std::string::npos) {
- if (qs.model.hparams.n_gqa() >= 4 || qs.model.hparams.n_expert >= 4) new_type = GGML_TYPE_Q4_K;
- else new_type = ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ? GGML_TYPE_IQ3_S : GGML_TYPE_Q2_K;
- ++qs.i_attention_wv;
- }
- else if (qs.model.hparams.n_expert == 8 && name.find("attn_k.weight") != std::string::npos) {
- new_type = GGML_TYPE_Q4_K;
- }
- else if (name.find("ffn_down") != std::string::npos) {
- if (qs.i_ffn_down < qs.n_ffn_down/8) {
- new_type = ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ? GGML_TYPE_IQ3_S : GGML_TYPE_Q2_K;
- }
- ++qs.i_ffn_down;
- }
- else if (name.find("attn_output.weight") != std::string::npos) {
- if (qs.model.hparams.n_expert == 8) {
- new_type = GGML_TYPE_Q5_K;
- } else {
- if (ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) new_type = GGML_TYPE_IQ2_XXS;
- else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M) new_type = GGML_TYPE_IQ3_S;
- }
- }
- } else if (name.find("attn_v.weight") != std::string::npos) {
- if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) {
- new_type = qs.model.hparams.n_gqa() >= 4 ? GGML_TYPE_Q4_K : GGML_TYPE_Q3_K;
- }
- else if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S && qs.model.hparams.n_gqa() >= 4) {
- new_type = GGML_TYPE_Q4_K;
- }
- else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
- new_type = qs.model.hparams.n_gqa() >= 4 ? GGML_TYPE_Q4_K : !qs.has_imatrix ? GGML_TYPE_IQ3_S : GGML_TYPE_IQ3_XXS;
- }
- else if ((ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_S) && qs.model.hparams.n_gqa() >= 4) {
- new_type = GGML_TYPE_Q4_K;
- }
- else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M) {
- new_type = GGML_TYPE_Q4_K;
- }
- else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) {
- new_type = qs.i_attention_wv < 2 ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K;
- }
- else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
- else if ((ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) && qs.model.hparams.n_gqa() >= 4) {
- new_type = GGML_TYPE_Q5_K;
- }
- else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) &&
- use_more_bits(qs.i_attention_wv, qs.n_attention_wv)) new_type = GGML_TYPE_Q6_K;
- else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && qs.i_attention_wv < 4) new_type = GGML_TYPE_Q5_K;
- else if (QK_K == 64 && (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_S) &&
- (qs.i_attention_wv < qs.n_attention_wv/8 || qs.i_attention_wv >= 7*qs.n_attention_wv/8)) new_type = GGML_TYPE_Q6_K;
- if (qs.model.type == MODEL_70B) {
- // In the 70B model we have 8 heads sharing the same attn_v weights. As a result, the attn_v.weight tensor is
- // 8x smaller compared to attn_q.weight. Hence, we can get a nice boost in quantization accuracy with
- // nearly negligible increase in model size by quantizing this tensor with more bits:
- if (new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K) new_type = GGML_TYPE_Q5_K;
- }
- if (qs.model.hparams.n_expert == 8) {
- // for the 8-expert model, bumping this to Q8_0 trades just ~128MB
- // TODO: explore better strategies
- new_type = GGML_TYPE_Q8_0;
- }
- ++qs.i_attention_wv;
- } else if (name.find("attn_k.weight") != std::string::npos) {
- if (qs.model.hparams.n_expert == 8) {
- // for the 8-expert model, bumping this to Q8_0 trades just ~128MB
- // TODO: explore better strategies
- new_type = GGML_TYPE_Q8_0;
- }
- else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS) {
- new_type = GGML_TYPE_IQ3_XXS;
- }
- else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
- new_type = GGML_TYPE_IQ2_S;
- }
- } else if (name.find("attn_q.weight") != std::string::npos) {
- if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS) {
- new_type = GGML_TYPE_IQ3_XXS;
- }
- else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
- new_type = GGML_TYPE_IQ2_S;
- }
- } else if (name.find("ffn_down") != std::string::npos) {
- auto info = layer_info(qs.i_ffn_down, qs.n_ffn_down, name.c_str());
- int i_layer = info.first, n_layer = info.second;
- if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
- else if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S) {
- if (i_layer < n_layer/8) new_type = GGML_TYPE_Q4_K;
- }
- else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS && !qs.has_imatrix) {
- new_type = i_layer < n_layer/8 ? GGML_TYPE_Q4_K : GGML_TYPE_Q3_K;
- }
- else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) {
- new_type = i_layer < n_layer/16 ? GGML_TYPE_Q5_K
- : arch != LLM_ARCH_FALCON || use_more_bits(i_layer, n_layer) ? GGML_TYPE_Q4_K
- : GGML_TYPE_Q3_K;
- }
- else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M && (i_layer < n_layer/8 ||
- (qs.model.hparams.n_expert == 8 && use_more_bits(i_layer, n_layer)))) {
- new_type = GGML_TYPE_Q4_K;
- }
- else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) {
- new_type = arch == LLM_ARCH_FALCON ? GGML_TYPE_Q4_K : GGML_TYPE_Q5_K;
- }
- else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) {
- if (arch == LLM_ARCH_FALCON) {
- new_type = i_layer < n_layer/16 ? GGML_TYPE_Q6_K :
- use_more_bits(i_layer, n_layer) ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K;
- } else {
- if (use_more_bits(i_layer, n_layer)) new_type = GGML_TYPE_Q6_K;
- }
- }
- else if (i_layer < n_layer/8 && (ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) && !qs.has_imatrix) {
- new_type = GGML_TYPE_Q5_K;
- }
- else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M && use_more_bits(i_layer, n_layer)) new_type = GGML_TYPE_Q6_K;
- else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && arch != LLM_ARCH_FALCON && i_layer < n_layer/8) {
- new_type = GGML_TYPE_Q5_K;
- }
- else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_0 || ftype == LLAMA_FTYPE_MOSTLY_Q5_0)
- && qs.has_imatrix && i_layer < n_layer/8) {
- // Guard against craziness in the first few ffn_down layers that can happen even with imatrix for Q4_0/Q5_0.
- // We only do it when an imatrix is provided because a) we want to make sure that one can always get the
- // same quantization as before imatrix stuff, and b) Q4_1/Q5_1 do go crazy on ffn_down without an imatrix.
- new_type = ftype == LLAMA_FTYPE_MOSTLY_Q4_0 ? GGML_TYPE_Q4_1 : GGML_TYPE_Q5_1;
- }
- ++qs.i_ffn_down;
- } else if (name.find("attn_output.weight") != std::string::npos) {
- if (arch != LLM_ARCH_FALCON) {
- if (qs.model.hparams.n_expert == 8) {
- if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS ||
- ftype == LLAMA_FTYPE_MOSTLY_Q3_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL ||
- ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_IQ3_S ||
- ftype == LLAMA_FTYPE_MOSTLY_IQ3_M || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) {
- new_type = GGML_TYPE_Q5_K;
- }
- } else {
- if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K ) new_type = GGML_TYPE_Q3_K;
- else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) new_type = GGML_TYPE_IQ3_S;
- else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M ) new_type = GGML_TYPE_Q4_K;
- else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L ) new_type = GGML_TYPE_Q5_K;
- else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M ) new_type = GGML_TYPE_Q4_K;
- }
- } else {
- if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q4_K;
- }
- }
- else if (name.find("attn_qkv.weight") != std::string::npos) {
- if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L || ftype == LLAMA_FTYPE_MOSTLY_IQ3_M) {
- new_type = GGML_TYPE_Q4_K;
- }
- else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) new_type = GGML_TYPE_Q5_K;
- else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) new_type = GGML_TYPE_Q6_K;
- }
- else if (name.find("ffn_gate") != std::string::npos) {
- auto info = layer_info(qs.i_ffn_gate, qs.n_ffn_gate, name.c_str());
- int i_layer = info.first, n_layer = info.second;
- if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS && (i_layer >= n_layer/8 && i_layer < 7*n_layer/8)) {
- new_type = GGML_TYPE_IQ3_XXS;
- }
- ++qs.i_ffn_gate;
- }
- else if (name.find("ffn_up") != std::string::npos) {
- auto info = layer_info(qs.i_ffn_up, qs.n_ffn_up, name.c_str());
- int i_layer = info.first, n_layer = info.second;
- if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS && (i_layer >= n_layer/8 && i_layer < 7*n_layer/8)) {
- new_type = GGML_TYPE_IQ3_XXS;
- }
- ++qs.i_ffn_up;
- }
- // if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
- //}
- // IK: let's remove this, else Q2_K is almost the same as Q3_K_S
- //else if (name.find("ffn_gate") != std::string::npos || name.find("ffn_up") != std::string::npos) {
- // if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
- //}
- // This can be used to reduce the size of the Q5_K_S model.
- // The associated PPL increase is fully in line with the size reduction
- //else {
- // if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_S) new_type = GGML_TYPE_Q4_K;
- //}
- bool convert_incompatible_tensor = false;
- if (new_type == GGML_TYPE_Q2_K || new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K ||
- new_type == GGML_TYPE_Q5_K || new_type == GGML_TYPE_Q6_K || new_type == GGML_TYPE_IQ4_XS ||
- new_type == GGML_TYPE_IQ2_XS || new_type == GGML_TYPE_IQ2_XXS || new_type == GGML_TYPE_IQ2_S ||
- new_type == GGML_TYPE_IQ3_XXS || new_type == GGML_TYPE_IQ1_S || new_type == GGML_TYPE_IQ3_S ||
- new_type == GGML_TYPE_IQ1_M) {
- int nx = tensor->ne[0];
- int ny = tensor->ne[1];
- if (nx % QK_K != 0) {
- LLAMA_LOG_WARN("\n\n%s : tensor cols %d x %d are not divisible by %d, required for %s", __func__, nx, ny, QK_K, ggml_type_name(new_type));
- convert_incompatible_tensor = true;
- } else {
- ++qs.n_k_quantized;
- }
- }
- if (convert_incompatible_tensor) {
- switch (new_type) {
- case GGML_TYPE_IQ2_XXS:
- case GGML_TYPE_IQ2_XS:
- case GGML_TYPE_IQ2_S:
- case GGML_TYPE_IQ3_XXS:
- case GGML_TYPE_IQ3_S:
- case GGML_TYPE_IQ1_S:
- case GGML_TYPE_IQ1_M:
- case GGML_TYPE_Q2_K:
- case GGML_TYPE_Q3_K:
- case GGML_TYPE_IQ4_XS: new_type = GGML_TYPE_IQ4_NL; break;
- case GGML_TYPE_Q4_K: new_type = GGML_TYPE_Q5_0; break;
- case GGML_TYPE_Q5_K: new_type = GGML_TYPE_Q5_1; break;
- case GGML_TYPE_Q6_K: new_type = GGML_TYPE_Q8_0; break;
- default: throw std::runtime_error("\nUnsupported tensor size encountered\n");
- }
- LLAMA_LOG_WARN(" - using fallback quantization %s\n", ggml_type_name(new_type));
- ++qs.n_fallback;
- }
- return new_type;
- }
- static size_t llama_tensor_quantize_internal(enum ggml_type new_type, const float * f32_data, void * new_data, const int64_t chunk_size, int64_t nrows, int64_t n_per_row, const float * imatrix, std::vector<std::thread> & workers, const int nthread) {
- if (nthread < 2) {
- // single-thread
- size_t new_size = ggml_quantize_chunk(new_type, f32_data, new_data, 0, nrows, n_per_row, imatrix);
- if (!ggml_validate_row_data(new_type, new_data, new_size)) {
- throw std::runtime_error("quantized data validation failed");
- }
- return new_size;
- }
- std::mutex mutex;
- int64_t counter = 0;
- size_t new_size = 0;
- bool valid = true;
- auto compute = [&mutex, &counter, &new_size, &valid, new_type, f32_data, new_data, chunk_size,
- nrows, n_per_row, imatrix]() {
- const int64_t nrows_per_chunk = chunk_size / n_per_row;
- size_t local_size = 0;
- while (true) {
- std::unique_lock<std::mutex> lock(mutex);
- int64_t first_row = counter; counter += nrows_per_chunk;
- if (first_row >= nrows) {
- if (local_size > 0) {
- new_size += local_size;
- }
- break;
- }
- lock.unlock();
- const int64_t this_nrow = std::min(nrows - first_row, nrows_per_chunk);
- size_t this_size = ggml_quantize_chunk(new_type, f32_data, new_data, first_row * n_per_row, this_nrow, n_per_row, imatrix);
- local_size += this_size;
- // validate the quantized data
- const size_t row_size = ggml_row_size(new_type, n_per_row);
- void * this_data = (char *) new_data + first_row * row_size;
- if (!ggml_validate_row_data(new_type, this_data, this_size)) {
- std::unique_lock<std::mutex> lock(mutex);
- valid = false;
- break;
- }
- }
- };
- for (int it = 0; it < nthread - 1; ++it) {
- workers.emplace_back(compute);
- }
- compute();
- for (auto & w : workers) { w.join(); }
- workers.clear();
- if (!valid) {
- throw std::runtime_error("quantized data validation failed");
- }
- return new_size;
- }
- static void llama_model_quantize_internal(const std::string & fname_inp, const std::string & fname_out, const llama_model_quantize_params * params) {
- ggml_type default_type;
- llama_ftype ftype = params->ftype;
- switch (params->ftype) {
- case LLAMA_FTYPE_MOSTLY_Q4_0: default_type = GGML_TYPE_Q4_0; break;
- case LLAMA_FTYPE_MOSTLY_Q4_1: default_type = GGML_TYPE_Q4_1; break;
- case LLAMA_FTYPE_MOSTLY_Q5_0: default_type = GGML_TYPE_Q5_0; break;
- case LLAMA_FTYPE_MOSTLY_Q5_1: default_type = GGML_TYPE_Q5_1; break;
- case LLAMA_FTYPE_MOSTLY_Q8_0: default_type = GGML_TYPE_Q8_0; break;
- case LLAMA_FTYPE_MOSTLY_F16: default_type = GGML_TYPE_F16; break;
- case LLAMA_FTYPE_MOSTLY_BF16: default_type = GGML_TYPE_BF16; break;
- case LLAMA_FTYPE_ALL_F32: default_type = GGML_TYPE_F32; break;
- // K-quants
- case LLAMA_FTYPE_MOSTLY_Q2_K_S:
- case LLAMA_FTYPE_MOSTLY_Q2_K: default_type = GGML_TYPE_Q2_K; break;
- case LLAMA_FTYPE_MOSTLY_IQ3_XS: default_type = GGML_TYPE_IQ3_S; break;
- case LLAMA_FTYPE_MOSTLY_Q3_K_S:
- case LLAMA_FTYPE_MOSTLY_Q3_K_M:
- case LLAMA_FTYPE_MOSTLY_Q3_K_L: default_type = GGML_TYPE_Q3_K; break;
- case LLAMA_FTYPE_MOSTLY_Q4_K_S:
- case LLAMA_FTYPE_MOSTLY_Q4_K_M: default_type = GGML_TYPE_Q4_K; break;
- case LLAMA_FTYPE_MOSTLY_Q5_K_S:
- case LLAMA_FTYPE_MOSTLY_Q5_K_M: default_type = GGML_TYPE_Q5_K; break;
- case LLAMA_FTYPE_MOSTLY_Q6_K: default_type = GGML_TYPE_Q6_K; break;
- case LLAMA_FTYPE_MOSTLY_IQ2_XXS: default_type = GGML_TYPE_IQ2_XXS; break;
- case LLAMA_FTYPE_MOSTLY_IQ2_XS: default_type = GGML_TYPE_IQ2_XS; break;
- case LLAMA_FTYPE_MOSTLY_IQ2_S: default_type = GGML_TYPE_IQ2_XS; break;
- case LLAMA_FTYPE_MOSTLY_IQ2_M: default_type = GGML_TYPE_IQ2_S; break;
- case LLAMA_FTYPE_MOSTLY_IQ3_XXS: default_type = GGML_TYPE_IQ3_XXS; break;
- case LLAMA_FTYPE_MOSTLY_IQ1_S: default_type = GGML_TYPE_IQ1_S; break;
- case LLAMA_FTYPE_MOSTLY_IQ1_M: default_type = GGML_TYPE_IQ1_M; break;
- case LLAMA_FTYPE_MOSTLY_IQ4_NL: default_type = GGML_TYPE_IQ4_NL; break;
- case LLAMA_FTYPE_MOSTLY_IQ4_XS: default_type = GGML_TYPE_IQ4_XS; break;
- case LLAMA_FTYPE_MOSTLY_IQ3_S: default_type = GGML_TYPE_IQ3_S; break;
- case LLAMA_FTYPE_MOSTLY_IQ3_M: default_type = GGML_TYPE_IQ3_S; break;
- default: throw std::runtime_error(format("invalid output file type %d\n", ftype));
- }
- int nthread = params->nthread;
- if (nthread <= 0) {
- nthread = std::thread::hardware_concurrency();
- }
- // mmap consistently increases speed Linux, and also increases speed on Windows with
- // hot cache. It may cause a slowdown on macOS, possibly related to free memory.
- #if defined(__linux__) || defined(_WIN32)
- constexpr bool use_mmap = true;
- #else
- constexpr bool use_mmap = false;
- #endif
- llama_model_kv_override * kv_overrides = nullptr;
- if (params->kv_overrides) {
- auto v = (std::vector<llama_model_kv_override>*)params->kv_overrides;
- kv_overrides = v->data();
- }
- llama_model_loader ml(fname_inp, use_mmap, /*check_tensors*/ true, kv_overrides);
- ml.init_mappings(false); // no prefetching
- llama_model model;
- llm_load_arch(ml, model);
- llm_load_hparams(ml, model);
- struct quantize_state_internal qs(model, params);
- if (params->only_copy) {
- ftype = model.ftype;
- }
- const std::unordered_map<std::string, std::vector<float>> * imatrix_data = nullptr;
- if (params->imatrix) {
- imatrix_data = static_cast<const std::unordered_map<std::string, std::vector<float>>*>(params->imatrix);
- if (imatrix_data) {
- LLAMA_LOG_INFO("================================ Have weights data with %d entries\n",int(imatrix_data->size()));
- qs.has_imatrix = true;
- }
- }
- const size_t align = GGUF_DEFAULT_ALIGNMENT;
- struct gguf_context * ctx_out = gguf_init_empty();
- // copy the KV pairs from the input file
- gguf_set_kv (ctx_out, ml.meta);
- gguf_set_val_u32(ctx_out, "general.quantization_version", GGML_QNT_VERSION);
- gguf_set_val_u32(ctx_out, "general.file_type", ftype);
- // Remove split metadata
- gguf_remove_key(ctx_out, ml.llm_kv(LLM_KV_SPLIT_NO).c_str());
- gguf_remove_key(ctx_out, ml.llm_kv(LLM_KV_SPLIT_COUNT).c_str());
- gguf_remove_key(ctx_out, ml.llm_kv(LLM_KV_SPLIT_TENSORS_COUNT).c_str());
- if (params->kv_overrides) {
- const std::vector<llama_model_kv_override> & overrides = *(const std::vector<llama_model_kv_override> *)params->kv_overrides;
- for (auto & o : overrides) {
- if (o.key[0] == 0) break;
- if (o.tag == LLAMA_KV_OVERRIDE_TYPE_FLOAT) {
- gguf_set_val_f32(ctx_out, o.key, o.val_f64);
- } else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_INT) {
- gguf_set_val_i32(ctx_out, o.key, o.val_i64);
- } else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_BOOL) {
- gguf_set_val_bool(ctx_out, o.key, o.val_bool);
- } else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_STR) {
- gguf_set_val_str(ctx_out, o.key, o.val_str);
- } else {
- LLAMA_LOG_WARN("%s: unknown KV override type for key %s\n", __func__, o.key);
- }
- }
- }
- for (int i = 0; i < ml.n_tensors; ++i) {
- const struct ggml_tensor * meta = ml.get_tensor_meta(i);
- const std::string name = ggml_get_name(meta);
- // TODO: avoid hardcoded tensor names - use the TN_* constants
- if (name.find("attn_v.weight") != std::string::npos ||
- name.find("attn_qkv.weight") != std::string::npos) {
- ++qs.n_attention_wv;
- } else if (name == LLM_TN(model.arch)(LLM_TENSOR_OUTPUT, "weight")) {
- qs.has_output = true;
- }
- }
- qs.n_ffn_down = qs.n_ffn_gate = qs.n_ffn_up = (int)model.hparams.n_layer;
- // sanity checks
- //
- // - qs.n_attention_wv == 0 for Mamba models
- // - qs.n_attention_wv == model.hparams.n_layer for Transformer models
- //
- GGML_ASSERT((qs.n_attention_wv == 0 || qs.n_attention_wv == (int)model.hparams.n_layer) && "n_attention_wv is unexpected");
- size_t total_size_org = 0;
- size_t total_size_new = 0;
- std::vector<std::thread> workers;
- workers.reserve(nthread);
- int idx = 0;
- std::vector<no_init<uint8_t>> read_data;
- std::vector<no_init<uint8_t>> work;
- std::vector<no_init<float>> f32_conv_buf;
- uint16_t n_split = 1;
- // Assume split index is continuous
- if (params->keep_split) {
- for (int i = 0; i < ml.n_tensors; ++i) {
- n_split = std::max(uint16_t(ml.get_weight(i)->idx+1), n_split);
- }
- }
- std::vector<gguf_context*> ctx_outs(n_split, NULL);
- ctx_outs[0] = ctx_out;
- // populate the original tensors so we get an initial meta data
- for (int i = 0; i < ml.n_tensors; ++i) {
- auto weight = ml.get_weight(i);
- uint16_t i_split = params->keep_split ? weight->idx : 0;
- struct ggml_tensor * tensor = weight->tensor;
- if (ctx_outs[i_split] == NULL) {
- ctx_outs[i_split] = gguf_init_empty();
- }
- gguf_add_tensor(ctx_outs[i_split], tensor);
- }
- // Set split info if needed
- if (n_split > 1) {
- for (size_t i = 0; i < ctx_outs.size(); ++i) {
- gguf_set_val_u16(ctx_outs[i], ml.llm_kv(LLM_KV_SPLIT_NO).c_str(), i);
- gguf_set_val_u16(ctx_outs[i], ml.llm_kv(LLM_KV_SPLIT_COUNT).c_str(), n_split);
- gguf_set_val_i32(ctx_outs[i], ml.llm_kv(LLM_KV_SPLIT_TENSORS_COUNT).c_str(), ml.n_tensors);
- }
- }
- int cur_split = -1;
- std::ofstream fout;
- auto close_ofstream = [&]() {
- // Write metadata and close file handler
- if (fout.is_open()) {
- fout.seekp(0);
- std::vector<uint8_t> data(gguf_get_meta_size(ctx_outs[cur_split]));
- gguf_get_meta_data(ctx_outs[cur_split], data.data());
- fout.write((const char *) data.data(), data.size());
- fout.close();
- }
- };
- auto new_ofstream = [&](int index) {
- cur_split = index;
- GGML_ASSERT(ctx_outs[cur_split] && "Find uninitialized gguf_context");
- std::string fname = fname_out;
- if (params->keep_split) {
- char split_path[PATH_MAX] = {0};
- llama_split_path(split_path, sizeof(split_path), fname_out.c_str(), cur_split, n_split);
- fname = std::string(split_path);
- }
- fout = std::ofstream(fname, std::ios::binary);
- fout.exceptions(std::ofstream::failbit); // fail fast on write errors
- const size_t meta_size = gguf_get_meta_size(ctx_outs[cur_split]);
- // placeholder for the meta data
- ::zeros(fout, meta_size);
- };
- const auto tn = LLM_TN(model.arch);
- new_ofstream(0);
- for (int i = 0; i < ml.n_tensors; ++i) {
- auto weight = ml.get_weight(i);
- struct ggml_tensor * tensor = weight->tensor;
- if (weight->idx != cur_split && params->keep_split) {
- close_ofstream();
- new_ofstream(weight->idx);
- }
- const std::string name = ggml_get_name(tensor);
- if (!ml.use_mmap) {
- if (read_data.size() < ggml_nbytes(tensor)) {
- read_data.resize(ggml_nbytes(tensor));
- }
- tensor->data = read_data.data();
- }
- ml.load_data_for(tensor);
- LLAMA_LOG_INFO("[%4d/%4d] %36s - [%s], type = %6s, ",
- ++idx, ml.n_tensors,
- ggml_get_name(tensor),
- llama_format_tensor_shape(tensor).c_str(),
- ggml_type_name(tensor->type));
- // This used to be a regex, but <regex> has an extreme cost to compile times.
- bool quantize = name.rfind("weight") == name.size() - 6; // ends with 'weight'?
- // quantize only 2D and 3D tensors (experts)
- quantize &= (ggml_n_dims(tensor) >= 2);
- // do not quantize norm tensors
- quantize &= name.find("_norm.weight") == std::string::npos;
- quantize &= params->quantize_output_tensor || name != "output.weight";
- quantize &= !params->only_copy;
- // do not quantize expert gating tensors
- // NOTE: can't use LLM_TN here because the layer number is not known
- quantize &= name.find("ffn_gate_inp.weight") == std::string::npos;
- // do not quantize positional embeddings and token types (BERT)
- quantize &= name != LLM_TN(model.arch)(LLM_TENSOR_POS_EMBD, "weight");
- quantize &= name != LLM_TN(model.arch)(LLM_TENSOR_TOKEN_TYPES, "weight");
- // do not quantize Mamba's small yet 2D weights
- // NOTE: can't use LLM_TN here because the layer number is not known
- quantize &= name.find("ssm_conv1d.weight") == std::string::npos;
- quantize &= name.find("ssm_x.weight") == std::string::npos;
- quantize &= name.find("ssm_dt.weight") == std::string::npos;
- enum ggml_type new_type;
- void * new_data;
- size_t new_size;
- if (quantize) {
- new_type = default_type;
- // get more optimal quantization type based on the tensor shape, layer, etc.
- if (!params->pure && ggml_is_quantized(default_type)) {
- new_type = llama_tensor_get_type(qs, new_type, tensor, ftype);
- }
- if (params->token_embedding_type < GGML_TYPE_COUNT && strcmp(tensor->name, "token_embd.weight") == 0) {
- new_type = params->token_embedding_type;
- }
- if (params->output_tensor_type < GGML_TYPE_COUNT && strcmp(tensor->name, "output.weight") == 0) {
- new_type = params->output_tensor_type;
- }
- // If we've decided to quantize to the same type the tensor is already
- // in then there's nothing to do.
- quantize = tensor->type != new_type;
- }
- if (!quantize) {
- new_type = tensor->type;
- new_data = tensor->data;
- new_size = ggml_nbytes(tensor);
- LLAMA_LOG_INFO("size = %8.3f MB\n", ggml_nbytes(tensor)/1024.0/1024.0);
- } else {
- const int64_t nelements = ggml_nelements(tensor);
- const float * imatrix = nullptr;
- if (imatrix_data) {
- auto it = imatrix_data->find(tensor->name);
- if (it == imatrix_data->end()) {
- LLAMA_LOG_INFO("\n====== %s: did not find weights for %s\n", __func__, tensor->name);
- } else {
- if (it->second.size() == (size_t)tensor->ne[0]*tensor->ne[2]) {
- imatrix = it->second.data();
- } else {
- LLAMA_LOG_INFO("\n====== %s: imatrix size %d is different from tensor size %d for %s\n", __func__,
- int(it->second.size()), int(tensor->ne[0]*tensor->ne[2]), tensor->name);
- // this can happen when quantizing an old mixtral model with split tensors with a new incompatible imatrix
- // this is a significant error and it may be good idea to abort the process if this happens,
- // since many people will miss the error and not realize that most of the model is being quantized without an imatrix
- // tok_embd should be ignored in this case, since it always causes this warning
- if (name != tn(LLM_TENSOR_TOKEN_EMBD, "weight")) {
- throw std::runtime_error(format("imatrix size %d is different from tensor size %d for %s",
- int(it->second.size()), int(tensor->ne[0]*tensor->ne[2]), tensor->name));
- }
- }
- }
- }
- if ((new_type == GGML_TYPE_IQ2_XXS ||
- new_type == GGML_TYPE_IQ2_XS ||
- new_type == GGML_TYPE_IQ2_S ||
- new_type == GGML_TYPE_IQ1_S ||
- (new_type == GGML_TYPE_IQ1_M && strcmp(tensor->name, "token_embd.weight") && strcmp(tensor->name, "output.weight")) ||
- (new_type == GGML_TYPE_Q2_K && params->ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S && strcmp(tensor->name, "token_embd.weight") != 0)) && !imatrix) {
- LLAMA_LOG_ERROR("\n\n============================================================\n");
- LLAMA_LOG_ERROR("Missing importance matrix for tensor %s in a very low-bit quantization\n", tensor->name);
- LLAMA_LOG_ERROR("The result will be garbage, so bailing out\n");
- LLAMA_LOG_ERROR("============================================================\n\n");
- throw std::runtime_error(format("Missing importance matrix for tensor %s in a very low-bit quantization", tensor->name));
- }
- float * f32_data;
- if (tensor->type == GGML_TYPE_F32) {
- f32_data = (float *) tensor->data;
- } else if (ggml_is_quantized(tensor->type) && !params->allow_requantize) {
- throw std::runtime_error(format("requantizing from type %s is disabled", ggml_type_name(tensor->type)));
- } else {
- llama_tensor_dequantize_internal(tensor, f32_conv_buf, workers, nelements, nthread);
- f32_data = (float *) f32_conv_buf.data();
- }
- LLAMA_LOG_INFO("converting to %s .. ", ggml_type_name(new_type));
- fflush(stdout);
- if (work.size() < (size_t)nelements * 4) {
- work.resize(nelements * 4); // upper bound on size
- }
- new_data = work.data();
- const int64_t n_per_row = tensor->ne[0];
- const int64_t nrows = tensor->ne[1];
- static const int64_t min_chunk_size = 32 * 512;
- const int64_t chunk_size = n_per_row >= min_chunk_size ? n_per_row : n_per_row * ((min_chunk_size + n_per_row - 1)/n_per_row);
- const int64_t nelements_matrix = tensor->ne[0] * tensor->ne[1];
- const int64_t nchunk = (nelements_matrix + chunk_size - 1)/chunk_size;
- const int64_t nthread_use = nthread > 1 ? std::max((int64_t)1, std::min((int64_t)nthread, nchunk)) : 1;
- // quantize each expert separately since they have different importance matrices
- new_size = 0;
- for (int64_t i03 = 0; i03 < tensor->ne[2]; ++i03) {
- const float * f32_data_03 = f32_data + i03 * nelements_matrix;
- void * new_data_03 = (char *)new_data + ggml_row_size(new_type, n_per_row) * i03 * nrows;
- const float * imatrix_03 = imatrix ? imatrix + i03 * n_per_row : nullptr;
- new_size += llama_tensor_quantize_internal(new_type, f32_data_03, new_data_03, chunk_size, nrows, n_per_row, imatrix_03, workers, nthread_use);
- }
- LLAMA_LOG_INFO("size = %8.2f MiB -> %8.2f MiB\n", ggml_nbytes(tensor)/1024.0/1024.0, new_size/1024.0/1024.0);
- }
- total_size_org += ggml_nbytes(tensor);
- total_size_new += new_size;
- // update the gguf meta data as we go
- gguf_set_tensor_type(ctx_outs[cur_split], name.c_str(), new_type);
- gguf_set_tensor_data(ctx_outs[cur_split], name.c_str(), new_data, new_size);
- // write tensor data + padding
- fout.write((const char *) new_data, new_size);
- zeros(fout, GGML_PAD(new_size, align) - new_size);
- }
- close_ofstream();
- for (auto & c:ctx_outs) {
- gguf_free(c);
- }
- LLAMA_LOG_INFO("%s: model size = %8.2f MB\n", __func__, total_size_org/1024.0/1024.0);
- LLAMA_LOG_INFO("%s: quant size = %8.2f MB\n", __func__, total_size_new/1024.0/1024.0);
- if (qs.n_fallback > 0) {
- LLAMA_LOG_WARN("%s: WARNING: %d of %d tensor(s) required fallback quantization\n",
- __func__, qs.n_fallback, qs.n_k_quantized + qs.n_fallback);
- }
- }
- static int llama_apply_lora_from_file_internal(
- const struct llama_model & model, const char * path_lora, float scale, const char * path_base_model, int n_threads
- ) {
- LLAMA_LOG_INFO("%s: applying lora adapter from '%s' - please wait ...\n", __func__, path_lora);
- const int64_t t_start_lora_us = ggml_time_us();
- llama_file fin(path_lora, "rb");
- // verify magic and version
- {
- uint32_t magic = fin.read_u32();
- if (magic != LLAMA_FILE_MAGIC_GGLA) {
- LLAMA_LOG_ERROR("%s: bad file magic\n", __func__);
- return 1;
- }
- uint32_t format_version = fin.read_u32();
- if (format_version != 1) {
- LLAMA_LOG_ERROR("%s: unsupported file version\n", __func__ );
- return 1;
- }
- }
- int32_t lora_r = fin.read_u32();
- int32_t lora_alpha = fin.read_u32();
- float scaling = scale * (float)lora_alpha / (float)lora_r;
- LLAMA_LOG_INFO("%s: r = %d, alpha = %d, scaling = %.2f\n", __func__, lora_r, lora_alpha, scaling);
- // load base model
- std::unique_ptr<llama_model_loader> ml;
- if (path_base_model) {
- LLAMA_LOG_INFO("%s: loading base model from '%s'\n", __func__, path_base_model);
- ml.reset(new llama_model_loader(path_base_model, /*use_mmap*/ true, /*check_tensors*/ false, /*kv_overrides*/ nullptr));
- ml->init_mappings(/*prefetch*/ false); // no prefetching
- }
- struct tensor_meta {
- std::string name;
- ggml_type type;
- int32_t ne[2];
- size_t offset;
- };
- std::map<std::string, tensor_meta> tensor_meta_map;
- // load all tensor meta
- while (true) {
- if (fin.tell() == fin.size) {
- // eof
- break;
- }
- int32_t n_dims;
- int32_t name_len;
- int32_t ftype;
- fin.read_raw(&n_dims, sizeof(n_dims));
- fin.read_raw(&name_len, sizeof(name_len));
- fin.read_raw(&ftype, sizeof(ftype));
- if (n_dims != 1 && n_dims != 2) {
- LLAMA_LOG_ERROR("%s: unsupported tensor dimension %d\n", __func__, n_dims);
- return 1;
- }
- int32_t ne[2] = { 1, 1 };
- for (int i = 0; i < n_dims; ++i) {
- fin.read_raw(&ne[i], sizeof(ne[i]));
- }
- std::string name;
- {
- GGML_ASSERT(name_len < GGML_MAX_NAME);
- char buf[GGML_MAX_NAME];
- fin.read_raw(buf, name_len);
- name = std::string(buf, name_len);
- }
- // check for lora suffix
- std::string lora_suffix;
- if (name.length() > 6) {
- lora_suffix = name.substr(name.length() - 6);
- }
- if (lora_suffix != ".loraA" && lora_suffix != ".loraB") {
- LLAMA_LOG_ERROR("%s: error: '%s' is not a lora tensor\n", __func__, name.c_str());
- return 1;
- }
- // tensor type
- ggml_type wtype;
- switch (ftype) {
- case 0: wtype = GGML_TYPE_F32; break;
- case 1: wtype = GGML_TYPE_F16; break;
- default:
- {
- LLAMA_LOG_ERROR("%s: invalid tensor data type '%d'\n",
- __func__, ftype);
- return 1;
- }
- }
- // data offset
- size_t offset = fin.tell();
- offset = (offset + 31) & -32;
- // skip tensor data
- fin.seek(offset + ggml_row_size(wtype, ne[0]) * ne[1], SEEK_SET);
- tensor_meta_map.emplace(name, tensor_meta{ name, wtype, { ne[0], ne[1] }, offset });
- }
- bool warned = false;
- int n_tensors = 0;
- // apply
- ggml_backend_t backend_cpu = ggml_backend_cpu_init();
- if (backend_cpu == nullptr) {
- LLAMA_LOG_ERROR("%s: error: failed to initialize cpu backend\n", __func__);
- return 1;
- }
- ggml_backend_cpu_set_n_threads(backend_cpu, n_threads);
- std::vector<no_init<uint8_t>> read_buf;
- for (const auto & it : model.tensors_by_name) {
- const std::string & base_name = it.first;
- ggml_tensor * model_t = it.second;
- if (tensor_meta_map.find(base_name + ".loraA") == tensor_meta_map.end() ||
- tensor_meta_map.find(base_name + ".loraB") == tensor_meta_map.end()) {
- continue;
- }
- tensor_meta & metaA = tensor_meta_map.at(base_name + ".loraA");
- tensor_meta & metaB = tensor_meta_map.at(base_name + ".loraB");
- ggml_init_params lora_init_params = {
- /* .mem_size */ ggml_tensor_overhead()*128 + ggml_graph_overhead(),
- /* .mem_buffer */ nullptr,
- /* .no_alloc */ true,
- };
- ggml_context * lora_ctx = ggml_init(lora_init_params);
- if (lora_ctx == nullptr) {
- LLAMA_LOG_ERROR("%s: error: failed to initialize lora context\n", __func__);
- ggml_backend_free(backend_cpu);
- return 1;
- }
- // create tensors
- ggml_tensor * loraA = ggml_new_tensor_2d(lora_ctx, metaA.type, metaA.ne[0], metaA.ne[1]);
- ggml_tensor * loraB = ggml_new_tensor_2d(lora_ctx, metaB.type, metaB.ne[0], metaB.ne[1]);
- ggml_set_name(loraA, metaA.name.c_str());
- ggml_set_name(loraB, metaB.name.c_str());
- ggml_tensor * base_t;
- if (ml) {
- if (!ml->get_tensor_meta(base_name.c_str())) {
- LLAMA_LOG_ERROR("%s: error: tensor '%s' not found in base model\n", __func__, base_name.c_str());
- return 1;
- }
- base_t = ggml_dup_tensor(lora_ctx, ml->get_tensor_meta(base_name.c_str()));
- } else {
- base_t = ggml_dup_tensor(lora_ctx, model_t);
- }
- ggml_set_name(base_t, base_name.c_str());
- // allocate in backend buffer
- ggml_backend_buffer_t lora_buf = ggml_backend_alloc_ctx_tensors_from_buft(lora_ctx, ggml_backend_cpu_buffer_type());
- if (lora_buf == nullptr) {
- LLAMA_LOG_ERROR("%s: error: failed to allocate lora tensors\n", __func__);
- return 1;
- }
- // load tensor data
- auto load_tensor = [&read_buf, &fin](const tensor_meta & tensor_meta, ggml_tensor * tensor) {
- read_buf.resize(ggml_nbytes(tensor));
- fin.seek(tensor_meta.offset, SEEK_SET);
- fin.read_raw(read_buf.data(), ggml_nbytes(tensor));
- ggml_backend_tensor_set(tensor, read_buf.data(), 0, read_buf.size());
- };
- load_tensor(metaA, loraA);
- load_tensor(metaB, loraB);
- // load base model tensor data
- if (ml) {
- ml->load_data_for(base_t);
- } else {
- ggml_backend_tensor_copy(model_t, base_t);
- }
- if (ggml_is_quantized(base_t->type) && !warned) {
- LLAMA_LOG_WARN("%s: warning: using a lora adapter with a quantized model may result in poor quality, "
- "use a f16 or f32 base model with --lora-base\n", __func__);
- warned = true;
- }
- if (base_t->ne[0] != loraA->ne[1] || base_t->ne[1] != loraB->ne[1]) {
- LLAMA_LOG_ERROR("%s: incompatible tensor dimensions (%" PRId64 " and %" PRId64 ");"
- " are you sure that this adapter is for this model?\n", __func__, base_t->ne[0], loraA->ne[1]);
- ggml_free(lora_ctx);
- ggml_backend_buffer_free(lora_buf);
- ggml_backend_free(backend_cpu);
- return 1;
- }
- auto build_lora_graph = [&]() {
- // w = w + BA*s
- ggml_tensor * BA = ggml_mul_mat(lora_ctx, loraA, loraB);
- ggml_set_name(BA, "BA");
- if (scaling != 1.0f) {
- BA = ggml_scale(lora_ctx, BA, scaling);
- ggml_set_name(BA, "BA_scaled");
- }
- ggml_tensor * r;
- r = ggml_add_inplace(lora_ctx, base_t, BA);
- ggml_set_name(r, "r_add");
- if (base_t->type != model_t->type) {
- // convert the result to the model type
- r = ggml_cast(lora_ctx, r, model_t->type);
- ggml_set_name(r, "r_cast");
- }
- return r;
- };
- ggml_cgraph * gf = ggml_new_graph(lora_ctx);
- ggml_tensor * r = build_lora_graph();
- ggml_build_forward_expand(gf, r);
- ggml_backend_buffer_t graph_buf = ggml_backend_alloc_ctx_tensors_from_buft(lora_ctx, ggml_backend_cpu_buffer_type());
- if (graph_buf == nullptr) {
- LLAMA_LOG_ERROR("%s: error: failed to allocate graph tensors\n", __func__);
- ggml_free(lora_ctx);
- ggml_backend_buffer_free(lora_buf);
- ggml_backend_free(backend_cpu);
- return 1;
- }
- ggml_backend_graph_compute(backend_cpu, gf);
- ggml_backend_tensor_set(model_t, r->data, 0, ggml_nbytes(r));
- #if 0
- // TODO: use scheduler with fallback to CPU for less copies between CPU and GPU
- //ggml_backend_sched_t sched = ggml_backend_sched_new(backends.data(), backends.size(), GGML_DEFAULT_GRAPH_SIZE);
- // sched compute
- ggml_build_forward_expand(gf, build_graph());
- ggml_backend_sched_init_measure(sched, gf);
- // create the graph again, since the previous one was destroyed by the measure
- ggml_graph_clear(gf);
- ggml_build_forward_expand(gf, build_graph());
- ggml_backend_sched_graph_compute(sched, gf);
- ggml_backend_sched_free(sched);
- #endif
- ggml_backend_buffer_free(lora_buf);
- ggml_backend_buffer_free(graph_buf);
- ggml_free(lora_ctx);
- n_tensors++;
- if (n_tensors % 4 == 0) {
- LLAMA_LOG_INFO(".");
- }
- }
- ggml_backend_free(backend_cpu);
- const int64_t t_lora_us = ggml_time_us() - t_start_lora_us;
- LLAMA_LOG_INFO(" done (%.2f ms)\n", t_lora_us / 1000.0);
- return 0;
- }
- //
- // interface implementation
- //
- struct llama_model_params llama_model_default_params() {
- struct llama_model_params result = {
- /*.n_gpu_layers =*/ 0,
- /*.split_mode =*/ LLAMA_SPLIT_MODE_LAYER,
- /*.main_gpu =*/ 0,
- /*.tensor_split =*/ nullptr,
- /*.rpc_servers =*/ nullptr,
- /*.progress_callback =*/ nullptr,
- /*.progress_callback_user_data =*/ nullptr,
- /*.kv_overrides =*/ nullptr,
- /*.vocab_only =*/ false,
- /*.use_mmap =*/ true,
- /*.use_mlock =*/ false,
- /*.check_tensors =*/ false,
- };
- #ifdef GGML_USE_METAL
- // note: we usually have plenty of VRAM, so by default offload all layers to the GPU
- result.n_gpu_layers = 999;
- #endif
- return result;
- }
- struct llama_context_params llama_context_default_params() {
- struct llama_context_params result = {
- /*.seed =*/ LLAMA_DEFAULT_SEED,
- /*.n_ctx =*/ 512,
- /*.n_batch =*/ 2048,
- /*.n_ubatch =*/ 512,
- /*.n_seq_max =*/ 1,
- /*.n_threads =*/ GGML_DEFAULT_N_THREADS, // TODO: better default
- /*.n_threads_batch =*/ GGML_DEFAULT_N_THREADS,
- /*.rope_scaling_type =*/ LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED,
- /*.pooling_type =*/ LLAMA_POOLING_TYPE_UNSPECIFIED,
- /*.rope_freq_base =*/ 0.0f,
- /*.rope_freq_scale =*/ 0.0f,
- /*.yarn_ext_factor =*/ -1.0f,
- /*.yarn_attn_factor =*/ 1.0f,
- /*.yarn_beta_fast =*/ 32.0f,
- /*.yarn_beta_slow =*/ 1.0f,
- /*.yarn_orig_ctx =*/ 0,
- /*.defrag_thold =*/ -1.0f,
- /*.cb_eval =*/ nullptr,
- /*.cb_eval_user_data =*/ nullptr,
- /*.type_k =*/ GGML_TYPE_F16,
- /*.type_v =*/ GGML_TYPE_F16,
- /*.logits_all =*/ false,
- /*.embeddings =*/ false,
- /*.offload_kqv =*/ true,
- /*.flash_attn =*/ false,
- /*.abort_callback =*/ nullptr,
- /*.abort_callback_data =*/ nullptr,
- };
- return result;
- }
- struct llama_model_quantize_params llama_model_quantize_default_params() {
- struct llama_model_quantize_params result = {
- /*.nthread =*/ 0,
- /*.ftype =*/ LLAMA_FTYPE_MOSTLY_Q5_1,
- /*.output_tensor_type =*/ GGML_TYPE_COUNT,
- /*.token_embedding_type =*/ GGML_TYPE_COUNT,
- /*.allow_requantize =*/ false,
- /*.quantize_output_tensor =*/ true,
- /*.only_copy =*/ false,
- /*.pure =*/ false,
- /*.keep_split =*/ false,
- /*.imatrix =*/ nullptr,
- /*.kv_overrides =*/ nullptr,
- };
- return result;
- }
- size_t llama_max_devices(void) {
- #if defined(GGML_USE_RPC)
- return GGML_RPC_MAX_SERVERS;
- #elif defined(GGML_USE_METAL)
- return 1;
- #elif defined(GGML_USE_CUDA)
- return GGML_CUDA_MAX_DEVICES;
- #elif defined(GGML_USE_SYCL)
- return GGML_SYCL_MAX_DEVICES;
- #elif defined(GGML_USE_VULKAN)
- return GGML_VK_MAX_DEVICES;
- #else
- return 1;
- #endif
- }
- bool llama_supports_mmap(void) {
- return llama_mmap::SUPPORTED;
- }
- bool llama_supports_mlock(void) {
- return llama_mlock::SUPPORTED;
- }
- bool llama_supports_gpu_offload(void) {
- #if defined(GGML_USE_CUDA) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_METAL) || defined(GGML_USE_VULKAN) || \
- defined(GGML_USE_SYCL) || defined(GGML_USE_KOMPUTE) || defined(GGML_USE_RPC)
- // Defined when llama.cpp is compiled with support for offloading model layers to GPU.
- return true;
- #else
- return false;
- #endif
- }
- void llama_backend_init(void) {
- ggml_time_init();
- // needed to initialize f16 tables
- {
- struct ggml_init_params params = { 0, NULL, false };
- struct ggml_context * ctx = ggml_init(params);
- ggml_free(ctx);
- }
- #ifdef GGML_USE_MPI
- ggml_mpi_backend_init();
- #endif
- }
- void llama_numa_init(enum ggml_numa_strategy numa) {
- if (numa != GGML_NUMA_STRATEGY_DISABLED) {
- ggml_numa_init(numa);
- }
- }
- void llama_backend_free(void) {
- #ifdef GGML_USE_MPI
- ggml_mpi_backend_free();
- #endif
- ggml_quantize_free();
- }
- int64_t llama_time_us(void) {
- return ggml_time_us();
- }
- struct llama_model * llama_load_model_from_file(
- const char * path_model,
- struct llama_model_params params) {
- ggml_time_init();
- llama_model * model = new llama_model;
- unsigned cur_percentage = 0;
- if (params.progress_callback == NULL) {
- params.progress_callback_user_data = &cur_percentage;
- params.progress_callback = [](float progress, void * ctx) {
- unsigned * cur_percentage_p = (unsigned *) ctx;
- unsigned percentage = (unsigned) (100 * progress);
- while (percentage > *cur_percentage_p) {
- *cur_percentage_p = percentage;
- LLAMA_LOG_INFO(".");
- if (percentage >= 100) {
- LLAMA_LOG_INFO("\n");
- }
- }
- return true;
- };
- }
- if (params.rpc_servers != nullptr) {
- // split the servers set them into model->rpc_servers
- std::string servers(params.rpc_servers);
- size_t pos = 0;
- while ((pos = servers.find(",")) != std::string::npos) {
- std::string server = servers.substr(0, pos);
- model->rpc_servers.push_back(server);
- servers.erase(0, pos + 1);
- }
- model->rpc_servers.push_back(servers);
- }
- int status = llama_model_load(path_model, *model, params);
- GGML_ASSERT(status <= 0);
- if (status < 0) {
- if (status == -1) {
- LLAMA_LOG_ERROR("%s: failed to load model\n", __func__);
- } else if (status == -2) {
- LLAMA_LOG_INFO("%s: cancelled model load\n", __func__);
- }
- delete model;
- return nullptr;
- }
- return model;
- }
- void llama_free_model(struct llama_model * model) {
- delete model;
- }
- struct llama_context * llama_new_context_with_model(
- struct llama_model * model,
- struct llama_context_params params) {
- if (!model) {
- LLAMA_LOG_ERROR("%s: model cannot be NULL\n", __func__);
- return nullptr;
- }
- if (params.n_batch == 0 && params.n_ubatch == 0) {
- LLAMA_LOG_ERROR("%s: n_batch and n_ubatch cannot both be zero\n", __func__);
- return nullptr;
- }
- if (params.n_ctx == 0 && model->hparams.n_ctx_train == 0) {
- LLAMA_LOG_ERROR("%s: n_ctx and model->hparams.n_ctx_train cannot both be zero\n", __func__);
- return nullptr;
- }
- if (params.flash_attn && model->arch == LLM_ARCH_GROK) {
- LLAMA_LOG_WARN("%s: flash_attn is not compatible with Grok - forcing off\n", __func__);
- params.flash_attn = false;
- }
- llama_context * ctx = new llama_context(*model);
- const auto & hparams = model->hparams;
- auto & cparams = ctx->cparams;
- cparams.n_seq_max = std::max(1u, params.n_seq_max);
- cparams.n_threads = params.n_threads;
- cparams.n_threads_batch = params.n_threads_batch;
- cparams.yarn_ext_factor = params.yarn_ext_factor;
- cparams.yarn_attn_factor = params.yarn_attn_factor;
- cparams.yarn_beta_fast = params.yarn_beta_fast;
- cparams.yarn_beta_slow = params.yarn_beta_slow;
- cparams.defrag_thold = params.defrag_thold;
- cparams.embeddings = params.embeddings;
- cparams.offload_kqv = params.offload_kqv;
- cparams.flash_attn = params.flash_attn;
- cparams.pooling_type = params.pooling_type;
- cparams.n_ctx = params.n_ctx == 0 ? hparams.n_ctx_train : params.n_ctx;
- cparams.rope_freq_base = params.rope_freq_base == 0.0f ? hparams.rope_freq_base_train : params.rope_freq_base;
- cparams.rope_freq_scale = params.rope_freq_scale == 0.0f ? hparams.rope_freq_scale_train : params.rope_freq_scale;
- // this is necessary due to kv_self.n being padded later during inference
- cparams.n_ctx = GGML_PAD(cparams.n_ctx, llama_kv_cache_get_padding(cparams));
- // with causal attention, the batch size is limited by the context size
- cparams.n_batch = hparams.causal_attn ? std::min(cparams.n_ctx, params.n_batch) : params.n_batch;
- // the batch has to be at least GGML_KQ_MASK_PAD because we will be padding the KQ_mask
- // this is required by GPU kernels in order to avoid out-of-bounds accesses (e.g. ggml_flash_attn_ext)
- // ref: https://github.com/ggerganov/llama.cpp/pull/5021
- if (cparams.n_batch < GGML_KQ_MASK_PAD) {
- LLAMA_LOG_WARN("%s: n_batch is less than GGML_KQ_MASK_PAD - increasing to %d\n", __func__, GGML_KQ_MASK_PAD);
- cparams.n_batch = GGML_KQ_MASK_PAD;
- }
- cparams.n_ubatch = std::min(cparams.n_batch, params.n_ubatch == 0 ? params.n_batch : params.n_ubatch);
- cparams.n_yarn_orig_ctx = params.yarn_orig_ctx != 0 ? params.yarn_orig_ctx :
- hparams.n_yarn_orig_ctx != 0 ? hparams.n_yarn_orig_ctx :
- hparams.n_ctx_train;
- cparams.cb_eval = params.cb_eval;
- cparams.cb_eval_user_data = params.cb_eval_user_data;
- auto rope_scaling_type = params.rope_scaling_type;
- if (rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED) {
- rope_scaling_type = hparams.rope_scaling_type_train;
- }
- if (rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_NONE) {
- cparams.rope_freq_scale = 1.0f; // never scale if scaling type is none
- }
- if (cparams.yarn_ext_factor < 0.0f) { // negative indicates 'not set'
- cparams.yarn_ext_factor = rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_YARN ? 1.0f : 0.0f;
- }
- cparams.causal_attn = hparams.causal_attn;
- if (cparams.pooling_type == LLAMA_POOLING_TYPE_UNSPECIFIED) {
- if (hparams.pooling_type == LLAMA_POOLING_TYPE_UNSPECIFIED) {
- cparams.pooling_type = LLAMA_POOLING_TYPE_NONE;
- } else {
- cparams.pooling_type = hparams.pooling_type;
- }
- }
- if (params.seed == LLAMA_DEFAULT_SEED) {
- params.seed = time(NULL);
- }
- LLAMA_LOG_INFO("%s: n_ctx = %u\n", __func__, cparams.n_ctx);
- LLAMA_LOG_INFO("%s: n_batch = %u\n", __func__, cparams.n_batch);
- LLAMA_LOG_INFO("%s: n_ubatch = %u\n", __func__, cparams.n_ubatch);
- LLAMA_LOG_INFO("%s: flash_attn = %d\n", __func__, cparams.flash_attn);
- LLAMA_LOG_INFO("%s: freq_base = %.1f\n", __func__, cparams.rope_freq_base);
- LLAMA_LOG_INFO("%s: freq_scale = %g\n", __func__, cparams.rope_freq_scale);
- ctx->abort_callback = params.abort_callback;
- ctx->abort_callback_data = params.abort_callback_data;
- ctx->rng = std::mt19937(params.seed);
- ctx->logits_all = params.logits_all;
- uint32_t kv_size = cparams.n_ctx;
- ggml_type type_k = params.type_k;
- ggml_type type_v = params.type_v;
- // Mamba only needs a constant number of KV cache cells per sequence
- if (model->arch == LLM_ARCH_MAMBA) {
- // Mamba needs at least as many KV cells as there are sequences kept at any time
- kv_size = std::max((uint32_t) 1, params.n_seq_max);
- // it's probably best to keep as much precision as possible for the states
- type_k = GGML_TYPE_F32; // required by ggml_ssm_conv for Mamba's conv_states
- type_v = GGML_TYPE_F32; // required by ggml_ssm_scan for Mamba's ssm_states
- }
- GGML_ASSERT(hparams.n_embd_head_k % ggml_blck_size(type_k) == 0);
- GGML_ASSERT(hparams.n_embd_head_v % ggml_blck_size(type_v) == 0);
- if (!hparams.vocab_only) {
- // initialize backends
- #if defined(GGML_USE_RPC)
- for (auto & server : model->rpc_servers) {
- ggml_backend_t backend = ggml_backend_rpc_init(server.c_str());
- if (backend == nullptr) {
- LLAMA_LOG_ERROR("%s: failed to connect RPC backend to %s\n", __func__, server.c_str());
- llama_free(ctx);
- return nullptr;
- }
- ctx->backends.push_back(backend);
- }
- #elif defined(GGML_USE_METAL)
- if (model->n_gpu_layers > 0) {
- ctx->backend_metal = ggml_backend_metal_init();
- if (ctx->backend_metal == nullptr) {
- LLAMA_LOG_ERROR("%s: failed to initialize Metal backend\n", __func__);
- llama_free(ctx);
- return nullptr;
- }
- ctx->backends.push_back(ctx->backend_metal);
- }
- #elif defined(GGML_USE_CUDA)
- if (model->split_mode == LLAMA_SPLIT_MODE_NONE || model->split_mode == LLAMA_SPLIT_MODE_ROW) {
- // with split_mode LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_ROW, only the main GPU backend is used
- ggml_backend_t backend = ggml_backend_cuda_init(model->main_gpu);
- if (backend == nullptr) {
- LLAMA_LOG_ERROR("%s: failed to initialize CUDA%d backend\n", __func__, model->main_gpu);
- llama_free(ctx);
- return nullptr;
- }
- ctx->backends.push_back(backend);
- } else {
- // LLAMA_SPLIT_MODE_LAYER requires a backend for each GPU
- for (int device = 0; device < ggml_backend_cuda_get_device_count(); ++device) {
- ggml_backend_t backend = ggml_backend_cuda_init(device);
- if (backend == nullptr) {
- LLAMA_LOG_ERROR("%s: failed to initialize CUDA%d backend\n", __func__, device);
- llama_free(ctx);
- return nullptr;
- }
- ctx->backends.push_back(backend);
- }
- }
- #elif defined(GGML_USE_VULKAN)
- if (model->split_mode == LLAMA_SPLIT_MODE_ROW) {
- LLAMA_LOG_ERROR("%s: Row split not supported. Failed to initialize Vulkan backend\n", __func__);
- llama_free(ctx);
- return nullptr;
- }
- if (model->split_mode == LLAMA_SPLIT_MODE_NONE) {
- ggml_backend_t backend = ggml_backend_vk_init(0);
- if (backend == nullptr) {
- LLAMA_LOG_ERROR("%s: failed to initialize Vulkan backend\n", __func__);
- llama_free(ctx);
- return nullptr;
- }
- ctx->backends.push_back(backend);
- } else {
- for (int device = 0; device < ggml_backend_vk_get_device_count(); ++device) {
- ggml_backend_t backend = ggml_backend_vk_init(device);
- if (backend == nullptr) {
- LLAMA_LOG_ERROR("%s: failed to initialize Vulkan%d backend\n", __func__, device);
- llama_free(ctx);
- return nullptr;
- }
- ctx->backends.push_back(backend);
- }
- }
- #elif defined(GGML_USE_SYCL)
- // with split_mode LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_ROW, only the main GPU backend is used
- if (model->split_mode == LLAMA_SPLIT_MODE_NONE || model->split_mode == LLAMA_SPLIT_MODE_ROW) {
- ggml_backend_t backend = ggml_backend_sycl_init(model->main_gpu);
- if (backend == nullptr) {
- int main_gpu_id = ggml_backend_sycl_get_device_id(model->main_gpu);
- LLAMA_LOG_ERROR("%s: failed to initialize SYCL%d (index %d) backend\n", __func__, main_gpu_id, model->main_gpu);
- llama_free(ctx);
- return nullptr;
- }
- ctx->backends.push_back(backend);
- } else {
- // LLAMA_SPLIT_LAYER requires a backend for each GPU
- for (int i = 0; i < ggml_backend_sycl_get_device_count(); ++i) {
- ggml_backend_t backend = ggml_backend_sycl_init(i);
- if (backend == nullptr) {
- int id_list[GGML_SYCL_MAX_DEVICES];
- ggml_sycl_get_gpu_list(id_list, GGML_SYCL_MAX_DEVICES);
- LLAMA_LOG_ERROR("%s: failed to initialize SYCL%d (index %d) backend\n", __func__, id_list[i], i);
- llama_free(ctx);
- return nullptr;
- }
- ctx->backends.push_back(backend);
- }
- }
- #elif defined(GGML_USE_KOMPUTE)
- if (model->n_gpu_layers > 0) {
- auto * backend = ggml_backend_kompute_init(model->main_gpu);
- if (backend == nullptr) {
- LLAMA_LOG_ERROR("%s: failed to initialize Kompute backend\n", __func__);
- llama_free(ctx);
- return nullptr;
- }
- ctx->backends.push_back(backend);
- }
- #endif
- ctx->backend_cpu = ggml_backend_cpu_init();
- if (ctx->backend_cpu == nullptr) {
- LLAMA_LOG_ERROR("%s: failed to initialize CPU backend\n", __func__);
- llama_free(ctx);
- return nullptr;
- }
- ctx->backends.push_back(ctx->backend_cpu);
- if (!llama_kv_cache_init(ctx->kv_self, ctx, type_k, type_v, kv_size, cparams.offload_kqv)) {
- LLAMA_LOG_ERROR("%s: llama_kv_cache_init() failed for self-attention cache\n", __func__);
- llama_free(ctx);
- return nullptr;
- }
- {
- size_t memory_size_k = 0;
- size_t memory_size_v = 0;
- for (auto & k : ctx->kv_self.k_l) {
- memory_size_k += ggml_nbytes(k);
- }
- for (auto & v : ctx->kv_self.v_l) {
- memory_size_v += ggml_nbytes(v);
- }
- LLAMA_LOG_INFO("%s: KV self size = %7.2f MiB, K (%s): %7.2f MiB, V (%s): %7.2f MiB\n", __func__,
- (float)(memory_size_k + memory_size_v) / (1024.0f * 1024.0f),
- ggml_type_name(type_k), (float)memory_size_k / (1024.0f * 1024.0f),
- ggml_type_name(type_v), (float)memory_size_v / (1024.0f * 1024.0f));
- }
- // graph outputs buffer
- {
- // resized during inference when a batch uses more outputs
- if (llama_output_reserve(*ctx, params.n_seq_max) < params.n_seq_max) {
- LLAMA_LOG_ERROR("%s: failed to reserve initial output buffer\n", __func__);
- llama_free(ctx);
- return nullptr;
- }
- LLAMA_LOG_INFO("%s: %10s output buffer size = %8.2f MiB\n", __func__,
- ggml_backend_buffer_name(ctx->buf_output),
- ggml_backend_buffer_get_size(ctx->buf_output) / 1024.0 / 1024.0);
- }
- // scheduler and compute buffers
- {
- // buffer types used for the compute buffer of each backend
- std::vector<ggml_backend_buffer_type_t> backend_buft;
- for (auto * backend : ctx->backends) {
- if (ggml_backend_is_cpu(backend)) {
- // use host buffers for the CPU backend compute buffer
- backend_buft.push_back(llama_default_buffer_type_cpu(true));
- } else {
- backend_buft.push_back(ggml_backend_get_default_buffer_type(backend));
- }
- }
- // buffer used to store the computation graph and the tensor meta data
- ctx->buf_compute_meta.resize(ggml_tensor_overhead()*LLAMA_MAX_NODES + ggml_graph_overhead_custom(LLAMA_MAX_NODES, false));
- // enabling pipeline parallelism in the scheduler increases memory usage, so it is only done when necessary
- bool pipeline_parallel =
- llama_get_device_count(*model) > 1 &&
- model->n_gpu_layers > (int)model->hparams.n_layer &&
- model->split_mode == LLAMA_SPLIT_MODE_LAYER &&
- params.offload_kqv;
- #ifndef GGML_USE_CUDA
- // pipeline parallelism requires support for async compute and events
- // currently this is only implemented in the CUDA backend
- pipeline_parallel = false;
- #endif
- ctx->sched = ggml_backend_sched_new(ctx->backends.data(), backend_buft.data(), ctx->backends.size(), LLAMA_MAX_NODES, pipeline_parallel);
- if (pipeline_parallel) {
- LLAMA_LOG_INFO("%s: pipeline parallelism enabled (n_copies=%d)\n", __func__, ggml_backend_sched_get_n_copies(ctx->sched));
- }
- // build worst-case graph
- int n_tokens = (int)std::min(cparams.n_ctx, cparams.n_ubatch);
- int n_past = cparams.n_ctx - n_tokens;
- llama_token token = llama_token_bos(&ctx->model); // not actually used by llama_build_graph, but required to choose between token and embedding inputs graph
- ggml_cgraph * gf = llama_build_graph(*ctx, llama_batch_get_one(&token, n_tokens, n_past, 0), true);
- // initialize scheduler with the worst-case graph
- if (!ggml_backend_sched_reserve(ctx->sched, gf)) {
- LLAMA_LOG_ERROR("%s: failed to allocate compute buffers\n", __func__);
- llama_free(ctx);
- return nullptr;
- }
- for (size_t i = 0; i < ctx->backends.size(); i++) {
- ggml_backend_t backend = ctx->backends[i];
- ggml_backend_buffer_type_t buft = backend_buft[i];
- size_t size = ggml_backend_sched_get_buffer_size(ctx->sched, backend);
- if (size > 1) {
- LLAMA_LOG_INFO("%s: %10s compute buffer size = %8.2f MiB\n", __func__,
- ggml_backend_buft_name(buft),
- size / 1024.0 / 1024.0);
- }
- }
- // note: the number of splits during measure is higher than during inference due to the kv shift
- int n_splits = ggml_backend_sched_get_n_splits(ctx->sched);
- LLAMA_LOG_INFO("%s: graph nodes = %d\n", __func__, gf->n_nodes);
- LLAMA_LOG_INFO("%s: graph splits = %d\n", __func__, n_splits);
- }
- }
- #ifdef GGML_USE_MPI
- ctx->ctx_mpi = ggml_mpi_init();
- if (ggml_mpi_rank(ctx->ctx_mpi) > 0) {
- // Enter a blocking eval loop with dummy input, letting rank=0 drive the process
- // TODO: needs fix after #3228
- GGML_ASSERT(false && "not implemented");
- //const std::vector<llama_token> tmp(ctx->model.hparams.n_ctx, llama_token_bos(ctx));
- //while (!llama_eval(ctx, tmp.data(), tmp.size(), 0, 0)) {};
- llama_backend_free();
- exit(1);
- }
- #endif
- return ctx;
- }
- void llama_free(struct llama_context * ctx) {
- delete ctx;
- }
- const llama_model * llama_get_model(const struct llama_context * ctx) {
- return &ctx->model;
- }
- uint32_t llama_n_ctx(const struct llama_context * ctx) {
- return ctx->cparams.n_ctx;
- }
- uint32_t llama_n_batch(const struct llama_context * ctx) {
- return ctx->cparams.n_batch;
- }
- uint32_t llama_n_ubatch(const struct llama_context * ctx) {
- return ctx->cparams.n_ubatch;
- }
- uint32_t llama_n_seq_max(const struct llama_context * ctx) {
- return ctx->kv_self.size;
- }
- enum llama_vocab_type llama_vocab_type(const struct llama_model * model) {
- return model->vocab.type;
- }
- enum llama_rope_type llama_rope_type(const struct llama_model * model) {
- switch (model->arch) {
- // these models do not use RoPE
- case LLM_ARCH_GPT2:
- case LLM_ARCH_GPTJ:
- case LLM_ARCH_GPTNEOX:
- case LLM_ARCH_MPT:
- case LLM_ARCH_REFACT:
- case LLM_ARCH_BLOOM:
- case LLM_ARCH_MAMBA:
- case LLM_ARCH_JINA_BERT_V2:
- return LLAMA_ROPE_TYPE_NONE;
- // use what we call a normal RoPE, operating on pairs of consecutive head values
- case LLM_ARCH_LLAMA:
- case LLM_ARCH_BAICHUAN:
- case LLM_ARCH_STARCODER:
- case LLM_ARCH_PLAMO:
- case LLM_ARCH_CODESHELL:
- case LLM_ARCH_ORION:
- case LLM_ARCH_INTERNLM2:
- case LLM_ARCH_MINICPM:
- case LLM_ARCH_XVERSE:
- case LLM_ARCH_COMMAND_R:
- case LLM_ARCH_OLMO:
- return LLAMA_ROPE_TYPE_NORM;
- // the pairs of head values are offset by n_rot/2
- case LLM_ARCH_FALCON:
- case LLM_ARCH_GROK:
- case LLM_ARCH_DBRX:
- case LLM_ARCH_PERSIMMON:
- case LLM_ARCH_BERT:
- case LLM_ARCH_NOMIC_BERT:
- case LLM_ARCH_STABLELM:
- case LLM_ARCH_QWEN:
- case LLM_ARCH_QWEN2:
- case LLM_ARCH_QWEN2MOE:
- case LLM_ARCH_PHI2:
- case LLM_ARCH_PHI3:
- case LLM_ARCH_GEMMA:
- case LLM_ARCH_STARCODER2:
- return LLAMA_ROPE_TYPE_NEOX;
- // all model arches should be listed explicitly here
- case LLM_ARCH_UNKNOWN:
- GGML_ASSERT(false && "unknown architecture");
- break;
- }
- return LLAMA_ROPE_TYPE_NONE;
- }
- enum llama_pooling_type llama_pooling_type(const struct llama_context * ctx) {
- return ctx->cparams.pooling_type;
- }
- int32_t llama_n_vocab(const struct llama_model * model) {
- return model->hparams.n_vocab;
- }
- int32_t llama_n_ctx_train(const struct llama_model * model) {
- return model->hparams.n_ctx_train;
- }
- int32_t llama_n_embd(const struct llama_model * model) {
- return model->hparams.n_embd;
- }
- int32_t llama_n_layer(const struct llama_model * model) {
- return model->hparams.n_layer;
- }
- float llama_rope_freq_scale_train(const struct llama_model * model) {
- return model->hparams.rope_freq_scale_train;
- }
- int32_t llama_model_meta_val_str(const struct llama_model * model, const char * key, char * buf, size_t buf_size) {
- const auto & it = model->gguf_kv.find(key);
- if (it == model->gguf_kv.end()) {
- if (buf_size > 0) {
- buf[0] = '\0';
- }
- return -1;
- }
- return snprintf(buf, buf_size, "%s", it->second.c_str());
- }
- int32_t llama_model_meta_count(const struct llama_model * model) {
- return (int)model->gguf_kv.size();
- }
- int32_t llama_model_meta_key_by_index(const struct llama_model * model, int i, char * buf, size_t buf_size) {
- if (i < 0 || i >= (int)model->gguf_kv.size()) {
- if (buf_size > 0) {
- buf[0] = '\0';
- }
- return -1;
- }
- auto it = model->gguf_kv.begin();
- std::advance(it, i);
- return snprintf(buf, buf_size, "%s", it->first.c_str());
- }
- int32_t llama_model_meta_val_str_by_index(const struct llama_model * model, int32_t i, char * buf, size_t buf_size) {
- if (i < 0 || i >= (int)model->gguf_kv.size()) {
- if (buf_size > 0) {
- buf[0] = '\0';
- }
- return -1;
- }
- auto it = model->gguf_kv.begin();
- std::advance(it, i);
- return snprintf(buf, buf_size, "%s", it->second.c_str());
- }
- int32_t llama_model_desc(const struct llama_model * model, char * buf, size_t buf_size) {
- return snprintf(buf, buf_size, "%s %s %s",
- llama_model_arch_name(model->arch),
- llama_model_type_name(model->type),
- llama_model_ftype_name(model->ftype).c_str());
- }
- uint64_t llama_model_size(const struct llama_model * model) {
- uint64_t size = 0;
- for (const auto & it : model->tensors_by_name) {
- size += ggml_nbytes(it.second);
- }
- return size;
- }
- uint64_t llama_model_n_params(const struct llama_model * model) {
- uint64_t nparams = 0;
- for (const auto & it : model->tensors_by_name) {
- nparams += ggml_nelements(it.second);
- }
- return nparams;
- }
- struct ggml_tensor * llama_get_model_tensor(struct llama_model * model, const char * name) {
- auto it = std::find_if(model->tensors_by_name.begin(), model->tensors_by_name.end(),
- [name](const std::pair<std::string, struct ggml_tensor *> & it) {
- return it.first == name;
- });
- if (it == model->tensors_by_name.end()) {
- return nullptr;
- }
- return it->second;
- }
- uint32_t llama_model_quantize(
- const char * fname_inp,
- const char * fname_out,
- const llama_model_quantize_params * params) {
- try {
- llama_model_quantize_internal(fname_inp, fname_out, params);
- return 0;
- } catch (const std::exception & err) {
- LLAMA_LOG_ERROR("%s: failed to quantize: %s\n", __func__, err.what());
- return 1;
- }
- }
- int32_t llama_model_apply_lora_from_file(const struct llama_model * model, const char * path_lora, float scale, const char * path_base_model, int32_t n_threads) {
- try {
- return llama_apply_lora_from_file_internal(*model, path_lora, scale, path_base_model, n_threads);
- } catch (const std::exception & err) {
- LLAMA_LOG_ERROR("%s: failed to apply lora adapter: %s\n", __func__, err.what());
- return 1;
- }
- }
- static bool llama_control_vector_init(struct llama_control_vector & cvec, const llama_model & model) {
- GGML_ASSERT(cvec.tensors.empty());
- GGML_ASSERT(cvec.ctxs.empty());
- GGML_ASSERT(cvec.bufs.empty());
- // count layer buffer types
- std::map<ggml_backend_buffer_type_t, int> buft_layer_count;
- for (int64_t i = 0; i < model.hparams.n_layer; i++) {
- buft_layer_count[model.buft_layer[i].buft]++;
- }
- // allocate contexts
- std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
- for (auto & it : buft_layer_count) {
- int n_layers = it.second;
- struct ggml_init_params params = {
- /*.mem_size =*/ n_layers * ggml_tensor_overhead(),
- /*.mem_buffer =*/ NULL,
- /*.no_alloc =*/ true,
- };
- ggml_context * ctx = ggml_init(params);
- if (!ctx) {
- LLAMA_LOG_ERROR("%s: failed to allocate context for control vector\n", __func__);
- return 1;
- }
- ctx_map[it.first] = ctx;
- }
- // make tensors
- cvec.tensors.push_back(nullptr); // there's never a tensor for layer 0
- for (size_t il = 1; il < model.hparams.n_layer; il++) {
- struct ggml_context * ctx = ctx_map.at(model.buft_layer[il].buft);
- ggml_tensor * tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, model.hparams.n_embd);
- cvec.tensors.push_back(tensor);
- }
- // allocate tensors / buffers and zero
- for (auto it : ctx_map) {
- ggml_backend_buffer_type_t buft = it.first;
- ggml_context * ctx = it.second;
- ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
- if (!buf) {
- LLAMA_LOG_ERROR("%s: failed to allocate buffer for control vector\n", __func__);
- return false;
- }
- ggml_backend_buffer_clear(buf, 0);
- cvec.ctxs.push_back(ctx);
- cvec.bufs.push_back(buf);
- }
- return true;
- }
- int32_t llama_control_vector_apply(struct llama_context * lctx, const float * data, size_t len, int32_t n_embd, int32_t il_start, int32_t il_end) {
- const llama_model & model = lctx->model;
- llama_control_vector & cvec = lctx->cvec;
- if (data == nullptr) {
- // disable the current control vector (but leave allocated for later)
- cvec.layer_start = -1;
- cvec.layer_end = -1;
- return 0;
- }
- if (n_embd != (int) model.hparams.n_embd) {
- LLAMA_LOG_ERROR("%s: control vector n_embd does not match model\n", __func__);
- return 1;
- }
- if (cvec.tensors.empty()) {
- if (!llama_control_vector_init(cvec, model)) {
- return 1;
- }
- }
- cvec.layer_start = il_start;
- cvec.layer_end = il_end;
- for (size_t il = 1; il < model.hparams.n_layer; il++) {
- assert(cvec.tensors[il] != nullptr);
- const size_t off = n_embd * (il - 1); // buffer doesn't have data for layer 0, since it's never present
- if (off + n_embd <= len) {
- ggml_backend_tensor_set(cvec.tensors[il], data + off, 0, n_embd * ggml_element_size(cvec.tensors[il]));
- }
- }
- return 0;
- }
- struct llama_kv_cache_view llama_kv_cache_view_init(const struct llama_context * ctx, int32_t n_seq_max) {
- struct llama_kv_cache_view result = {
- /*.n_cells = */ 0,
- /*.n_seq_max = */ n_seq_max,
- /*.token_count = */ 0,
- /*.used_cells = */ llama_get_kv_cache_used_cells(ctx),
- /*.max_contiguous = */ 0,
- /*.max_contiguous_idx = */ -1,
- /*.cells = */ nullptr,
- /*.cells_sequences = */ nullptr,
- };
- return result;
- }
- void llama_kv_cache_view_free(struct llama_kv_cache_view * view) {
- if (view->cells != nullptr) {
- free(view->cells);
- view->cells = nullptr;
- }
- if (view->cells_sequences != nullptr) {
- free(view->cells_sequences);
- view->cells_sequences = nullptr;
- }
- }
- void llama_kv_cache_view_update(const struct llama_context * ctx, struct llama_kv_cache_view * view) {
- if (uint32_t(view->n_cells) < ctx->kv_self.size || view->cells == nullptr) {
- view->n_cells = int32_t(ctx->kv_self.size);
- void * p = realloc(view->cells, sizeof(struct llama_kv_cache_view_cell) * view->n_cells);
- GGML_ASSERT(p != nullptr && "Failed to alloc kv_cache_view cells");
- view->cells = (struct llama_kv_cache_view_cell *)p;
- p = realloc(view->cells_sequences, sizeof(llama_seq_id) * view->n_seq_max * view->n_cells);
- GGML_ASSERT(p != nullptr && "Failed to alloc kv_cache_view cells sequences");
- view->cells_sequences = (llama_seq_id *)p;
- }
- const std::vector<llama_kv_cell> & kv_cells = ctx->kv_self.cells;
- llama_kv_cache_view_cell * c_curr = view->cells;
- llama_seq_id * cs_curr = view->cells_sequences;
- int32_t used_cells = 0;
- int32_t token_count = 0;
- int32_t curr_contig_idx = -1;
- uint32_t max_contig = 0;
- int32_t max_contig_idx = -1;
- for (int32_t i = 0; i < int32_t(ctx->kv_self.size); i++, c_curr++, cs_curr += view->n_seq_max) {
- const size_t curr_size = kv_cells[i].seq_id.size();
- token_count += curr_size;
- c_curr->pos = kv_cells[i].pos + kv_cells[i].delta;
- if (curr_size > 0) {
- if (curr_contig_idx >= 0 && uint32_t(i - curr_contig_idx) > max_contig) {
- max_contig = i - curr_contig_idx;
- max_contig_idx = curr_contig_idx;
- }
- curr_contig_idx = -1;
- } else if (curr_contig_idx < 0) {
- curr_contig_idx = i;
- }
- int seq_idx = 0;
- for (const llama_seq_id it : kv_cells[i].seq_id) {
- if (seq_idx >= view->n_seq_max) {
- break;
- }
- cs_curr[seq_idx] = it;
- seq_idx++;
- }
- if (seq_idx != 0) {
- used_cells++;
- }
- for (; seq_idx < view->n_seq_max; seq_idx++) {
- cs_curr[seq_idx] = -1;
- }
- }
- if (curr_contig_idx >= 0 && kv_cells.size() - curr_contig_idx > max_contig) {
- max_contig_idx = curr_contig_idx;
- max_contig = kv_cells.size() - curr_contig_idx;
- }
- view->max_contiguous = max_contig;
- view->max_contiguous_idx = max_contig_idx;
- view->token_count = token_count;
- view->used_cells = used_cells;
- if (uint32_t(used_cells) != ctx->kv_self.used) {
- LLAMA_LOG_ERROR("%s: used cells mismatch. kv_cache says %d but we calculated %d\n",
- __func__, ctx->kv_self.used, used_cells);
- }
- }
- int32_t llama_get_kv_cache_token_count(const struct llama_context * ctx) {
- int result = 0;
- for (uint32_t i = 0; i < ctx->kv_self.size; i++) {
- result += ctx->kv_self.cells[i].seq_id.size();
- }
- return result;
- }
- int32_t llama_get_kv_cache_used_cells(const struct llama_context * ctx) {
- return ctx->kv_self.used;
- }
- void llama_kv_cache_clear(struct llama_context * ctx) {
- llama_kv_cache_clear(ctx->kv_self);
- }
- bool llama_kv_cache_seq_rm(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1) {
- return llama_kv_cache_seq_rm(ctx->kv_self, seq_id, p0, p1);
- }
- void llama_kv_cache_seq_cp(struct llama_context * ctx, llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) {
- if (seq_id_src == seq_id_dst) {
- return;
- }
- llama_kv_cache_seq_cp(ctx->kv_self, seq_id_src, seq_id_dst, p0, p1);
- }
- void llama_kv_cache_seq_keep(struct llama_context * ctx, llama_seq_id seq_id) {
- llama_kv_cache_seq_keep(ctx->kv_self, seq_id);
- }
- void llama_kv_cache_seq_add(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos delta) {
- if (delta == 0) {
- return;
- }
- llama_kv_cache_seq_add(ctx->kv_self, seq_id, p0, p1, delta);
- }
- void llama_kv_cache_seq_div(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1, int d) {
- if (d == 1) {
- return;
- }
- llama_kv_cache_seq_div(ctx->kv_self, seq_id, p0, p1, d);
- }
- llama_pos llama_kv_cache_seq_pos_max(struct llama_context * ctx, llama_seq_id seq_id) {
- return llama_kv_cache_seq_pos_max(ctx->kv_self, seq_id);
- }
- void llama_kv_cache_defrag(struct llama_context * ctx) {
- llama_kv_cache_defrag(ctx->kv_self);
- }
- void llama_kv_cache_update(struct llama_context * ctx) {
- llama_kv_cache_update_internal(*ctx);
- }
- // deprecated
- size_t llama_get_state_size(const struct llama_context * ctx) {
- return llama_state_get_size(ctx);
- }
- // deprecated
- size_t llama_copy_state_data(struct llama_context * ctx, uint8_t * dst) {
- return llama_state_get_data(ctx, dst);
- }
- // deprecated
- size_t llama_set_state_data(struct llama_context * ctx, const uint8_t * src) {
- return llama_state_set_data(ctx, src);
- }
- // deprecated
- bool llama_load_session_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
- return llama_state_load_file(ctx, path_session, tokens_out, n_token_capacity, n_token_count_out);
- }
- // deprecated
- bool llama_save_session_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) {
- return llama_state_save_file(ctx, path_session, tokens, n_token_count);
- }
- // Returns the *maximum* size of the state
- size_t llama_state_get_size(const struct llama_context * ctx) {
- const auto & cparams = ctx->cparams;
- const auto & hparams = ctx->model.hparams;
- // we don't know size of rng until we actually serialize it. so reserve more than enough memory for its serialized state.
- // for reference, std::mt19937(1337) serializes to 6701 bytes.
- const size_t s_rng_size = sizeof(size_t);
- const size_t s_rng = LLAMA_MAX_RNG_STATE;
- const size_t s_n_outputs = sizeof(size_t);
- // assume worst case for outputs although only currently set ones are serialized
- const size_t s_output_pos = ctx->cparams.n_batch * sizeof(int32_t);
- const size_t s_logits_size = sizeof(size_t);
- const size_t s_logits = ctx->logits_size ? cparams.n_batch * hparams.n_vocab * sizeof(float) : 0;
- const size_t s_embedding_size = sizeof(size_t);
- const size_t s_embedding = ctx->embd_size ? cparams.n_batch * hparams.n_embd * sizeof(float) : 0;
- const size_t s_kv_buf_size = sizeof(size_t);
- const size_t s_kv_head = sizeof(uint32_t);
- const size_t s_kv_size = sizeof(uint32_t);
- const size_t s_kv_used = sizeof(uint32_t);
- const size_t s_v_trans = sizeof(uint32_t);
- const size_t s_kv = ctx->kv_self.total_size();
- const size_t s_kv_cell = sizeof(llama_pos) + sizeof(size_t) + cparams.n_seq_max*sizeof(llama_seq_id);
- const size_t s_kv_cells = ctx->kv_self.size * s_kv_cell;
- const size_t s_total = (
- + s_rng_size
- + s_rng
- + s_n_outputs
- + s_output_pos
- + s_logits_size
- + s_logits
- + s_embedding_size
- + s_embedding
- + s_kv_buf_size
- + s_kv_head
- + s_kv_size
- + s_kv_used
- + s_v_trans
- + s_kv
- + s_kv_cells
- );
- // on session change it is very likely that the state size has changed - so we need to update this function
- static_assert(LLAMA_SESSION_VERSION == 6, "So you just bumped the session version - good. But did you remember to update llama_state_get_size?");
- return s_total;
- }
- // llama_context_data
- struct llama_data_context {
- virtual void write(const void * src, size_t size) = 0;
- virtual size_t get_size_written() = 0;
- virtual ~llama_data_context() = default;
- };
- struct llama_data_buffer_context : llama_data_context {
- uint8_t * ptr;
- size_t size_written = 0;
- llama_data_buffer_context(uint8_t * p) : ptr(p) {}
- void write(const void * src, size_t size) override {
- memcpy(ptr, src, size);
- ptr += size;
- size_written += size;
- }
- size_t get_size_written() override {
- return size_written;
- }
- };
- struct llama_data_file_context : llama_data_context {
- llama_file * file;
- size_t size_written = 0;
- llama_data_file_context(llama_file * f) : file(f) {}
- void write(const void * src, size_t size) override {
- file->write_raw(src, size);
- size_written += size;
- }
- size_t get_size_written() override {
- return size_written;
- }
- };
- /** copy state data into either a buffer or file depending on the passed in context
- *
- * file context:
- * llama_file file("/path", "wb");
- * llama_data_file_context data_ctx(&file);
- * llama_state_get_data(ctx, &data_ctx);
- *
- * buffer context:
- * std::vector<uint8_t> buf(max_size, 0);
- * llama_data_buffer_context data_ctx(&buf.data());
- * llama_state_get_data(ctx, &data_ctx);
- *
- */
- static void llama_state_get_data_internal(struct llama_context * ctx, llama_data_context * data_ctx) {
- llama_synchronize(ctx);
- // copy rng
- {
- std::ostringstream rng_ss;
- rng_ss << ctx->rng;
- const std::string & rng_str = rng_ss.str();
- const size_t rng_size = rng_str.size();
- GGML_ASSERT(rng_size <= LLAMA_MAX_RNG_STATE);
- data_ctx->write(&rng_size, sizeof(rng_size));
- data_ctx->write(rng_str.data(), rng_size);
- }
- // copy outputs
- {
- // Can't use ctx->n_outputs because it's not for the
- // entire last batch when n_ubatch is smaller than n_batch
- size_t n_outputs = 0;
- // copy output ids
- {
- std::vector<int32_t> output_pos;
- const size_t n_batch = ctx->cparams.n_batch;
- const auto & output_ids = ctx->output_ids;
- output_pos.resize(ctx->output_size);
- // build a more compact representation of the output ids
- for (size_t i = 0; i < n_batch; ++i) {
- // map an output id to a position in the batch
- int32_t pos = output_ids[i];
- if (pos >= 0) {
- if ((size_t) pos >= n_outputs) {
- n_outputs = pos + 1;
- }
- GGML_ASSERT((size_t) pos < ctx->output_size);
- output_pos[pos] = i;
- }
- }
- data_ctx->write(&n_outputs, sizeof(n_outputs));
- if (n_outputs) {
- data_ctx->write(output_pos.data(), n_outputs * sizeof(int32_t));
- }
- }
- // copy logits
- {
- const size_t logits_size = std::min(ctx->logits_size, n_outputs * ctx->model.hparams.n_vocab);
- data_ctx->write(&logits_size, sizeof(logits_size));
- if (logits_size) {
- data_ctx->write(ctx->logits, logits_size * sizeof(float));
- }
- }
- // copy embeddings
- {
- const size_t embeddings_size = std::min(ctx->embd_size, n_outputs * ctx->model.hparams.n_embd);
- data_ctx->write(&embeddings_size, sizeof(embeddings_size));
- if (embeddings_size) {
- data_ctx->write(ctx->embd, embeddings_size * sizeof(float));
- }
- }
- }
- // copy kv cache
- {
- const auto & kv_self = ctx->kv_self;
- const auto & hparams = ctx->model.hparams;
- const uint32_t n_layer = hparams.n_layer;
- const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
- const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
- // NOTE: kv_size and kv_buf_size are mostly used for sanity checks
- const uint32_t kv_head = llama_kv_cache_cell_max(kv_self);
- const uint32_t kv_size = kv_self.size;
- const size_t kv_buf_size = kv_self.total_size() / (kv_size ? kv_size : 1) * kv_head;
- const uint32_t kv_used = kv_self.used;
- const uint32_t v_trans = kv_self.v_trans ? 1 : 0;
- data_ctx->write(&kv_buf_size, sizeof(kv_buf_size));
- data_ctx->write(&kv_head, sizeof(kv_head));
- data_ctx->write(&kv_size, sizeof(kv_size));
- data_ctx->write(&kv_used, sizeof(kv_used));
- data_ctx->write(&v_trans, sizeof(v_trans));
- if (kv_buf_size) {
- const size_t pre_kv_buf_size = data_ctx->get_size_written();
- std::vector<uint8_t> tmp_buf;
- for (int il = 0; il < (int) n_layer; ++il) {
- const size_t k_size = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*kv_head);
- tmp_buf.resize(k_size);
- ggml_backend_tensor_get(kv_self.k_l[il], tmp_buf.data(), 0, tmp_buf.size());
- data_ctx->write(tmp_buf.data(), tmp_buf.size());
- if (kv_self.recurrent || !kv_self.v_trans) {
- // v is contiguous for recurrent models
- // TODO: use other tensors for state models than k and v
- const size_t v_size = ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa*kv_head);
- tmp_buf.resize(v_size);
- ggml_backend_tensor_get(kv_self.v_l[il], tmp_buf.data(), 0, tmp_buf.size());
- data_ctx->write(tmp_buf.data(), tmp_buf.size());
- continue;
- }
- // v is not contiguous, copy row by row
- const size_t v_row_size = ggml_row_size(kv_self.v_l[il]->type, kv_head);
- const size_t v_row_stride = ggml_row_size(kv_self.v_l[il]->type, kv_size);
- tmp_buf.resize(v_row_size);
- for (int ir = 0; ir < (int) n_embd_v_gqa; ++ir) {
- ggml_backend_tensor_get(kv_self.v_l[il], tmp_buf.data(), ir*v_row_stride, tmp_buf.size());
- data_ctx->write(tmp_buf.data(), tmp_buf.size());
- }
- }
- GGML_ASSERT(kv_buf_size == data_ctx->get_size_written() - pre_kv_buf_size);
- }
- for (uint32_t i = 0; i < kv_head; ++i) {
- const auto & cell = kv_self.cells[i];
- const llama_pos pos = cell.pos;
- const size_t seq_id_size = cell.seq_id.size();
- data_ctx->write(&pos, sizeof(pos));
- data_ctx->write(&seq_id_size, sizeof(seq_id_size));
- for (auto seq_id : cell.seq_id) {
- data_ctx->write(&seq_id, sizeof(seq_id));
- }
- }
- }
- }
- size_t llama_state_get_data(struct llama_context * ctx, uint8_t * dst) {
- llama_data_buffer_context data_ctx(dst);
- llama_state_get_data_internal(ctx, &data_ctx);
- return data_ctx.get_size_written();
- }
- // Sets the state reading from the specified source address
- size_t llama_state_set_data(struct llama_context * ctx, const uint8_t * src) {
- llama_synchronize(ctx);
- const uint8_t * inp = src;
- // set rng
- {
- size_t rng_size;
- memcpy(&rng_size, inp, sizeof(rng_size)); inp += sizeof(rng_size);
- GGML_ASSERT(rng_size <= LLAMA_MAX_RNG_STATE);
- std::string rng_str((const char *)inp, rng_size); inp += rng_size;
- std::istringstream rng_ss(rng_str);
- rng_ss >> ctx->rng;
- GGML_ASSERT(!rng_ss.fail());
- }
- // set output ids
- {
- size_t n_outputs;
- std::vector<int32_t> output_pos;
- memcpy(&n_outputs, inp, sizeof(n_outputs)); inp += sizeof(n_outputs);
- GGML_ASSERT(n_outputs <= llama_output_reserve(*ctx, n_outputs));
- if (n_outputs) {
- output_pos.resize(n_outputs);
- memcpy(output_pos.data(), inp, n_outputs * sizeof(int32_t));
- inp += n_outputs * sizeof(int32_t);
- for (int32_t i = 0; i < (int32_t) output_pos.size(); ++i) {
- int32_t id = output_pos[i];
- GGML_ASSERT((uint32_t) id < ctx->cparams.n_batch);
- ctx->output_ids[id] = i;
- }
- ctx->n_outputs = n_outputs;
- }
- }
- // set logits
- {
- size_t logits_size;
- memcpy(&logits_size, inp, sizeof(logits_size)); inp += sizeof(logits_size);
- GGML_ASSERT(ctx->logits_size >= logits_size);
- if (logits_size) {
- memcpy(ctx->logits, inp, logits_size * sizeof(float));
- inp += logits_size * sizeof(float);
- }
- }
- // set embeddings
- {
- size_t embeddings_size;
- memcpy(&embeddings_size, inp, sizeof(embeddings_size)); inp += sizeof(embeddings_size);
- GGML_ASSERT(ctx->embd_size >= embeddings_size);
- if (embeddings_size) {
- memcpy(ctx->embd, inp, embeddings_size * sizeof(float));
- inp += embeddings_size * sizeof(float);
- }
- }
- // set kv cache
- {
- const auto & kv_self = ctx->kv_self;
- const auto & hparams = ctx->model.hparams;
- const uint32_t n_layer = hparams.n_layer;
- const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
- const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
- size_t kv_buf_size;
- uint32_t kv_head;
- uint32_t kv_size;
- uint32_t kv_used;
- uint32_t v_trans;
- memcpy(&kv_buf_size, inp, sizeof(kv_buf_size)); inp += sizeof(kv_buf_size);
- memcpy(&kv_head, inp, sizeof(kv_head)); inp += sizeof(kv_head);
- memcpy(&kv_size, inp, sizeof(kv_size)); inp += sizeof(kv_size);
- memcpy(&kv_used, inp, sizeof(kv_used)); inp += sizeof(kv_used);
- memcpy(&v_trans, inp, sizeof(v_trans)); inp += sizeof(v_trans);
- GGML_ASSERT(kv_self.v_trans == (bool) v_trans); // incompatible V transposition
- if (kv_self.size != kv_size) {
- // the KV cache needs to be big enough to load all the KV cells from the saved state
- GGML_ASSERT(kv_self.size >= kv_head);
- LLAMA_LOG_INFO("%s: state contains %d KV cells, was saved with kv_size=%d, but is loaded with kv_size=%d (fine, but different)\n",
- __func__, kv_head, kv_size, kv_self.size);
- }
- llama_kv_cache_clear(ctx);
- if (kv_buf_size) {
- const size_t pre_kv_buf_size = inp - src;
- GGML_ASSERT(kv_self.total_size() >= kv_buf_size);
- for (int il = 0; il < (int) n_layer; ++il) {
- const size_t k_size = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*kv_head);
- ggml_backend_tensor_set(kv_self.k_l[il], inp, 0, k_size);
- inp += k_size;
- if (kv_self.recurrent || !kv_self.v_trans) {
- // v is contiguous for recurrent models
- // TODO: use other tensors for state models than k and v
- const size_t v_size = ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa*kv_head);
- ggml_backend_tensor_set(kv_self.v_l[il], inp, 0, v_size);
- inp += v_size;
- continue;
- }
- // v is not contiguous, copy row by row
- const size_t v_row_size = ggml_row_size(kv_self.v_l[il]->type, kv_head);
- const size_t v_row_stride = ggml_row_size(kv_self.v_l[il]->type, kv_self.size);
- for (int ir = 0; ir < (int) n_embd_v_gqa; ++ir) {
- ggml_backend_tensor_set(kv_self.v_l[il], inp, ir*v_row_stride, v_row_size);
- inp += v_row_size;
- }
- }
- GGML_ASSERT(kv_buf_size == inp - src - pre_kv_buf_size);
- }
- ctx->kv_self.head = kv_head;
- ctx->kv_self.used = kv_used;
- for (uint32_t i = 0; i < kv_head; ++i) {
- llama_pos pos;
- size_t seq_id_size;
- memcpy(&pos, inp, sizeof(pos)); inp += sizeof(pos);
- memcpy(&seq_id_size, inp, sizeof(seq_id_size)); inp += sizeof(seq_id_size);
- ctx->kv_self.cells[i].pos = pos;
- llama_seq_id seq_id;
- for (size_t j = 0; j < seq_id_size; ++j) {
- memcpy(&seq_id, inp, sizeof(seq_id)); inp += sizeof(seq_id);
- ctx->kv_self.cells[i].seq_id.insert(seq_id);
- }
- }
- }
- const size_t nread = inp - src;
- const size_t max_size = llama_state_get_size(ctx);
- GGML_ASSERT(nread <= max_size);
- return nread;
- }
- static bool llama_state_load_file_internal(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
- llama_file file(path_session, "rb");
- // sanity checks
- {
- const uint32_t magic = file.read_u32();
- const uint32_t version = file.read_u32();
- if (magic != LLAMA_SESSION_MAGIC || version != LLAMA_SESSION_VERSION) {
- LLAMA_LOG_ERROR("%s : unknown (magic, version) for session file: %08x, %08x\n", __func__, magic, version);
- return false;
- }
- llama_hparams session_hparams;
- file.read_raw(&session_hparams, sizeof(llama_hparams));
- if (session_hparams != ctx->model.hparams) {
- LLAMA_LOG_INFO("%s : model hparams didn't match from session file!\n", __func__);
- return false;
- }
- }
- // load the prompt
- {
- const uint32_t n_token_count = file.read_u32();
- if (n_token_count > n_token_capacity) {
- LLAMA_LOG_ERROR("%s : token count in session file exceeded capacity! %u > %zu\n", __func__, n_token_count, n_token_capacity);
- return false;
- }
- file.read_raw(tokens_out, sizeof(llama_token) * n_token_count);
- *n_token_count_out = n_token_count;
- }
- // restore the context state
- {
- const size_t n_state_size_cur = file.size - file.tell();
- const size_t n_state_size_max = llama_state_get_size(ctx);
- if (n_state_size_cur > n_state_size_max) {
- LLAMA_LOG_ERROR("%s : the state size in session file is too big! max %zu, got %zu\n", __func__, n_state_size_max, n_state_size_cur);
- return false;
- }
- std::vector<uint8_t> state_data(n_state_size_max);
- file.read_raw(state_data.data(), n_state_size_cur);
- llama_state_set_data(ctx, state_data.data());
- }
- return true;
- }
- bool llama_state_load_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
- try {
- return llama_state_load_file_internal(ctx, path_session, tokens_out, n_token_capacity, n_token_count_out);
- } catch (const std::exception & err) {
- LLAMA_LOG_ERROR("error loading session file: %s\n", err.what());
- return false;
- }
- }
- static bool llama_state_save_file_internal(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) {
- llama_file file(path_session, "wb");
- file.write_u32(LLAMA_SESSION_MAGIC);
- file.write_u32(LLAMA_SESSION_VERSION);
- file.write_raw(&ctx->model.hparams, sizeof(llama_hparams));
- // save the prompt
- file.write_u32((uint32_t) n_token_count);
- file.write_raw(tokens, sizeof(llama_token) * n_token_count);
- // save the context state using stream saving
- llama_data_file_context data_ctx(&file);
- llama_state_get_data_internal(ctx, &data_ctx);
- return true;
- }
- bool llama_state_save_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) {
- try {
- return llama_state_save_file_internal(ctx, path_session, tokens, n_token_count);
- } catch (const std::exception & err) {
- LLAMA_LOG_ERROR("error saving session file: %s\n", err.what());
- return false;
- }
- }
- size_t llama_state_seq_get_size(struct llama_context* ctx, llama_seq_id seq_id) {
- // save the size of size_t as a uint32_t for safety check
- const size_t size_t_size_size = sizeof(uint32_t);
- // other values
- const size_t s_cell_count_size = sizeof(uint32_t);
- const size_t s_layer_count_size = sizeof(uint32_t);
- const size_t n_embd_v_gqa_size = sizeof(uint32_t);
- size_t s_cell_count = 0;
- size_t s_cell_data_size = 0;
- const auto & kv_self = ctx->kv_self;
- const auto & hparams = ctx->model.hparams;
- const uint32_t n_layer = hparams.n_layer;
- const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
- const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
- for (uint32_t i = 0; i < kv_self.size; ++i) {
- const auto & cell = kv_self.cells[i];
- if (cell.seq_id.count(seq_id) > 0) {
- ++s_cell_count;
- s_cell_data_size += sizeof(llama_pos);
- }
- }
- for (int il = 0; il < (int)n_layer; ++il) {
- // types of keys and values
- s_cell_data_size += sizeof(int32_t) * 2;
- // k_size_row and v_size_el values of layer
- s_cell_data_size += sizeof(size_t) * 2;
- // keys
- const size_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa);
- s_cell_data_size += k_size_row * s_cell_count;
- // values (transposed)
- const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type);
- s_cell_data_size += v_size_el * s_cell_count * n_embd_v_gqa;
- }
- const size_t s_total = (
- size_t_size_size +
- s_cell_count_size +
- s_layer_count_size +
- n_embd_v_gqa_size +
- s_cell_data_size
- );
- return s_total;
- }
- static size_t llama_state_seq_get_data_internal(struct llama_context * ctx, llama_data_context & data_ctx, llama_seq_id seq_id) {
- llama_synchronize(ctx);
- const auto & kv_self = ctx->kv_self;
- GGML_ASSERT(!kv_self.recurrent); // not implemented
- // Save the size of size_t as a uint32_t for safety check
- const uint32_t size_t_size = sizeof(size_t);
- data_ctx.write(&size_t_size, sizeof(size_t_size));
- std::vector<std::pair<uint32_t, uint32_t>> cell_ranges; // ranges, from inclusive, to exclusive
- uint32_t cell_count = 0;
- // Count the number of cells with the specified seq_id
- // Find all the ranges of cells with this seq id
- {
- uint32_t cell_range_begin = kv_self.size;
- for (uint32_t i = 0; i < kv_self.size; ++i) {
- const auto & cell = kv_self.cells[i];
- if (cell.has_seq_id(seq_id)) {
- ++cell_count;
- if (cell_range_begin == kv_self.size) {
- cell_range_begin = i;
- }
- }
- else {
- if (cell_range_begin != kv_self.size) {
- cell_ranges.emplace_back(cell_range_begin, i);
- cell_range_begin = kv_self.size;
- }
- }
- }
- if (cell_range_begin != kv_self.size) {
- cell_ranges.emplace_back(cell_range_begin, kv_self.size);
- }
- // DEBUG CHECK: Sum of cell counts in ranges should equal the total cell count
- uint32_t cell_count_check = 0;
- for (const auto & range : cell_ranges) {
- cell_count_check += range.second - range.first;
- }
- GGML_ASSERT(cell_count == cell_count_check);
- }
- // Write the cell count
- data_ctx.write(&cell_count, sizeof(cell_count));
- const auto & hparams = ctx->model.hparams;
- const uint32_t n_layer = hparams.n_layer;
- const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
- const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
- // Write the layer count
- data_ctx.write(&n_layer, sizeof(n_layer));
- // Write n_embd_v_gqa
- data_ctx.write(&n_embd_v_gqa, sizeof(n_embd_v_gqa));
- // Iterate the ranges and write all the pos (this is the token position in the prompt)
- for (const auto & range : cell_ranges) {
- for (uint32_t i = range.first; i < range.second; ++i) {
- const auto & cell = kv_self.cells[i];
- data_ctx.write(&cell.pos, sizeof(cell.pos));
- }
- }
- // Iterate and write all the keys first, each row is a cell
- // Get whole range at a time
- std::vector<uint8_t> tmp_buf;
- for (int il = 0; il < (int)n_layer; ++il) {
- // Write key type
- const int32_t k_type_i = (int32_t)kv_self.k_l[il]->type;
- data_ctx.write(&k_type_i, sizeof(k_type_i));
- // Write row size of key
- const size_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa);
- data_ctx.write(&k_size_row, sizeof(k_size_row));
- // Read each range of cells of k_size length each into tmp_buf and write out
- for (const auto & range : cell_ranges) {
- const size_t range_size = range.second - range.first;
- tmp_buf.resize(range_size * k_size_row);
- ggml_backend_tensor_get(kv_self.k_l[il], tmp_buf.data(), range.first * k_size_row, range_size * k_size_row);
- data_ctx.write(tmp_buf.data(), tmp_buf.size());
- }
- }
- // TODO: simplify, reduce copy-paste
- if (!kv_self.v_trans) {
- for (int il = 0; il < (int)n_layer; ++il) {
- // Write value type
- const int32_t v_type_i = (int32_t)kv_self.v_l[il]->type;
- data_ctx.write(&v_type_i, sizeof(v_type_i));
- // Write row size of value
- const size_t v_size_row = ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa);
- data_ctx.write(&v_size_row, sizeof(v_size_row));
- // Read each range of cells of v_size length each into tmp_buf and write out
- for (const auto & range : cell_ranges) {
- const size_t range_size = range.second - range.first;
- tmp_buf.resize(range_size * v_size_row);
- ggml_backend_tensor_get(kv_self.v_l[il], tmp_buf.data(), range.first * v_size_row, range_size * v_size_row);
- data_ctx.write(tmp_buf.data(), tmp_buf.size());
- }
- }
- } else {
- // For the values, they are transposed, so we also need the element size and get the element ranges from each row
- const uint32_t kv_size = kv_self.size;
- for (int il = 0; il < (int)n_layer; ++il) {
- // Write value type
- const int32_t v_type_i = (int32_t)kv_self.v_l[il]->type;
- data_ctx.write(&v_type_i, sizeof(v_type_i));
- // Write element size
- const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type);
- data_ctx.write(&v_size_el, sizeof(v_size_el));
- // For each row, we get the element values of each cell
- for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
- // Read each range of cells of v_size_el length each into tmp_buf and write out
- for (const auto & range : cell_ranges) {
- const size_t range_size = range.second - range.first;
- const size_t src_offset = (range.first + j * kv_size) * v_size_el;
- tmp_buf.resize(range_size * v_size_el);
- ggml_backend_tensor_get(kv_self.v_l[il], tmp_buf.data(), src_offset, tmp_buf.size());
- data_ctx.write(tmp_buf.data(), tmp_buf.size());
- }
- }
- }
- }
- return data_ctx.get_size_written();
- }
- size_t llama_state_seq_get_data(struct llama_context* ctx, uint8_t* dst, llama_seq_id seq_id) {
- llama_data_buffer_context data_ctx(dst);
- return llama_state_seq_get_data_internal(ctx, data_ctx, seq_id);
- }
- size_t llama_state_seq_set_data(struct llama_context * ctx, const uint8_t * src, llama_seq_id dest_seq_id) {
- llama_synchronize(ctx);
- auto & kv_self = ctx->kv_self;
- GGML_ASSERT(!kv_self.recurrent); // not implemented
- // Wipe the slot
- llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
- const uint8_t * inp = src;
- // Read size of size_t
- uint32_t size_t_size;
- memcpy(&size_t_size, inp, sizeof(size_t_size));
- inp += sizeof(size_t_size);
- if (size_t_size != sizeof(size_t)) {
- LLAMA_LOG_ERROR("%s: size_t size mismatch\n", __func__);
- return 0;
- }
- // Read the cell count
- uint32_t cell_count;
- memcpy(&cell_count, inp, sizeof(cell_count));
- inp += sizeof(cell_count);
- // Read the layer count
- uint32_t n_layer_ref;
- memcpy(&n_layer_ref, inp, sizeof(n_layer_ref));
- inp += sizeof(n_layer_ref);
- // Read n_embd_v_gqa
- uint32_t n_embd_v_gqa_ref;
- memcpy(&n_embd_v_gqa_ref, inp, sizeof(n_embd_v_gqa_ref));
- inp += sizeof(n_embd_v_gqa_ref);
- // Sanity check model compatibility
- const auto & hparams = ctx->model.hparams;
- const uint32_t n_layer = hparams.n_layer;
- const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
- const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
- if (n_layer != n_layer_ref) {
- LLAMA_LOG_ERROR("%s: mismatched n_layer (%d != %d)\n", __func__, n_layer, n_layer_ref);
- return 0;
- }
- if (n_embd_v_gqa != n_embd_v_gqa_ref) {
- LLAMA_LOG_ERROR("%s: mismatched n_embd_v_gqa (%d != %d)\n", __func__, n_embd_v_gqa, n_embd_v_gqa_ref);
- return 0;
- }
- // Allocate the new cells for the slot
- if (cell_count) {
- llama_batch batch = llama_batch_init(cell_count, 0, 1);
- batch.n_tokens = cell_count;
- for (uint32_t i = 0; i < cell_count; ++i) {
- llama_pos pos;
- memcpy(&pos, inp, sizeof(pos));
- inp += sizeof(pos);
- batch.pos[i] = pos;
- batch.n_seq_id[i] = 1;
- batch.seq_id[i][0] = dest_seq_id;
- }
- if (!llama_kv_cache_find_slot(kv_self, batch)) {
- llama_batch_free(batch);
- LLAMA_LOG_ERROR("%s: failed to find available cells in kv cache\n", __func__);
- return 0;
- }
- // DEBUG CHECK: kv_self.head should be our first cell, kv_self.head + cell_count - 1 should be our last cell (verify seq_id and pos values)
- // Assume that this is one contiguous block of cells
- GGML_ASSERT(kv_self.head + cell_count <= kv_self.size);
- GGML_ASSERT(kv_self.cells[kv_self.head].pos == batch.pos[0]);
- GGML_ASSERT(kv_self.cells[kv_self.head + cell_count - 1].pos == batch.pos[cell_count - 1]);
- GGML_ASSERT(kv_self.cells[kv_self.head].has_seq_id(dest_seq_id));
- GGML_ASSERT(kv_self.cells[kv_self.head + cell_count - 1].has_seq_id(dest_seq_id));
- // Cleanup
- llama_batch_free(batch);
- }
- const uint32_t kv_size = kv_self.size;
- const uint32_t kv_head = kv_self.head;
- // For each layer, read the keys for each cell, one row is one cell, read as one contiguous blo
- for (int il = 0; il < (int)n_layer; ++il) {
- // Read type of key
- int32_t k_type_i_ref;
- memcpy(&k_type_i_ref, inp, sizeof(k_type_i_ref));
- inp += sizeof(k_type_i_ref);
- const int32_t k_type_i = (int32_t)kv_self.k_l[il]->type;
- if (k_type_i != k_type_i_ref) {
- llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
- LLAMA_LOG_ERROR("%s: mismatched key type (%d != %d, layer %d)\n", __func__, k_type_i, k_type_i_ref, il);
- return 0;
- }
- // Read row size of key
- size_t k_size_row_ref;
- memcpy(&k_size_row_ref, inp, sizeof(k_size_row_ref));
- inp += sizeof(k_size_row_ref);
- const size_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa);
- if (k_size_row != k_size_row_ref) {
- llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
- LLAMA_LOG_ERROR("%s: mismatched key row size (%zu != %zu, layer %d)\n", __func__, k_size_row, k_size_row_ref, il);
- return 0;
- }
- if (cell_count) {
- // Read and set the keys for the whole cell range
- ggml_backend_tensor_set(kv_self.k_l[il], inp, kv_head * k_size_row, cell_count * k_size_row);
- inp += cell_count * k_size_row;
- }
- }
- // TODO: simplify, reduce copy-paste
- if (!kv_self.v_trans) {
- for (int il = 0; il < (int)n_layer; ++il) {
- // Read type of value
- int32_t v_type_i_ref;
- memcpy(&v_type_i_ref, inp, sizeof(v_type_i_ref));
- inp += sizeof(v_type_i_ref);
- const int32_t v_type_i = (int32_t)kv_self.v_l[il]->type;
- if (v_type_i != v_type_i_ref) {
- llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
- LLAMA_LOG_ERROR("%s: mismatched value type (%d != %d, layer %d)\n", __func__, v_type_i, v_type_i_ref, il);
- return 0;
- }
- // Read row size of value
- size_t v_size_row_ref;
- memcpy(&v_size_row_ref, inp, sizeof(v_size_row_ref));
- inp += sizeof(v_size_row_ref);
- const size_t v_size_row = ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa);
- if (v_size_row != v_size_row_ref) {
- llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
- LLAMA_LOG_ERROR("%s: mismatched value row size (%zu != %zu, layer %d)\n", __func__, v_size_row, v_size_row_ref, il);
- return 0;
- }
- if (cell_count) {
- // Read and set the values for the whole cell range
- ggml_backend_tensor_set(kv_self.v_l[il], inp, kv_head * v_size_row, cell_count * v_size_row);
- inp += cell_count * v_size_row;
- }
- }
- } else {
- // For each layer, read the values for each cell (transposed)
- for (int il = 0; il < (int)n_layer; ++il) {
- // Read type of value
- int32_t v_type_i_ref;
- memcpy(&v_type_i_ref, inp, sizeof(v_type_i_ref));
- inp += sizeof(v_type_i_ref);
- const int32_t v_type_i = (int32_t)kv_self.v_l[il]->type;
- if (v_type_i != v_type_i_ref) {
- llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
- LLAMA_LOG_ERROR("%s: mismatched value type (%d != %d, layer %d)\n", __func__, v_type_i, v_type_i_ref, il);
- return 0;
- }
- // Read element size of value
- size_t v_size_el_ref;
- memcpy(&v_size_el_ref, inp, sizeof(v_size_el_ref));
- inp += sizeof(v_size_el_ref);
- const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type);
- if (v_size_el != v_size_el_ref) {
- llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
- LLAMA_LOG_ERROR("%s: mismatched value element size (%zu != %zu, layer %d)\n", __func__, v_size_el, v_size_el_ref, il);
- return 0;
- }
- if (cell_count) {
- // For each row in the transposed matrix, read the values for the whole cell range
- for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
- const size_t dst_offset = (kv_head + j * kv_size) * v_size_el;
- ggml_backend_tensor_set(kv_self.v_l[il], inp, dst_offset, cell_count * v_size_el);
- inp += cell_count * v_size_el;
- }
- }
- }
- }
- const size_t nread = inp - src;
- return nread;
- }
- static size_t llama_state_seq_save_file_internal(struct llama_context * ctx, const char * filepath, llama_seq_id seq_id, const llama_token * tokens, size_t n_token_count) {
- llama_file file(filepath, "wb");
- file.write_u32(LLAMA_STATE_SEQ_MAGIC);
- file.write_u32(LLAMA_STATE_SEQ_VERSION);
- // save the prompt
- file.write_u32((uint32_t)n_token_count);
- file.write_raw(tokens, sizeof(llama_token) * n_token_count);
- // save the context state using stream saving
- llama_data_file_context data_ctx(&file);
- llama_state_seq_get_data_internal(ctx, data_ctx, seq_id);
- const size_t res = file.tell();
- GGML_ASSERT(res == sizeof(uint32_t) * 3 + sizeof(llama_token) * n_token_count + data_ctx.get_size_written());
- return res;
- }
- static size_t llama_state_seq_load_file_internal(struct llama_context * ctx, const char * filepath, llama_seq_id dest_seq_id, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
- llama_file file(filepath, "rb");
- // version checks
- {
- const uint32_t magic = file.read_u32();
- const uint32_t version = file.read_u32();
- if (magic != LLAMA_STATE_SEQ_MAGIC || version != LLAMA_STATE_SEQ_VERSION) {
- LLAMA_LOG_ERROR("%s: unknown (magic, version) for sequence state file: %08x, %08x\n", __func__, magic, version);
- return 0;
- }
- }
- // load the prompt
- {
- const uint32_t n_token_count = file.read_u32();
- if (n_token_count > n_token_capacity) {
- LLAMA_LOG_ERROR("%s: token count in sequence state file exceeded capacity! %u > %zu\n", __func__, n_token_count, n_token_capacity);
- return 0;
- }
- file.read_raw(tokens_out, sizeof(llama_token) * n_token_count);
- *n_token_count_out = n_token_count;
- }
- // restore the context state
- {
- const size_t state_size = file.size - file.tell();
- std::vector<uint8_t> state_data(state_size);
- file.read_raw(state_data.data(), state_size);
- const size_t nread = llama_state_seq_set_data(ctx, state_data.data(), dest_seq_id);
- if (!nread) {
- LLAMA_LOG_ERROR("%s: failed to restore sequence state\n", __func__);
- return 0;
- }
- GGML_ASSERT(nread <= state_size);
- GGML_ASSERT(nread + sizeof(uint32_t) * 3 + sizeof(llama_token) * *n_token_count_out == file.tell());
- }
- return file.tell();
- }
- size_t llama_state_seq_save_file(struct llama_context * ctx, const char * filepath, llama_seq_id seq_id, const llama_token * tokens, size_t n_token_count) {
- try {
- return llama_state_seq_save_file_internal(ctx, filepath, seq_id, tokens, n_token_count);
- } catch (const std::exception & err) {
- LLAMA_LOG_ERROR("error saving sequence state file: %s\n", err.what());
- return 0;
- }
- }
- size_t llama_state_seq_load_file(struct llama_context * ctx, const char * filepath, llama_seq_id dest_seq_id, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
- try {
- return llama_state_seq_load_file_internal(ctx, filepath, dest_seq_id, tokens_out, n_token_capacity, n_token_count_out);
- } catch (const std::exception & err) {
- LLAMA_LOG_ERROR("error loading sequence state file: %s\n", err.what());
- return 0;
- }
- }
- void llama_set_n_threads(struct llama_context * ctx, uint32_t n_threads, uint32_t n_threads_batch) {
- ctx->cparams.n_threads = n_threads;
- ctx->cparams.n_threads_batch = n_threads_batch;
- }
- void llama_set_abort_callback(struct llama_context * ctx, bool (*abort_callback)(void * data), void * abort_callback_data) {
- ctx->abort_callback = abort_callback;
- ctx->abort_callback_data = abort_callback_data;
- }
- void llama_set_causal_attn(struct llama_context * ctx, bool causal_attn) {
- ctx->cparams.causal_attn = causal_attn;
- }
- struct llama_batch llama_batch_get_one(
- llama_token * tokens,
- int32_t n_tokens,
- llama_pos pos_0,
- llama_seq_id seq_id) {
- return {
- /*n_tokens =*/ n_tokens,
- /*tokens =*/ tokens,
- /*embd =*/ nullptr,
- /*pos =*/ nullptr,
- /*n_seq_id =*/ nullptr,
- /*seq_id =*/ nullptr,
- /*logits =*/ nullptr,
- /*all_pos_0 =*/ pos_0,
- /*all_pos_1 =*/ 1,
- /*all_seq_id =*/ seq_id,
- };
- }
- struct llama_batch llama_batch_init(int32_t n_tokens_alloc, int32_t embd, int32_t n_seq_max) {
- llama_batch batch = { 0, nullptr, nullptr, nullptr, nullptr, nullptr, nullptr, 0, 0, 0, };
- if (embd) {
- batch.embd = (float *) malloc(sizeof(float) * n_tokens_alloc * embd);
- } else {
- batch.token = (llama_token *) malloc(sizeof(llama_token) * n_tokens_alloc);
- }
- batch.pos = (llama_pos *) malloc(sizeof(llama_pos) * n_tokens_alloc);
- batch.n_seq_id = (int32_t *) malloc(sizeof(int32_t) * n_tokens_alloc);
- batch.seq_id = (llama_seq_id **) malloc(sizeof(llama_seq_id *) * (n_tokens_alloc + 1));
- for (int i = 0; i < n_tokens_alloc; ++i) {
- batch.seq_id[i] = (llama_seq_id *) malloc(sizeof(llama_seq_id) * n_seq_max);
- }
- batch.seq_id[n_tokens_alloc] = nullptr;
- batch.logits = (int8_t *) malloc(sizeof(int8_t) * n_tokens_alloc);
- return batch;
- }
- void llama_batch_free(struct llama_batch batch) {
- if (batch.token) free(batch.token);
- if (batch.embd) free(batch.embd);
- if (batch.pos) free(batch.pos);
- if (batch.n_seq_id) free(batch.n_seq_id);
- if (batch.seq_id) {
- for (int i = 0; batch.seq_id[i] != nullptr; ++i) {
- free(batch.seq_id[i]);
- }
- free(batch.seq_id);
- }
- if (batch.logits) free(batch.logits);
- }
- int32_t llama_decode(
- struct llama_context * ctx,
- struct llama_batch batch) {
- const int ret = llama_decode_internal(*ctx, batch);
- if (ret < 0) {
- LLAMA_LOG_ERROR("%s: failed to decode, ret = %d\n", __func__, ret);
- }
- return ret;
- }
- void llama_synchronize(struct llama_context * ctx) {
- ggml_backend_sched_synchronize(ctx->sched);
- // FIXME: if multiple single tokens are evaluated without a synchronization,
- // the stats will be added to the prompt evaluation stats
- // this should only happen when using batch size 1 to evaluate a batch
- // add the evaluation to the stats
- if (ctx->n_queued_tokens == 1) {
- ctx->t_eval_us += ggml_time_us() - ctx->t_compute_start_us;
- ctx->n_eval++;
- } else if (ctx->n_queued_tokens > 1) {
- ctx->t_p_eval_us += ggml_time_us() - ctx->t_compute_start_us;
- ctx->n_p_eval += ctx->n_queued_tokens;
- }
- // get a more accurate load time, upon first eval
- if (ctx->n_queued_tokens > 0 && !ctx->has_evaluated_once) {
- ctx->t_load_us = ggml_time_us() - ctx->t_start_us;
- ctx->has_evaluated_once = true;
- }
- ctx->n_queued_tokens = 0;
- ctx->t_compute_start_us = 0;
- }
- float * llama_get_logits(struct llama_context * ctx) {
- llama_synchronize(ctx);
- return ctx->logits;
- }
- float * llama_get_logits_ith(struct llama_context * ctx, int32_t i) {
- int32_t j = -1;
- llama_synchronize(ctx);
- try {
- if (ctx->logits == nullptr) {
- throw std::runtime_error("no logits");
- }
- if (i < 0) {
- j = ctx->n_outputs + i;
- if (j < 0) {
- throw std::runtime_error(format("negative index out of range [0, %d)", ctx->n_outputs));
- }
- } else if ((size_t) i >= ctx->output_ids.size()) {
- throw std::runtime_error(format("out of range [0, %lu)", ctx->output_ids.size()));
- } else {
- j = ctx->output_ids[i];
- }
- if (j < 0) {
- throw std::runtime_error(format("batch.logits[%d] != true", i));
- }
- if (j >= ctx->n_outputs) {
- // This should not happen
- throw std::runtime_error(format("corrupt output buffer (j=%d, n_outputs=%d)", j, ctx->n_outputs));
- }
- return ctx->logits + j*ctx->model.hparams.n_vocab;
- } catch (const std::exception & err) {
- LLAMA_LOG_ERROR("%s: invalid logits id %d, reason: %s\n", __func__, i, err.what());
- #ifndef NDEBUG
- GGML_ASSERT(false);
- #endif
- return nullptr;
- }
- }
- float * llama_get_embeddings(struct llama_context * ctx) {
- llama_synchronize(ctx);
- return ctx->embd;
- }
- float * llama_get_embeddings_ith(struct llama_context * ctx, int32_t i) {
- int32_t j = -1;
- llama_synchronize(ctx);
- try {
- if (ctx->embd == nullptr) {
- throw std::runtime_error("no embeddings");
- }
- if (i < 0) {
- j = ctx->n_outputs + i;
- if (j < 0) {
- throw std::runtime_error(format("negative index out of range [0, %d)", ctx->n_outputs));
- }
- } else if ((size_t) i >= ctx->output_ids.size()) {
- throw std::runtime_error(format("out of range [0, %lu)", ctx->output_ids.size()));
- } else {
- j = ctx->output_ids[i];
- }
- if (j < 0) {
- throw std::runtime_error(format("batch.logits[%d] != true", i));
- }
- if (j >= ctx->n_outputs) {
- // This should not happen
- throw std::runtime_error(format("corrupt output buffer (j=%d, n_outputs=%d)", j, ctx->n_outputs));
- }
- return ctx->embd + j*ctx->model.hparams.n_embd;
- } catch (const std::exception & err) {
- LLAMA_LOG_ERROR("%s: invalid embeddings id %d, reason: %s\n", __func__, i, err.what());
- #ifndef NDEBUG
- GGML_ASSERT(false);
- #endif
- return nullptr;
- }
- }
- float * llama_get_embeddings_seq(struct llama_context * ctx, llama_seq_id seq_id) {
- llama_synchronize(ctx);
- auto it = ctx->embd_seq.find(seq_id);
- if (it == ctx->embd_seq.end()) {
- return nullptr;
- }
- return it->second.data();
- }
- const char * llama_token_get_text(const struct llama_model * model, llama_token token) {
- GGML_ASSERT(model->vocab.type != LLAMA_VOCAB_TYPE_NONE);
- return model->vocab.id_to_token[token].text.c_str();
- }
- float llama_token_get_score(const struct llama_model * model, llama_token token) {
- GGML_ASSERT(model->vocab.type != LLAMA_VOCAB_TYPE_NONE);
- return model->vocab.id_to_token[token].score;
- }
- llama_token_type llama_token_get_type(const struct llama_model * model, llama_token token) {
- GGML_ASSERT(model->vocab.type != LLAMA_VOCAB_TYPE_NONE);
- return model->vocab.id_to_token[token].type;
- }
- bool llama_token_is_eog(const struct llama_model * model, llama_token token) {
- return token != -1 && (
- token == llama_token_eos(model) ||
- token == llama_token_eot(model)
- );
- }
- llama_token llama_token_bos(const struct llama_model * model) {
- return model->vocab.special_bos_id;
- }
- llama_token llama_token_eos(const struct llama_model * model) {
- return model->vocab.special_eos_id;
- }
- llama_token llama_token_cls(const struct llama_model * model) {
- return model->vocab.special_cls_id;
- }
- llama_token llama_token_sep(const struct llama_model * model) {
- return model->vocab.special_sep_id;
- }
- llama_token llama_token_nl(const struct llama_model * model) {
- return model->vocab.linefeed_id;
- }
- int32_t llama_add_bos_token(const struct llama_model * model) {
- return model->vocab.special_add_bos;
- }
- int32_t llama_add_eos_token(const struct llama_model * model) {
- return model->vocab.special_add_eos;
- }
- llama_token llama_token_prefix(const struct llama_model * model) {
- return model->vocab.special_prefix_id;
- }
- llama_token llama_token_middle(const struct llama_model * model) {
- return model->vocab.special_middle_id;
- }
- llama_token llama_token_suffix(const struct llama_model * model) {
- return model->vocab.special_suffix_id;
- }
- llama_token llama_token_eot(const struct llama_model * model) {
- return model->vocab.special_eot_id;
- }
- int32_t llama_tokenize(
- const struct llama_model * model,
- const char * text,
- int32_t text_len,
- llama_token * tokens,
- int32_t n_tokens_max,
- bool add_special,
- bool parse_special) {
- auto res = llama_tokenize_internal(model->vocab, std::string(text, text_len), add_special, parse_special);
- if (n_tokens_max < (int) res.size()) {
- // LLAMA_LOG_ERROR("%s: too many tokens\n", __func__);
- return -((int) res.size());
- }
- for (size_t i = 0; i < res.size(); i++) {
- tokens[i] = res[i];
- }
- return res.size();
- }
- static std::string llama_decode_text(const std::string & text) {
- std::string decoded_text;
- const auto cpts = unicode_cpts_from_utf8(text);
- for (const auto cpt : cpts) {
- decoded_text += unicode_utf8_to_byte(unicode_cpt_to_utf8(cpt));
- }
- return decoded_text;
- }
- // does not write null-terminator to buf
- int32_t llama_token_to_piece(const struct llama_model * model, llama_token token, char * buf, int32_t length, bool special) {
- if (0 <= token && token < llama_n_vocab(model)) {
- switch (llama_vocab_get_type(model->vocab)) {
- case LLAMA_VOCAB_TYPE_WPM:
- case LLAMA_VOCAB_TYPE_SPM: {
- // NOTE: we accept all unsupported token types,
- // suppressing them like CONTROL tokens.
- if (llama_is_normal_token(model->vocab, token)) {
- std::string result = model->vocab.id_to_token[token].text;
- llama_unescape_whitespace(result);
- if (length < (int) result.length()) {
- return -(int) result.length();
- }
- memcpy(buf, result.c_str(), result.length());
- return result.length();
- } else if (
- (llama_is_user_defined_token(model->vocab, token)) ||
- (llama_is_control_token (model->vocab, token) && special)) {
- std::string result = model->vocab.id_to_token[token].text;
- if (length < (int) result.length()) {
- return -(int) result.length();
- }
- memcpy(buf, result.c_str(), result.length());
- return result.length();
- } else if (llama_is_unknown_token(model->vocab, token)) { // NOLINT
- if (length < 3) {
- return -3;
- }
- memcpy(buf, "\xe2\x96\x85", 3);
- return 3;
- } else if (llama_is_byte_token(model->vocab, token)) {
- if (length < 1) {
- return -1;
- }
- buf[0] = llama_token_to_byte(model->vocab, token);
- return 1;
- }
- break;
- }
- case LLAMA_VOCAB_TYPE_BPE: {
- // NOTE: we accept all unsupported token types,
- // suppressing them like CONTROL tokens.
- if (llama_is_normal_token(model->vocab, token)) {
- std::string result = model->vocab.id_to_token[token].text;
- result = llama_decode_text(result);
- if (length < (int) result.length()) {
- return -(int) result.length();
- }
- memcpy(buf, result.c_str(), result.length());
- return result.length();
- } else if (
- (llama_is_user_defined_token(model->vocab, token)) ||
- (llama_is_control_token (model->vocab, token) && special)) {
- std::string result = model->vocab.id_to_token[token].text;
- if (length < (int) result.length()) {
- return -(int) result.length();
- }
- memcpy(buf, result.c_str(), result.length());
- return result.length();
- }
- break;
- }
- default:
- GGML_ASSERT(false);
- }
- }
- return 0;
- }
- // trim whitespace from the beginning and end of a string
- static std::string trim(const std::string & str) {
- size_t start = 0;
- size_t end = str.size();
- while (start < end && isspace(str[start])) {
- start += 1;
- }
- while (end > start && isspace(str[end - 1])) {
- end -= 1;
- }
- return str.substr(start, end - start);
- }
- // Simple version of "llama_apply_chat_template" that only works with strings
- // This function uses heuristic checks to determine commonly used template. It is not a jinja parser.
- static int32_t llama_chat_apply_template_internal(
- const std::string & tmpl,
- const std::vector<const llama_chat_message *> & chat,
- std::string & dest, bool add_ass) {
- // Taken from the research: https://github.com/ggerganov/llama.cpp/issues/5527
- std::stringstream ss;
- if (tmpl == "chatml" || tmpl.find("<|im_start|>") != std::string::npos) {
- // chatml template
- for (auto message : chat) {
- ss << "<|im_start|>" << message->role << "\n" << message->content << "<|im_end|>\n";
- }
- if (add_ass) {
- ss << "<|im_start|>assistant\n";
- }
- } else if (tmpl == "llama2" || tmpl.find("[INST]") != std::string::npos) {
- // llama2 template and its variants
- // [variant] support system message
- bool support_system_message = tmpl.find("<<SYS>>") != std::string::npos;
- // [variant] space before + after response
- bool space_around_response = tmpl.find("' ' + eos_token") != std::string::npos;
- // [variant] add BOS inside history
- bool add_bos_inside_history = tmpl.find("bos_token + '[INST]") != std::string::npos;
- // [variant] trim spaces from the input message
- bool strip_message = tmpl.find("content.strip()") != std::string::npos;
- // construct the prompt
- bool is_inside_turn = true; // skip BOS at the beginning
- ss << "[INST] ";
- for (auto message : chat) {
- std::string content = strip_message ? trim(message->content) : message->content;
- std::string role(message->role);
- if (!is_inside_turn) {
- is_inside_turn = true;
- ss << (add_bos_inside_history ? "<s>[INST] " : "[INST] ");
- }
- if (role == "system") {
- if (support_system_message) {
- ss << "<<SYS>>\n" << content << "\n<</SYS>>\n\n";
- } else {
- // if the model does not support system message, we still include it in the first message, but without <<SYS>>
- ss << content << "\n";
- }
- } else if (role == "user") {
- ss << content << " [/INST]";
- } else {
- ss << (space_around_response ? " " : "") << content << (space_around_response ? " " : "") << "</s>";
- is_inside_turn = false;
- }
- }
- // llama2 templates seem to not care about "add_generation_prompt"
- } else if (tmpl == "zephyr" || tmpl.find("<|user|>") != std::string::npos) {
- // zephyr template
- for (auto message : chat) {
- ss << "<|" << message->role << "|>" << "\n" << message->content << "<|endoftext|>\n";
- }
- if (add_ass) {
- ss << "<|assistant|>\n";
- }
- } else if (tmpl == "monarch" || tmpl.find("bos_token + message['role']") != std::string::npos) {
- // mlabonne/AlphaMonarch-7B template (the <s> is included inside history)
- for (auto message : chat) {
- std::string bos = (message == chat.front()) ? "" : "<s>"; // skip BOS for first message
- ss << bos << message->role << "\n" << message->content << "</s>\n";
- }
- if (add_ass) {
- ss << "<s>assistant\n";
- }
- } else if (tmpl == "gemma" || tmpl.find("<start_of_turn>") != std::string::npos) {
- // google/gemma-7b-it
- std::string system_prompt = "";
- for (auto message : chat) {
- std::string role(message->role);
- if (role == "system") {
- // there is no system message for gemma, but we will merge it with user prompt, so nothing is broken
- system_prompt = trim(message->content);
- continue;
- }
- // in gemma, "assistant" is "model"
- role = role == "assistant" ? "model" : message->role;
- ss << "<start_of_turn>" << role << "\n";
- if (!system_prompt.empty() && role != "model") {
- ss << system_prompt << "\n\n";
- system_prompt = "";
- }
- ss << trim(message->content) << "<end_of_turn>\n";
- }
- if (add_ass) {
- ss << "<start_of_turn>model\n";
- }
- } else if (tmpl == "orion" || tmpl.find("'\\n\\nAssistant: ' + eos_token") != std::string::npos) {
- // OrionStarAI/Orion-14B-Chat
- std::string system_prompt = "";
- for (auto message : chat) {
- std::string role(message->role);
- if (role == "system") {
- // there is no system message support, we will merge it with user prompt
- system_prompt = message->content;
- continue;
- } else if (role == "user") {
- ss << "Human: ";
- if (!system_prompt.empty()) {
- ss << system_prompt << "\n\n";
- system_prompt = "";
- }
- ss << message->content << "\n\nAssistant: </s>";
- } else {
- ss << message->content << "</s>";
- }
- }
- } else if (tmpl == "openchat" || tmpl.find("GPT4 Correct ") != std::string::npos) {
- // openchat/openchat-3.5-0106,
- for (auto message : chat) {
- std::string role(message->role);
- if (role == "system") {
- ss << message->content << "<|end_of_turn|>";
- } else {
- role[0] = toupper(role[0]);
- ss << "GPT4 Correct " << role << ": " << message->content << "<|end_of_turn|>";
- }
- }
- if (add_ass) {
- ss << "GPT4 Correct Assistant:";
- }
- } else if (tmpl == "vicuna" || tmpl == "vicuna-orca" || (tmpl.find("USER: ") != std::string::npos && tmpl.find("ASSISTANT: ") != std::string::npos)) {
- // eachadea/vicuna-13b-1.1 (and Orca variant)
- for (auto message : chat) {
- std::string role(message->role);
- if (role == "system") {
- // Orca-Vicuna variant uses a system prefix
- if (tmpl == "vicuna-orca" || tmpl.find("SYSTEM: ") != std::string::npos) {
- ss << "SYSTEM: " << message->content << "\n";
- } else {
- ss << message->content << "\n\n";
- }
- } else if (role == "user") {
- ss << "USER: " << message->content << "\n";
- } else if (role == "assistant") {
- ss << "ASSISTANT: " << message->content << "</s>\n";
- }
- }
- if (add_ass) {
- ss << "ASSISTANT:";
- }
- } else if (tmpl == "deepseek" || (tmpl.find("### Instruction:") != std::string::npos && tmpl.find("<|EOT|>") != std::string::npos)) {
- // deepseek-ai/deepseek-coder-33b-instruct
- for (auto message : chat) {
- std::string role(message->role);
- if (role == "system") {
- ss << message->content;
- } else if (role == "user") {
- ss << "### Instruction:\n" << message->content << "\n";
- } else if (role == "assistant") {
- ss << "### Response:\n" << message->content << "\n<|EOT|>\n";
- }
- }
- if (add_ass) {
- ss << "### Response:\n";
- }
- } else if (tmpl == "command-r" || (tmpl.find("<|START_OF_TURN_TOKEN|>") != std::string::npos && tmpl.find("<|USER_TOKEN|>") != std::string::npos)) {
- // CohereForAI/c4ai-command-r-plus
- for (auto message : chat) {
- std::string role(message->role);
- if (role == "system") {
- ss << "<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>" << trim(message->content) << "<|END_OF_TURN_TOKEN|>";
- } else if (role == "user") {
- ss << "<|START_OF_TURN_TOKEN|><|USER_TOKEN|>" << trim(message->content) << "<|END_OF_TURN_TOKEN|>";
- } else if (role == "assistant") {
- ss << "<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>" << trim(message->content) << "<|END_OF_TURN_TOKEN|>";
- }
- }
- if (add_ass) {
- ss << "<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>";
- }
- } else if (tmpl == "llama3" || (tmpl.find("<|start_header_id|>") != std::string::npos && tmpl.find("<|end_header_id|>") != std::string::npos)) {
- // Llama 3
- for (auto message : chat) {
- std::string role(message->role);
- ss << "<|start_header_id|>" << role << "<|end_header_id|>\n\n" << trim(message->content) << "<|eot_id|>";
- }
- if (add_ass) {
- ss << "<|start_header_id|>assistant<|end_header_id|>\n\n";
- }
- } else if (tmpl == "phi3" || (tmpl.find("<|assistant|>") != std::string::npos && tmpl.find("<|end|>") != std::string::npos )) {
- // Phi 3
- for (auto message : chat) {
- std::string role(message->role);
- ss << "<|" << role << "|>\n" << trim(message->content) << "<|end|>\n";
- }
- if (add_ass) {
- ss << "<|assistant|>\n";
- }
- } else {
- // template not supported
- return -1;
- }
- dest = ss.str();
- return dest.size();
- }
- LLAMA_API int32_t llama_chat_apply_template(
- const struct llama_model * model,
- const char * tmpl,
- const struct llama_chat_message * chat,
- size_t n_msg,
- bool add_ass,
- char * buf,
- int32_t length) {
- std::string curr_tmpl(tmpl == nullptr ? "" : tmpl);
- if (tmpl == nullptr) {
- GGML_ASSERT(model != nullptr);
- // load template from model
- std::vector<char> model_template(2048, 0); // longest known template is about 1200 bytes
- std::string template_key = "tokenizer.chat_template";
- int32_t res = llama_model_meta_val_str(model, template_key.c_str(), model_template.data(), model_template.size());
- if (res < 0) {
- // worst case: there is no information about template, we will use chatml by default
- curr_tmpl = "chatml"; // see llama_chat_apply_template_internal
- } else {
- curr_tmpl = std::string(model_template.data(), model_template.size());
- }
- }
- // format the chat to string
- std::vector<const llama_chat_message *> chat_vec;
- chat_vec.resize(n_msg);
- for (size_t i = 0; i < n_msg; i++) {
- chat_vec[i] = &chat[i];
- }
- std::string formatted_chat;
- int32_t res = llama_chat_apply_template_internal(curr_tmpl, chat_vec, formatted_chat, add_ass);
- if (res < 0) {
- return res;
- }
- if (buf && length > 0) {
- strncpy(buf, formatted_chat.c_str(), length);
- }
- return res;
- }
- LLAMA_API int llama_split_path(char * split_path, size_t maxlen, const char * path_prefix, int split_no, int split_count) {
- static const char * const SPLIT_PATH_FORMAT = "%s-%05d-of-%05d.gguf";
- if (snprintf(split_path, maxlen, SPLIT_PATH_FORMAT, path_prefix, split_no + 1, split_count)) {
- return strlen(split_path);
- }
- return 0;
- }
- int llama_split_prefix(char * dest, size_t maxlen, const char * split_path, int split_no, int split_count) {
- std::string str_split_path(split_path);
- char postfix[32];
- snprintf(postfix, 32, "-%05d-of-%05d.gguf", split_no + 1, split_count);
- std::string str_postfix(postfix);
- // check if dest ends with postfix
- int size_prefix = str_split_path.size() - str_postfix.size();
- if (size_prefix > 0 && str_split_path.find(str_postfix, size_prefix) != std::string::npos) {
- snprintf(dest, std::min((size_t) size_prefix + 1, maxlen), "%s", split_path);
- return size_prefix;
- }
- return 0;
- }
- struct llama_timings llama_get_timings(struct llama_context * ctx) {
- struct llama_timings result = {
- /*.t_start_ms =*/ 1e-3 * ctx->t_start_us,
- /*.t_end_ms =*/ 1.00 * ggml_time_ms(),
- /*.t_load_ms =*/ 1e-3 * ctx->t_load_us,
- /*.t_sample_ms =*/ 1e-3 * ctx->t_sample_us,
- /*.t_p_eval_ms =*/ 1e-3 * ctx->t_p_eval_us,
- /*.t_eval_ms =*/ 1e-3 * ctx->t_eval_us,
- /*.n_sample =*/ std::max(1, ctx->n_sample),
- /*.n_p_eval =*/ std::max(0, ctx->n_p_eval),
- /*.n_eval =*/ std::max(1, ctx->n_eval),
- };
- return result;
- }
- void llama_print_timings(struct llama_context * ctx) {
- const llama_timings timings = llama_get_timings(ctx);
- LLAMA_LOG_INFO("\n");
- LLAMA_LOG_INFO("%s: load time = %10.2f ms\n", __func__, timings.t_load_ms);
- LLAMA_LOG_INFO("%s: sample time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n",
- __func__, timings.t_sample_ms, timings.n_sample, timings.t_sample_ms / timings.n_sample, 1e3 / timings.t_sample_ms * timings.n_sample);
- LLAMA_LOG_INFO("%s: prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n",
- __func__, timings.t_p_eval_ms, timings.n_p_eval, timings.t_p_eval_ms / timings.n_p_eval, 1e3 / timings.t_p_eval_ms * timings.n_p_eval);
- LLAMA_LOG_INFO("%s: eval time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n",
- __func__, timings.t_eval_ms, timings.n_eval, timings.t_eval_ms / timings.n_eval, 1e3 / timings.t_eval_ms * timings.n_eval);
- LLAMA_LOG_INFO("%s: total time = %10.2f ms / %5d tokens\n", __func__, (timings.t_end_ms - timings.t_start_ms), (timings.n_p_eval + timings.n_eval));
- }
- void llama_reset_timings(struct llama_context * ctx) {
- ctx->t_start_us = ggml_time_us();
- ctx->t_sample_us = ctx->n_sample = 0;
- ctx->t_eval_us = ctx->n_eval = 0;
- ctx->t_p_eval_us = ctx->n_p_eval = 0;
- }
- const char * llama_print_system_info(void) {
- static std::string s;
- s = "";
- s += "AVX = " + std::to_string(ggml_cpu_has_avx()) + " | ";
- s += "AVX_VNNI = " + std::to_string(ggml_cpu_has_avx_vnni()) + " | ";
- s += "AVX2 = " + std::to_string(ggml_cpu_has_avx2()) + " | ";
- s += "AVX512 = " + std::to_string(ggml_cpu_has_avx512()) + " | ";
- s += "AVX512_VBMI = " + std::to_string(ggml_cpu_has_avx512_vbmi()) + " | ";
- s += "AVX512_VNNI = " + std::to_string(ggml_cpu_has_avx512_vnni()) + " | ";
- s += "FMA = " + std::to_string(ggml_cpu_has_fma()) + " | ";
- s += "NEON = " + std::to_string(ggml_cpu_has_neon()) + " | ";
- s += "ARM_FMA = " + std::to_string(ggml_cpu_has_arm_fma()) + " | ";
- s += "F16C = " + std::to_string(ggml_cpu_has_f16c()) + " | ";
- s += "FP16_VA = " + std::to_string(ggml_cpu_has_fp16_va()) + " | ";
- s += "WASM_SIMD = " + std::to_string(ggml_cpu_has_wasm_simd()) + " | ";
- s += "BLAS = " + std::to_string(ggml_cpu_has_blas()) + " | ";
- s += "SSE3 = " + std::to_string(ggml_cpu_has_sse3()) + " | ";
- s += "SSSE3 = " + std::to_string(ggml_cpu_has_ssse3()) + " | ";
- s += "VSX = " + std::to_string(ggml_cpu_has_vsx()) + " | ";
- s += "MATMUL_INT8 = " + std::to_string(ggml_cpu_has_matmul_int8()) + " | ";
- #ifdef GGML_USE_LLAMAFILE
- s += "LLAMAFILE = 1 | ";
- #else
- s += "LLAMAFILE = 0 | ";
- #endif
- return s.c_str();
- }
- void llama_dump_timing_info_yaml(FILE * stream, const llama_context * ctx) {
- fprintf(stream, "\n");
- fprintf(stream, "###########\n");
- fprintf(stream, "# Timings #\n");
- fprintf(stream, "###########\n");
- fprintf(stream, "\n");
- fprintf(stream, "mst_eval: %.2f # ms / token during generation\n",
- 1.0e-3 * ctx->t_eval_us / ctx->n_eval);
- fprintf(stream, "mst_p_eval: %.2f # ms / token during prompt processing\n",
- 1.0e-3 * ctx->t_p_eval_us / ctx->n_p_eval);
- fprintf(stream, "mst_sample: %.2f # ms / token during sampling\n",
- 1.0e-3 * ctx->t_sample_us / ctx->n_sample);
- fprintf(stream, "n_eval: %d # number of tokens generated (excluding the first one)\n", ctx->n_eval);
- fprintf(stream, "n_p_eval: %d # number of tokens processed in batches at the beginning\n", ctx->n_p_eval);
- fprintf(stream, "n_sample: %d # number of sampled tokens\n", ctx->n_sample);
- fprintf(stream, "t_eval_us: %" PRId64 " # total microseconds spent generating tokens\n", ctx->t_eval_us);
- fprintf(stream, "t_load_us: %" PRId64 " # total microseconds spent loading the model\n", ctx->t_load_us);
- fprintf(stream, "t_p_eval_us: %" PRId64 " # total microseconds spent prompt processing\n", ctx->t_p_eval_us);
- fprintf(stream, "t_sample_us: %" PRId64 " # total microseconds spent sampling\n", ctx->t_sample_us);
- fprintf(stream, "ts_eval: %.2f # tokens / second during generation\n",
- 1.0e6 * ctx->n_eval / ctx->t_eval_us);
- fprintf(stream, "ts_p_eval: %.2f # tokens / second during prompt processing\n",
- 1.0e6 * ctx->n_p_eval / ctx->t_p_eval_us);
- fprintf(stream, "ts_sample: %.2f # tokens / second during sampling\n",
- 1.0e6 * ctx->n_sample / ctx->t_sample_us);
- }
- // For internal test use
- const std::vector<std::pair<std::string, struct ggml_tensor *>> & llama_internal_get_tensor_map(
- struct llama_context * ctx
- ) {
- return ctx->model.tensors_by_name;
- }
- void llama_log_set(ggml_log_callback log_callback, void * user_data) {
- g_state.log_callback = log_callback ? log_callback : llama_log_callback_default;
- g_state.log_callback_user_data = user_data;
- #ifdef GGML_USE_METAL
- ggml_backend_metal_log_set_callback(g_state.log_callback, g_state.log_callback_user_data);
- #endif
- }
- static void llama_log_internal_v(ggml_log_level level, const char * format, va_list args) {
- va_list args_copy;
- va_copy(args_copy, args);
- char buffer[128];
- int len = vsnprintf(buffer, 128, format, args);
- if (len < 128) {
- g_state.log_callback(level, buffer, g_state.log_callback_user_data);
- } else {
- char* buffer2 = new char[len+1];
- vsnprintf(buffer2, len+1, format, args_copy);
- buffer2[len] = 0;
- g_state.log_callback(level, buffer2, g_state.log_callback_user_data);
- delete[] buffer2;
- }
- va_end(args_copy);
- }
- static void llama_log_internal(ggml_log_level level, const char * format, ...) {
- va_list args;
- va_start(args, format);
- llama_log_internal_v(level, format, args);
- va_end(args);
- }
- static void llama_log_callback_default(ggml_log_level level, const char * text, void * user_data) {
- (void) level;
- (void) user_data;
- fputs(text, stderr);
- fflush(stderr);
- }
|