llama.cpp 729 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744107451074610747107481074910750107511075210753107541075510756107571075810759107601076110762107631076410765107661076710768107691077010771107721077310774107751077610777107781077910780107811078210783107841078510786107871078810789107901079110792107931079410795107961079710798107991080010801108021080310804108051080610807108081080910810108111081210813108141081510816108171081810819108201082110822108231082410825108261082710828108291083010831108321083310834108351083610837108381083910840108411084210843108441084510846108471084810849108501085110852108531085410855108561085710858108591086010861108621086310864108651086610867108681086910870108711087210873108741087510876108771087810879108801088110882108831088410885108861088710888108891089010891108921089310894108951089610897108981089910900109011090210903109041090510906109071090810909109101091110912109131091410915109161091710918109191092010921109221092310924109251092610927109281092910930109311093210933109341093510936109371093810939109401094110942109431094410945109461094710948109491095010951109521095310954109551095610957109581095910960109611096210963109641096510966109671096810969109701097110972109731097410975109761097710978109791098010981109821098310984109851098610987109881098910990109911099210993109941099510996109971099810999110001100111002110031100411005110061100711008110091101011011110121101311014110151101611017110181101911020110211102211023110241102511026110271102811029110301103111032110331103411035110361103711038110391104011041110421104311044110451104611047110481104911050110511105211053110541105511056110571105811059110601106111062110631106411065110661106711068110691107011071110721107311074110751107611077110781107911080110811108211083110841108511086110871108811089110901109111092110931109411095110961109711098110991110011101111021110311104111051110611107111081110911110111111111211113111141111511116111171111811119111201112111122111231112411125111261112711128111291113011131111321113311134111351113611137111381113911140111411114211143111441114511146111471114811149111501115111152111531115411155111561115711158111591116011161111621116311164111651116611167111681116911170111711117211173111741117511176111771117811179111801118111182111831118411185111861118711188111891119011191111921119311194111951119611197111981119911200112011120211203112041120511206112071120811209112101121111212112131121411215112161121711218112191122011221112221122311224112251122611227112281122911230112311123211233112341123511236112371123811239112401124111242112431124411245112461124711248112491125011251112521125311254112551125611257112581125911260112611126211263112641126511266112671126811269112701127111272112731127411275112761127711278112791128011281112821128311284112851128611287112881128911290112911129211293112941129511296112971129811299113001130111302113031130411305113061130711308113091131011311113121131311314113151131611317113181131911320113211132211323113241132511326113271132811329113301133111332113331133411335113361133711338113391134011341113421134311344113451134611347113481134911350113511135211353113541135511356113571135811359113601136111362113631136411365113661136711368113691137011371113721137311374113751137611377113781137911380113811138211383113841138511386113871138811389113901139111392113931139411395113961139711398113991140011401114021140311404114051140611407114081140911410114111141211413114141141511416114171141811419114201142111422114231142411425114261142711428114291143011431114321143311434114351143611437114381143911440114411144211443114441144511446114471144811449114501145111452114531145411455114561145711458114591146011461114621146311464114651146611467114681146911470114711147211473114741147511476114771147811479114801148111482114831148411485114861148711488114891149011491114921149311494114951149611497114981149911500115011150211503115041150511506115071150811509115101151111512115131151411515115161151711518115191152011521115221152311524115251152611527115281152911530115311153211533115341153511536115371153811539115401154111542115431154411545115461154711548115491155011551115521155311554115551155611557115581155911560115611156211563115641156511566115671156811569115701157111572115731157411575115761157711578115791158011581115821158311584115851158611587115881158911590115911159211593115941159511596115971159811599116001160111602116031160411605116061160711608116091161011611116121161311614116151161611617116181161911620116211162211623116241162511626116271162811629116301163111632116331163411635116361163711638116391164011641116421164311644116451164611647116481164911650116511165211653116541165511656116571165811659116601166111662116631166411665116661166711668116691167011671116721167311674116751167611677116781167911680116811168211683116841168511686116871168811689116901169111692116931169411695116961169711698116991170011701117021170311704117051170611707117081170911710117111171211713117141171511716117171171811719117201172111722117231172411725117261172711728117291173011731117321173311734117351173611737117381173911740117411174211743117441174511746117471174811749117501175111752117531175411755117561175711758117591176011761117621176311764117651176611767117681176911770117711177211773117741177511776117771177811779117801178111782117831178411785117861178711788117891179011791117921179311794117951179611797117981179911800118011180211803118041180511806118071180811809118101181111812118131181411815118161181711818118191182011821118221182311824118251182611827118281182911830118311183211833118341183511836118371183811839118401184111842118431184411845118461184711848118491185011851118521185311854118551185611857118581185911860118611186211863118641186511866118671186811869118701187111872118731187411875118761187711878118791188011881118821188311884118851188611887118881188911890118911189211893118941189511896118971189811899119001190111902119031190411905119061190711908119091191011911119121191311914119151191611917119181191911920119211192211923119241192511926119271192811929119301193111932119331193411935119361193711938119391194011941119421194311944119451194611947119481194911950119511195211953119541195511956119571195811959119601196111962119631196411965119661196711968119691197011971119721197311974119751197611977119781197911980119811198211983119841198511986119871198811989119901199111992119931199411995119961199711998119991200012001120021200312004120051200612007120081200912010120111201212013120141201512016120171201812019120201202112022120231202412025120261202712028120291203012031120321203312034120351203612037120381203912040120411204212043120441204512046120471204812049120501205112052120531205412055120561205712058120591206012061120621206312064120651206612067120681206912070120711207212073120741207512076120771207812079120801208112082120831208412085120861208712088120891209012091120921209312094120951209612097120981209912100121011210212103121041210512106121071210812109121101211112112121131211412115121161211712118121191212012121121221212312124121251212612127121281212912130121311213212133121341213512136121371213812139121401214112142121431214412145121461214712148121491215012151121521215312154121551215612157121581215912160121611216212163121641216512166121671216812169121701217112172121731217412175121761217712178121791218012181121821218312184121851218612187121881218912190121911219212193121941219512196121971219812199122001220112202122031220412205122061220712208122091221012211122121221312214122151221612217122181221912220122211222212223122241222512226122271222812229122301223112232122331223412235122361223712238122391224012241122421224312244122451224612247122481224912250122511225212253122541225512256122571225812259122601226112262122631226412265122661226712268122691227012271122721227312274122751227612277122781227912280122811228212283122841228512286122871228812289122901229112292122931229412295122961229712298122991230012301123021230312304123051230612307123081230912310123111231212313123141231512316123171231812319123201232112322123231232412325123261232712328123291233012331123321233312334123351233612337123381233912340123411234212343123441234512346123471234812349123501235112352123531235412355123561235712358123591236012361123621236312364123651236612367123681236912370123711237212373123741237512376123771237812379123801238112382123831238412385123861238712388123891239012391123921239312394123951239612397123981239912400124011240212403124041240512406124071240812409124101241112412124131241412415124161241712418124191242012421124221242312424124251242612427124281242912430124311243212433124341243512436124371243812439124401244112442124431244412445124461244712448124491245012451124521245312454124551245612457124581245912460124611246212463124641246512466124671246812469124701247112472124731247412475124761247712478124791248012481124821248312484124851248612487124881248912490124911249212493124941249512496124971249812499125001250112502125031250412505125061250712508125091251012511125121251312514125151251612517125181251912520125211252212523125241252512526125271252812529125301253112532125331253412535125361253712538125391254012541125421254312544125451254612547125481254912550125511255212553125541255512556125571255812559125601256112562125631256412565125661256712568125691257012571125721257312574125751257612577125781257912580125811258212583125841258512586125871258812589125901259112592125931259412595125961259712598125991260012601126021260312604126051260612607126081260912610126111261212613126141261512616126171261812619126201262112622126231262412625126261262712628126291263012631126321263312634126351263612637126381263912640126411264212643126441264512646126471264812649126501265112652126531265412655126561265712658126591266012661126621266312664126651266612667126681266912670126711267212673126741267512676126771267812679126801268112682126831268412685126861268712688126891269012691126921269312694126951269612697126981269912700127011270212703127041270512706127071270812709127101271112712127131271412715127161271712718127191272012721127221272312724127251272612727127281272912730127311273212733127341273512736127371273812739127401274112742127431274412745127461274712748127491275012751127521275312754127551275612757127581275912760127611276212763127641276512766127671276812769127701277112772127731277412775127761277712778127791278012781127821278312784127851278612787127881278912790127911279212793127941279512796127971279812799128001280112802128031280412805128061280712808128091281012811128121281312814128151281612817128181281912820128211282212823128241282512826128271282812829128301283112832128331283412835128361283712838128391284012841128421284312844128451284612847128481284912850128511285212853128541285512856128571285812859128601286112862128631286412865128661286712868128691287012871128721287312874128751287612877128781287912880128811288212883128841288512886128871288812889128901289112892128931289412895128961289712898128991290012901129021290312904129051290612907129081290912910129111291212913129141291512916129171291812919129201292112922129231292412925129261292712928129291293012931129321293312934129351293612937129381293912940129411294212943129441294512946129471294812949129501295112952129531295412955129561295712958129591296012961129621296312964129651296612967129681296912970129711297212973129741297512976129771297812979129801298112982129831298412985129861298712988129891299012991129921299312994129951299612997129981299913000130011300213003130041300513006130071300813009130101301113012130131301413015130161301713018130191302013021130221302313024130251302613027130281302913030130311303213033130341303513036130371303813039130401304113042130431304413045130461304713048130491305013051130521305313054130551305613057130581305913060130611306213063130641306513066130671306813069130701307113072130731307413075130761307713078130791308013081130821308313084130851308613087130881308913090130911309213093130941309513096130971309813099131001310113102131031310413105131061310713108131091311013111131121311313114131151311613117131181311913120131211312213123131241312513126131271312813129131301313113132131331313413135131361313713138131391314013141131421314313144131451314613147131481314913150131511315213153131541315513156131571315813159131601316113162131631316413165131661316713168131691317013171131721317313174131751317613177131781317913180131811318213183131841318513186131871318813189131901319113192131931319413195131961319713198131991320013201132021320313204132051320613207132081320913210132111321213213132141321513216132171321813219132201322113222132231322413225132261322713228132291323013231132321323313234132351323613237132381323913240132411324213243132441324513246132471324813249132501325113252132531325413255132561325713258132591326013261132621326313264132651326613267132681326913270132711327213273132741327513276132771327813279132801328113282132831328413285132861328713288132891329013291132921329313294132951329613297132981329913300133011330213303133041330513306133071330813309133101331113312133131331413315133161331713318133191332013321133221332313324133251332613327133281332913330133311333213333133341333513336133371333813339133401334113342133431334413345133461334713348133491335013351133521335313354133551335613357133581335913360133611336213363133641336513366133671336813369133701337113372133731337413375133761337713378133791338013381133821338313384133851338613387133881338913390133911339213393133941339513396133971339813399134001340113402134031340413405134061340713408134091341013411134121341313414134151341613417134181341913420134211342213423134241342513426134271342813429134301343113432134331343413435134361343713438134391344013441134421344313444134451344613447134481344913450134511345213453134541345513456134571345813459134601346113462134631346413465134661346713468134691347013471134721347313474134751347613477134781347913480134811348213483134841348513486134871348813489134901349113492134931349413495134961349713498134991350013501135021350313504135051350613507135081350913510135111351213513135141351513516135171351813519135201352113522135231352413525135261352713528135291353013531135321353313534135351353613537135381353913540135411354213543135441354513546135471354813549135501355113552135531355413555135561355713558135591356013561135621356313564135651356613567135681356913570135711357213573135741357513576135771357813579135801358113582135831358413585135861358713588135891359013591135921359313594135951359613597135981359913600136011360213603136041360513606136071360813609136101361113612136131361413615136161361713618136191362013621136221362313624136251362613627136281362913630136311363213633136341363513636136371363813639136401364113642136431364413645136461364713648136491365013651136521365313654136551365613657136581365913660136611366213663136641366513666136671366813669136701367113672136731367413675136761367713678136791368013681136821368313684136851368613687136881368913690136911369213693136941369513696136971369813699137001370113702137031370413705137061370713708137091371013711137121371313714137151371613717137181371913720137211372213723137241372513726137271372813729137301373113732137331373413735137361373713738137391374013741137421374313744137451374613747137481374913750137511375213753137541375513756137571375813759137601376113762137631376413765137661376713768137691377013771137721377313774137751377613777137781377913780137811378213783137841378513786137871378813789137901379113792137931379413795137961379713798137991380013801138021380313804138051380613807138081380913810138111381213813138141381513816138171381813819138201382113822138231382413825138261382713828138291383013831138321383313834138351383613837138381383913840138411384213843138441384513846138471384813849138501385113852138531385413855138561385713858138591386013861138621386313864138651386613867138681386913870138711387213873138741387513876138771387813879138801388113882138831388413885138861388713888138891389013891138921389313894138951389613897138981389913900139011390213903139041390513906139071390813909139101391113912139131391413915139161391713918139191392013921139221392313924139251392613927139281392913930139311393213933139341393513936139371393813939139401394113942139431394413945139461394713948139491395013951139521395313954139551395613957139581395913960139611396213963139641396513966139671396813969139701397113972139731397413975139761397713978139791398013981139821398313984139851398613987139881398913990139911399213993139941399513996139971399813999140001400114002140031400414005140061400714008140091401014011140121401314014140151401614017140181401914020140211402214023140241402514026140271402814029140301403114032140331403414035140361403714038140391404014041140421404314044140451404614047140481404914050140511405214053140541405514056140571405814059140601406114062140631406414065140661406714068140691407014071140721407314074140751407614077140781407914080140811408214083140841408514086140871408814089140901409114092140931409414095140961409714098140991410014101141021410314104141051410614107141081410914110141111411214113141141411514116141171411814119141201412114122141231412414125141261412714128141291413014131141321413314134141351413614137141381413914140141411414214143141441414514146141471414814149141501415114152141531415414155141561415714158141591416014161141621416314164141651416614167141681416914170141711417214173141741417514176141771417814179141801418114182141831418414185141861418714188141891419014191141921419314194141951419614197141981419914200142011420214203142041420514206142071420814209142101421114212142131421414215142161421714218142191422014221142221422314224142251422614227142281422914230142311423214233142341423514236142371423814239142401424114242142431424414245142461424714248142491425014251142521425314254142551425614257142581425914260142611426214263142641426514266142671426814269142701427114272142731427414275142761427714278142791428014281142821428314284142851428614287142881428914290142911429214293142941429514296142971429814299143001430114302143031430414305143061430714308143091431014311143121431314314143151431614317143181431914320143211432214323143241432514326143271432814329143301433114332143331433414335143361433714338143391434014341143421434314344143451434614347143481434914350143511435214353143541435514356143571435814359143601436114362143631436414365143661436714368143691437014371143721437314374143751437614377143781437914380143811438214383143841438514386143871438814389143901439114392143931439414395143961439714398143991440014401144021440314404144051440614407144081440914410144111441214413144141441514416144171441814419144201442114422144231442414425144261442714428144291443014431144321443314434144351443614437144381443914440144411444214443144441444514446144471444814449144501445114452144531445414455144561445714458144591446014461144621446314464144651446614467144681446914470144711447214473144741447514476144771447814479144801448114482144831448414485144861448714488144891449014491144921449314494144951449614497144981449914500145011450214503145041450514506145071450814509145101451114512145131451414515145161451714518145191452014521145221452314524145251452614527145281452914530145311453214533145341453514536145371453814539145401454114542145431454414545145461454714548145491455014551145521455314554145551455614557145581455914560145611456214563145641456514566145671456814569145701457114572145731457414575145761457714578145791458014581145821458314584145851458614587145881458914590145911459214593145941459514596145971459814599146001460114602146031460414605146061460714608146091461014611146121461314614146151461614617146181461914620146211462214623146241462514626146271462814629146301463114632146331463414635146361463714638146391464014641146421464314644146451464614647146481464914650146511465214653146541465514656146571465814659146601466114662146631466414665146661466714668146691467014671146721467314674146751467614677146781467914680146811468214683146841468514686146871468814689146901469114692146931469414695146961469714698146991470014701147021470314704147051470614707147081470914710147111471214713147141471514716147171471814719147201472114722147231472414725147261472714728147291473014731147321473314734147351473614737147381473914740147411474214743147441474514746147471474814749147501475114752147531475414755147561475714758147591476014761147621476314764147651476614767147681476914770147711477214773147741477514776147771477814779147801478114782147831478414785147861478714788147891479014791147921479314794147951479614797147981479914800148011480214803148041480514806148071480814809148101481114812148131481414815148161481714818148191482014821148221482314824148251482614827148281482914830148311483214833148341483514836148371483814839148401484114842148431484414845148461484714848148491485014851148521485314854148551485614857148581485914860148611486214863148641486514866148671486814869148701487114872148731487414875148761487714878148791488014881148821488314884148851488614887148881488914890148911489214893148941489514896148971489814899149001490114902149031490414905149061490714908149091491014911149121491314914149151491614917149181491914920149211492214923149241492514926149271492814929149301493114932149331493414935149361493714938149391494014941149421494314944149451494614947149481494914950149511495214953149541495514956149571495814959149601496114962149631496414965149661496714968149691497014971149721497314974149751497614977149781497914980149811498214983149841498514986149871498814989149901499114992149931499414995149961499714998149991500015001150021500315004150051500615007150081500915010150111501215013150141501515016150171501815019150201502115022150231502415025150261502715028150291503015031150321503315034150351503615037150381503915040150411504215043150441504515046150471504815049150501505115052150531505415055150561505715058150591506015061150621506315064150651506615067150681506915070150711507215073150741507515076150771507815079150801508115082150831508415085150861508715088150891509015091150921509315094150951509615097150981509915100151011510215103151041510515106151071510815109151101511115112151131511415115151161511715118151191512015121151221512315124151251512615127151281512915130151311513215133151341513515136151371513815139151401514115142151431514415145151461514715148151491515015151151521515315154151551515615157151581515915160151611516215163151641516515166151671516815169151701517115172151731517415175151761517715178151791518015181151821518315184151851518615187151881518915190151911519215193151941519515196151971519815199152001520115202152031520415205152061520715208152091521015211152121521315214152151521615217152181521915220152211522215223152241522515226152271522815229152301523115232152331523415235152361523715238152391524015241152421524315244152451524615247152481524915250152511525215253152541525515256152571525815259152601526115262152631526415265152661526715268152691527015271152721527315274152751527615277152781527915280152811528215283152841528515286152871528815289152901529115292152931529415295152961529715298152991530015301153021530315304153051530615307153081530915310153111531215313153141531515316153171531815319153201532115322153231532415325153261532715328153291533015331153321533315334153351533615337153381533915340153411534215343153441534515346153471534815349153501535115352153531535415355153561535715358153591536015361153621536315364153651536615367153681536915370153711537215373153741537515376153771537815379153801538115382153831538415385153861538715388153891539015391153921539315394153951539615397153981539915400154011540215403154041540515406154071540815409154101541115412154131541415415154161541715418154191542015421154221542315424154251542615427154281542915430154311543215433154341543515436154371543815439154401544115442154431544415445154461544715448154491545015451154521545315454154551545615457154581545915460154611546215463154641546515466154671546815469154701547115472154731547415475154761547715478154791548015481154821548315484154851548615487154881548915490154911549215493154941549515496154971549815499155001550115502155031550415505155061550715508155091551015511155121551315514155151551615517155181551915520155211552215523155241552515526155271552815529155301553115532155331553415535155361553715538155391554015541155421554315544155451554615547155481554915550155511555215553155541555515556155571555815559155601556115562155631556415565155661556715568155691557015571155721557315574155751557615577155781557915580155811558215583155841558515586155871558815589155901559115592155931559415595155961559715598155991560015601156021560315604156051560615607156081560915610156111561215613156141561515616156171561815619156201562115622156231562415625156261562715628156291563015631156321563315634156351563615637156381563915640156411564215643156441564515646156471564815649156501565115652156531565415655156561565715658156591566015661156621566315664156651566615667156681566915670156711567215673156741567515676156771567815679156801568115682156831568415685156861568715688156891569015691156921569315694156951569615697156981569915700157011570215703157041570515706157071570815709157101571115712157131571415715157161571715718157191572015721157221572315724157251572615727157281572915730157311573215733157341573515736157371573815739157401574115742157431574415745157461574715748157491575015751157521575315754157551575615757157581575915760157611576215763157641576515766157671576815769157701577115772157731577415775157761577715778157791578015781157821578315784157851578615787157881578915790157911579215793157941579515796157971579815799158001580115802158031580415805158061580715808158091581015811158121581315814158151581615817158181581915820158211582215823158241582515826158271582815829158301583115832158331583415835158361583715838158391584015841158421584315844158451584615847158481584915850158511585215853158541585515856158571585815859158601586115862158631586415865158661586715868158691587015871158721587315874158751587615877158781587915880158811588215883158841588515886158871588815889158901589115892158931589415895158961589715898158991590015901159021590315904159051590615907159081590915910159111591215913159141591515916159171591815919159201592115922159231592415925159261592715928159291593015931159321593315934159351593615937159381593915940159411594215943159441594515946159471594815949159501595115952159531595415955159561595715958159591596015961159621596315964159651596615967159681596915970159711597215973159741597515976159771597815979159801598115982159831598415985159861598715988159891599015991159921599315994159951599615997159981599916000160011600216003160041600516006160071600816009160101601116012160131601416015160161601716018160191602016021160221602316024160251602616027160281602916030160311603216033160341603516036160371603816039160401604116042160431604416045160461604716048160491605016051160521605316054160551605616057160581605916060160611606216063160641606516066160671606816069160701607116072160731607416075160761607716078160791608016081160821608316084160851608616087160881608916090160911609216093160941609516096160971609816099161001610116102161031610416105161061610716108161091611016111161121611316114161151611616117161181611916120161211612216123161241612516126161271612816129161301613116132161331613416135161361613716138161391614016141161421614316144161451614616147161481614916150161511615216153161541615516156161571615816159161601616116162161631616416165161661616716168161691617016171161721617316174161751617616177161781617916180161811618216183161841618516186161871618816189161901619116192161931619416195161961619716198161991620016201162021620316204162051620616207162081620916210162111621216213162141621516216162171621816219162201622116222162231622416225162261622716228162291623016231162321623316234162351623616237162381623916240162411624216243162441624516246162471624816249162501625116252162531625416255162561625716258162591626016261162621626316264162651626616267162681626916270162711627216273162741627516276162771627816279162801628116282162831628416285162861628716288162891629016291162921629316294162951629616297162981629916300163011630216303163041630516306163071630816309163101631116312163131631416315163161631716318163191632016321163221632316324163251632616327163281632916330163311633216333163341633516336163371633816339163401634116342163431634416345163461634716348163491635016351163521635316354163551635616357163581635916360163611636216363163641636516366163671636816369163701637116372163731637416375163761637716378163791638016381163821638316384163851638616387163881638916390163911639216393163941639516396163971639816399164001640116402164031640416405164061640716408164091641016411164121641316414164151641616417164181641916420164211642216423164241642516426164271642816429164301643116432164331643416435164361643716438164391644016441164421644316444164451644616447164481644916450164511645216453164541645516456164571645816459164601646116462164631646416465164661646716468164691647016471164721647316474164751647616477164781647916480164811648216483164841648516486164871648816489164901649116492164931649416495164961649716498164991650016501165021650316504165051650616507165081650916510165111651216513165141651516516165171651816519165201652116522165231652416525165261652716528165291653016531165321653316534165351653616537165381653916540165411654216543165441654516546165471654816549165501655116552165531655416555165561655716558165591656016561165621656316564165651656616567165681656916570165711657216573165741657516576165771657816579165801658116582165831658416585165861658716588165891659016591165921659316594165951659616597165981659916600166011660216603166041660516606166071660816609166101661116612166131661416615166161661716618166191662016621166221662316624166251662616627166281662916630166311663216633166341663516636166371663816639166401664116642166431664416645166461664716648166491665016651166521665316654166551665616657166581665916660166611666216663166641666516666166671666816669166701667116672166731667416675166761667716678166791668016681166821668316684166851668616687166881668916690166911669216693166941669516696166971669816699167001670116702167031670416705167061670716708167091671016711167121671316714167151671616717167181671916720167211672216723167241672516726167271672816729167301673116732167331673416735167361673716738167391674016741167421674316744167451674616747167481674916750167511675216753167541675516756167571675816759167601676116762167631676416765167661676716768167691677016771167721677316774167751677616777167781677916780167811678216783167841678516786167871678816789167901679116792167931679416795167961679716798167991680016801168021680316804168051680616807168081680916810168111681216813168141681516816168171681816819168201682116822168231682416825168261682716828168291683016831168321683316834168351683616837168381683916840168411684216843168441684516846168471684816849168501685116852168531685416855168561685716858168591686016861168621686316864168651686616867168681686916870168711687216873168741687516876168771687816879168801688116882168831688416885168861688716888168891689016891168921689316894168951689616897168981689916900169011690216903169041690516906169071690816909169101691116912169131691416915169161691716918169191692016921169221692316924169251692616927169281692916930169311693216933169341693516936169371693816939169401694116942169431694416945169461694716948169491695016951169521695316954169551695616957169581695916960169611696216963169641696516966169671696816969169701697116972169731697416975169761697716978169791698016981169821698316984169851698616987169881698916990169911699216993169941699516996169971699816999170001700117002170031700417005170061700717008170091701017011170121701317014170151701617017170181701917020170211702217023170241702517026170271702817029170301703117032170331703417035170361703717038170391704017041170421704317044170451704617047170481704917050170511705217053170541705517056170571705817059170601706117062170631706417065170661706717068170691707017071170721707317074170751707617077170781707917080170811708217083170841708517086170871708817089170901709117092170931709417095170961709717098170991710017101171021710317104171051710617107171081710917110171111711217113171141711517116171171711817119171201712117122171231712417125171261712717128171291713017131171321713317134171351713617137171381713917140171411714217143171441714517146171471714817149171501715117152171531715417155171561715717158171591716017161171621716317164171651716617167171681716917170171711717217173171741717517176171771717817179171801718117182171831718417185171861718717188171891719017191171921719317194171951719617197171981719917200172011720217203172041720517206172071720817209172101721117212172131721417215172161721717218172191722017221172221722317224172251722617227172281722917230172311723217233172341723517236172371723817239172401724117242172431724417245172461724717248172491725017251172521725317254172551725617257172581725917260172611726217263172641726517266172671726817269172701727117272172731727417275172761727717278172791728017281172821728317284172851728617287172881728917290172911729217293172941729517296172971729817299173001730117302173031730417305173061730717308173091731017311173121731317314173151731617317173181731917320173211732217323173241732517326173271732817329173301733117332173331733417335173361733717338173391734017341173421734317344173451734617347173481734917350173511735217353173541735517356173571735817359173601736117362173631736417365173661736717368173691737017371173721737317374173751737617377173781737917380173811738217383173841738517386173871738817389173901739117392173931739417395173961739717398173991740017401174021740317404174051740617407174081740917410174111741217413174141741517416174171741817419174201742117422174231742417425174261742717428174291743017431174321743317434174351743617437174381743917440174411744217443174441744517446174471744817449174501745117452174531745417455174561745717458174591746017461174621746317464174651746617467174681746917470174711747217473174741747517476174771747817479174801748117482174831748417485174861748717488174891749017491174921749317494174951749617497174981749917500175011750217503175041750517506175071750817509175101751117512175131751417515175161751717518175191752017521175221752317524175251752617527175281752917530175311753217533175341753517536175371753817539175401754117542175431754417545175461754717548175491755017551175521755317554175551755617557175581755917560175611756217563175641756517566175671756817569175701757117572175731757417575175761757717578175791758017581175821758317584175851758617587175881758917590175911759217593175941759517596175971759817599176001760117602176031760417605176061760717608176091761017611176121761317614176151761617617176181761917620176211762217623176241762517626176271762817629176301763117632176331763417635176361763717638176391764017641176421764317644176451764617647176481764917650176511765217653176541765517656176571765817659176601766117662176631766417665176661766717668176691767017671176721767317674176751767617677176781767917680176811768217683176841768517686176871768817689176901769117692176931769417695176961769717698176991770017701177021770317704177051770617707177081770917710177111771217713177141771517716177171771817719177201772117722177231772417725177261772717728177291773017731177321773317734177351773617737177381773917740177411774217743177441774517746177471774817749177501775117752177531775417755177561775717758177591776017761177621776317764177651776617767177681776917770177711777217773177741777517776177771777817779177801778117782177831778417785177861778717788177891779017791177921779317794177951779617797177981779917800178011780217803178041780517806178071780817809178101781117812178131781417815178161781717818178191782017821178221782317824178251782617827178281782917830178311783217833178341783517836178371783817839178401784117842178431784417845178461784717848178491785017851178521785317854178551785617857178581785917860178611786217863178641786517866178671786817869178701787117872178731787417875178761787717878178791788017881178821788317884178851788617887178881788917890178911789217893178941789517896178971789817899179001790117902179031790417905179061790717908179091791017911179121791317914179151791617917179181791917920179211792217923179241792517926179271792817929179301793117932179331793417935179361793717938179391794017941179421794317944179451794617947179481794917950179511795217953179541795517956179571795817959179601796117962179631796417965179661796717968179691797017971179721797317974179751797617977179781797917980179811798217983179841798517986179871798817989179901799117992179931799417995179961799717998179991800018001180021800318004180051800618007180081800918010180111801218013180141801518016180171801818019180201802118022180231802418025180261802718028180291803018031180321803318034180351803618037180381803918040180411804218043180441804518046180471804818049180501805118052180531805418055180561805718058180591806018061180621806318064180651806618067180681806918070180711807218073180741807518076180771807818079180801808118082180831808418085180861808718088180891809018091180921809318094180951809618097180981809918100181011810218103181041810518106181071810818109181101811118112181131811418115181161811718118181191812018121181221812318124181251812618127181281812918130181311813218133181341813518136181371813818139181401814118142181431814418145181461814718148181491815018151181521815318154181551815618157181581815918160181611816218163181641816518166181671816818169181701817118172181731817418175181761817718178181791818018181181821818318184181851818618187181881818918190181911819218193181941819518196181971819818199182001820118202182031820418205182061820718208182091821018211182121821318214182151821618217182181821918220182211822218223182241822518226182271822818229182301823118232182331823418235
  1. /**
  2. * llama.cpp - git 059031b8c40e1f4ba60586842c5b1ed3ddf61842
  3. *
  4. * MIT License
  5. *
  6. * Copyright (c) 2023-2024 The ggml authors
  7. *
  8. * Permission is hereby granted, free of charge, to any person obtaining a copy
  9. * of this software and associated documentation files (the "Software"), to deal
  10. * in the Software without restriction, including without limitation the rights
  11. * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  12. * copies of the Software, and to permit persons to whom the Software is
  13. * furnished to do so, subject to the following conditions:
  14. *
  15. * The above copyright notice and this permission notice shall be included in all
  16. * copies or substantial portions of the Software.
  17. *
  18. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  19. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  20. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  21. * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  22. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  23. * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  24. * SOFTWARE.
  25. */
  26. #define LLAMA_API_INTERNAL
  27. #include "llama.h"
  28. #include "unicode.h"
  29. #include "ggml.h"
  30. #include "ggml-alloc.h"
  31. #include "ggml-backend.h"
  32. #ifdef GGML_USE_RPC
  33. # include "ggml-rpc.h"
  34. #endif
  35. #ifdef GGML_USE_CUDA
  36. # include "ggml-cuda.h"
  37. #elif defined(GGML_USE_CLBLAST)
  38. # include "ggml-opencl.h"
  39. #elif defined(GGML_USE_VULKAN)
  40. # include "ggml-vulkan.h"
  41. #elif defined(GGML_USE_SYCL)
  42. # include "ggml-sycl.h"
  43. #elif defined(GGML_USE_KOMPUTE)
  44. # include "ggml-kompute.h"
  45. #endif
  46. #ifdef GGML_USE_METAL
  47. # include "ggml-metal.h"
  48. #endif
  49. #ifdef GGML_USE_MPI
  50. # include "ggml-mpi.h"
  51. #endif
  52. #ifndef QK_K
  53. # ifdef GGML_QKK_64
  54. # define QK_K 64
  55. # else
  56. # define QK_K 256
  57. # endif
  58. #endif
  59. #ifdef __has_include
  60. #if __has_include(<unistd.h>)
  61. #include <unistd.h>
  62. #if defined(_POSIX_MAPPED_FILES)
  63. #include <sys/mman.h>
  64. #include <fcntl.h>
  65. #endif
  66. #if defined(_POSIX_MEMLOCK_RANGE)
  67. #include <sys/resource.h>
  68. #endif
  69. #endif
  70. #endif
  71. #if defined(_WIN32)
  72. #define WIN32_LEAN_AND_MEAN
  73. #ifndef NOMINMAX
  74. #define NOMINMAX
  75. #endif
  76. #include <windows.h>
  77. #ifndef PATH_MAX
  78. #define PATH_MAX MAX_PATH
  79. #endif
  80. #include <io.h>
  81. #endif
  82. #include <algorithm>
  83. #include <array>
  84. #include <cassert>
  85. #include <cctype>
  86. #include <cfloat>
  87. #include <cinttypes>
  88. #include <climits>
  89. #include <cmath>
  90. #include <cstdarg>
  91. #include <cstddef>
  92. #include <cstdint>
  93. #include <cstdio>
  94. #include <cstring>
  95. #include <ctime>
  96. #include <forward_list>
  97. #include <fstream>
  98. #include <functional>
  99. #include <future>
  100. #include <initializer_list>
  101. #include <locale>
  102. #include <map>
  103. #include <memory>
  104. #include <mutex>
  105. #include <numeric>
  106. #include <queue>
  107. #include <random>
  108. #include <regex>
  109. #include <set>
  110. #include <sstream>
  111. #include <thread>
  112. #include <type_traits>
  113. #include <unordered_map>
  114. #if defined(_MSC_VER)
  115. #pragma warning(disable: 4244 4267) // possible loss of data
  116. #endif
  117. #ifdef __GNUC__
  118. #ifdef __MINGW32__
  119. #define LLAMA_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
  120. #else
  121. #define LLAMA_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
  122. #endif
  123. #else
  124. #define LLAMA_ATTRIBUTE_FORMAT(...)
  125. #endif
  126. #define LLAMA_MAX_NODES 8192
  127. #define LLAMA_MAX_EXPERTS 60
  128. //
  129. // logging
  130. //
  131. LLAMA_ATTRIBUTE_FORMAT(2, 3)
  132. static void llama_log_internal (ggml_log_level level, const char* format, ...);
  133. static void llama_log_callback_default(ggml_log_level level, const char * text, void * user_data);
  134. #define LLAMA_LOG_INFO(...) llama_log_internal(GGML_LOG_LEVEL_INFO , __VA_ARGS__)
  135. #define LLAMA_LOG_WARN(...) llama_log_internal(GGML_LOG_LEVEL_WARN , __VA_ARGS__)
  136. #define LLAMA_LOG_ERROR(...) llama_log_internal(GGML_LOG_LEVEL_ERROR, __VA_ARGS__)
  137. //
  138. // helpers
  139. //
  140. static size_t utf8_len(char src) {
  141. const size_t lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4 };
  142. uint8_t highbits = static_cast<uint8_t>(src) >> 4;
  143. return lookup[highbits];
  144. }
  145. static void replace_all(std::string & s, const std::string & search, const std::string & replace) {
  146. std::string result;
  147. for (size_t pos = 0; ; pos += search.length()) {
  148. auto new_pos = s.find(search, pos);
  149. if (new_pos == std::string::npos) {
  150. result += s.substr(pos, s.size() - pos);
  151. break;
  152. }
  153. result += s.substr(pos, new_pos - pos) + replace;
  154. pos = new_pos;
  155. }
  156. s = std::move(result);
  157. }
  158. static bool is_float_close(float a, float b, float abs_tol) {
  159. // Check for non-negative tolerance
  160. if (abs_tol < 0.0) {
  161. throw std::invalid_argument("Tolerance must be non-negative");
  162. }
  163. // Exact equality check
  164. if (a == b) {
  165. return true;
  166. }
  167. // Check for infinities
  168. if (std::isinf(a) || std::isinf(b)) {
  169. return false;
  170. }
  171. // Regular comparison using the provided absolute tolerance
  172. return std::fabs(b - a) <= abs_tol;
  173. }
  174. static void zeros(std::ofstream & file, size_t n) {
  175. char zero = 0;
  176. for (size_t i = 0; i < n; ++i) {
  177. file.write(&zero, 1);
  178. }
  179. }
  180. LLAMA_ATTRIBUTE_FORMAT(1, 2)
  181. static std::string format(const char * fmt, ...) {
  182. va_list ap;
  183. va_list ap2;
  184. va_start(ap, fmt);
  185. va_copy(ap2, ap);
  186. int size = vsnprintf(NULL, 0, fmt, ap);
  187. GGML_ASSERT(size >= 0 && size < INT_MAX); // NOLINT
  188. std::vector<char> buf(size + 1);
  189. int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2);
  190. GGML_ASSERT(size2 == size);
  191. va_end(ap2);
  192. va_end(ap);
  193. return std::string(buf.data(), size);
  194. }
  195. //
  196. // gguf constants (sync with gguf.py)
  197. //
  198. enum llm_arch {
  199. LLM_ARCH_LLAMA,
  200. LLM_ARCH_FALCON,
  201. LLM_ARCH_BAICHUAN,
  202. LLM_ARCH_GROK,
  203. LLM_ARCH_GPT2,
  204. LLM_ARCH_GPTJ,
  205. LLM_ARCH_GPTNEOX,
  206. LLM_ARCH_MPT,
  207. LLM_ARCH_STARCODER,
  208. LLM_ARCH_PERSIMMON,
  209. LLM_ARCH_REFACT,
  210. LLM_ARCH_BERT,
  211. LLM_ARCH_NOMIC_BERT,
  212. LLM_ARCH_JINA_BERT_V2,
  213. LLM_ARCH_BLOOM,
  214. LLM_ARCH_STABLELM,
  215. LLM_ARCH_QWEN,
  216. LLM_ARCH_QWEN2,
  217. LLM_ARCH_QWEN2MOE,
  218. LLM_ARCH_PHI2,
  219. LLM_ARCH_PHI3,
  220. LLM_ARCH_PLAMO,
  221. LLM_ARCH_CODESHELL,
  222. LLM_ARCH_ORION,
  223. LLM_ARCH_INTERNLM2,
  224. LLM_ARCH_MINICPM,
  225. LLM_ARCH_GEMMA,
  226. LLM_ARCH_STARCODER2,
  227. LLM_ARCH_MAMBA,
  228. LLM_ARCH_XVERSE,
  229. LLM_ARCH_COMMAND_R,
  230. LLM_ARCH_DBRX,
  231. LLM_ARCH_OLMO,
  232. LLM_ARCH_UNKNOWN,
  233. };
  234. static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
  235. { LLM_ARCH_LLAMA, "llama" },
  236. { LLM_ARCH_FALCON, "falcon" },
  237. { LLM_ARCH_GROK, "grok" },
  238. { LLM_ARCH_GPT2, "gpt2" },
  239. { LLM_ARCH_GPTJ, "gptj" },
  240. { LLM_ARCH_GPTNEOX, "gptneox" },
  241. { LLM_ARCH_MPT, "mpt" },
  242. { LLM_ARCH_BAICHUAN, "baichuan" },
  243. { LLM_ARCH_STARCODER, "starcoder" },
  244. { LLM_ARCH_PERSIMMON, "persimmon" },
  245. { LLM_ARCH_REFACT, "refact" },
  246. { LLM_ARCH_BERT, "bert" },
  247. { LLM_ARCH_NOMIC_BERT, "nomic-bert" },
  248. { LLM_ARCH_JINA_BERT_V2, "jina-bert-v2" },
  249. { LLM_ARCH_BLOOM, "bloom" },
  250. { LLM_ARCH_STABLELM, "stablelm" },
  251. { LLM_ARCH_QWEN, "qwen" },
  252. { LLM_ARCH_QWEN2, "qwen2" },
  253. { LLM_ARCH_QWEN2MOE, "qwen2moe" },
  254. { LLM_ARCH_PHI2, "phi2" },
  255. { LLM_ARCH_PHI3, "phi3" },
  256. { LLM_ARCH_PLAMO, "plamo" },
  257. { LLM_ARCH_CODESHELL, "codeshell" },
  258. { LLM_ARCH_ORION, "orion" },
  259. { LLM_ARCH_INTERNLM2, "internlm2" },
  260. { LLM_ARCH_MINICPM, "minicpm" },
  261. { LLM_ARCH_GEMMA, "gemma" },
  262. { LLM_ARCH_STARCODER2, "starcoder2" },
  263. { LLM_ARCH_MAMBA, "mamba" },
  264. { LLM_ARCH_XVERSE, "xverse" },
  265. { LLM_ARCH_COMMAND_R, "command-r" },
  266. { LLM_ARCH_DBRX, "dbrx" },
  267. { LLM_ARCH_OLMO, "olmo" },
  268. { LLM_ARCH_UNKNOWN, "(unknown)" },
  269. };
  270. enum llm_kv {
  271. LLM_KV_GENERAL_ARCHITECTURE,
  272. LLM_KV_GENERAL_QUANTIZATION_VERSION,
  273. LLM_KV_GENERAL_ALIGNMENT,
  274. LLM_KV_GENERAL_NAME,
  275. LLM_KV_GENERAL_AUTHOR,
  276. LLM_KV_GENERAL_VERSION,
  277. LLM_KV_GENERAL_URL,
  278. LLM_KV_GENERAL_DESCRIPTION,
  279. LLM_KV_GENERAL_LICENSE,
  280. LLM_KV_GENERAL_SOURCE_URL,
  281. LLM_KV_GENERAL_SOURCE_HF_REPO,
  282. LLM_KV_VOCAB_SIZE,
  283. LLM_KV_CONTEXT_LENGTH,
  284. LLM_KV_EMBEDDING_LENGTH,
  285. LLM_KV_BLOCK_COUNT,
  286. LLM_KV_FEED_FORWARD_LENGTH,
  287. LLM_KV_USE_PARALLEL_RESIDUAL,
  288. LLM_KV_TENSOR_DATA_LAYOUT,
  289. LLM_KV_EXPERT_COUNT,
  290. LLM_KV_EXPERT_USED_COUNT,
  291. LLM_KV_POOLING_TYPE,
  292. LLM_KV_LOGIT_SCALE,
  293. LLM_KV_ATTENTION_HEAD_COUNT,
  294. LLM_KV_ATTENTION_HEAD_COUNT_KV,
  295. LLM_KV_ATTENTION_MAX_ALIBI_BIAS,
  296. LLM_KV_ATTENTION_CLAMP_KQV,
  297. LLM_KV_ATTENTION_KEY_LENGTH,
  298. LLM_KV_ATTENTION_VALUE_LENGTH,
  299. LLM_KV_ATTENTION_LAYERNORM_EPS,
  300. LLM_KV_ATTENTION_LAYERNORM_RMS_EPS,
  301. LLM_KV_ATTENTION_CAUSAL,
  302. LLM_KV_ROPE_DIMENSION_COUNT,
  303. LLM_KV_ROPE_FREQ_BASE,
  304. LLM_KV_ROPE_SCALE_LINEAR,
  305. LLM_KV_ROPE_SCALING_TYPE,
  306. LLM_KV_ROPE_SCALING_FACTOR,
  307. LLM_KV_ROPE_SCALING_ORIG_CTX_LEN,
  308. LLM_KV_ROPE_SCALING_FINETUNED,
  309. LLM_KV_SPLIT_NO,
  310. LLM_KV_SPLIT_COUNT,
  311. LLM_KV_SPLIT_TENSORS_COUNT,
  312. LLM_KV_SSM_INNER_SIZE,
  313. LLM_KV_SSM_CONV_KERNEL,
  314. LLM_KV_SSM_STATE_SIZE,
  315. LLM_KV_SSM_TIME_STEP_RANK,
  316. LLM_KV_TOKENIZER_MODEL,
  317. LLM_KV_TOKENIZER_PRE,
  318. LLM_KV_TOKENIZER_LIST,
  319. LLM_KV_TOKENIZER_TOKEN_TYPE,
  320. LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT,
  321. LLM_KV_TOKENIZER_SCORES,
  322. LLM_KV_TOKENIZER_MERGES,
  323. LLM_KV_TOKENIZER_BOS_ID,
  324. LLM_KV_TOKENIZER_EOS_ID,
  325. LLM_KV_TOKENIZER_UNK_ID,
  326. LLM_KV_TOKENIZER_SEP_ID,
  327. LLM_KV_TOKENIZER_PAD_ID,
  328. LLM_KV_TOKENIZER_CLS_ID,
  329. LLM_KV_TOKENIZER_MASK_ID,
  330. LLM_KV_TOKENIZER_ADD_BOS,
  331. LLM_KV_TOKENIZER_ADD_EOS,
  332. LLM_KV_TOKENIZER_ADD_PREFIX,
  333. LLM_KV_TOKENIZER_HF_JSON,
  334. LLM_KV_TOKENIZER_RWKV,
  335. LLM_KV_TOKENIZER_PREFIX_ID,
  336. LLM_KV_TOKENIZER_SUFFIX_ID,
  337. LLM_KV_TOKENIZER_MIDDLE_ID,
  338. LLM_KV_TOKENIZER_EOT_ID,
  339. };
  340. static const std::map<llm_kv, const char *> LLM_KV_NAMES = {
  341. { LLM_KV_GENERAL_ARCHITECTURE, "general.architecture" },
  342. { LLM_KV_GENERAL_QUANTIZATION_VERSION, "general.quantization_version" },
  343. { LLM_KV_GENERAL_ALIGNMENT, "general.alignment" },
  344. { LLM_KV_GENERAL_NAME, "general.name" },
  345. { LLM_KV_GENERAL_AUTHOR, "general.author" },
  346. { LLM_KV_GENERAL_VERSION, "general.version" },
  347. { LLM_KV_GENERAL_URL, "general.url" },
  348. { LLM_KV_GENERAL_DESCRIPTION, "general.description" },
  349. { LLM_KV_GENERAL_LICENSE, "general.license" },
  350. { LLM_KV_GENERAL_SOURCE_URL, "general.source.url" },
  351. { LLM_KV_GENERAL_SOURCE_HF_REPO, "general.source.huggingface.repository" },
  352. { LLM_KV_VOCAB_SIZE, "%s.vocab_size" },
  353. { LLM_KV_CONTEXT_LENGTH, "%s.context_length" },
  354. { LLM_KV_EMBEDDING_LENGTH, "%s.embedding_length" },
  355. { LLM_KV_BLOCK_COUNT, "%s.block_count" },
  356. { LLM_KV_FEED_FORWARD_LENGTH, "%s.feed_forward_length" },
  357. { LLM_KV_USE_PARALLEL_RESIDUAL, "%s.use_parallel_residual" },
  358. { LLM_KV_TENSOR_DATA_LAYOUT, "%s.tensor_data_layout" },
  359. { LLM_KV_EXPERT_COUNT, "%s.expert_count" },
  360. { LLM_KV_EXPERT_USED_COUNT, "%s.expert_used_count" },
  361. { LLM_KV_POOLING_TYPE , "%s.pooling_type" },
  362. { LLM_KV_LOGIT_SCALE, "%s.logit_scale" },
  363. { LLM_KV_ATTENTION_HEAD_COUNT, "%s.attention.head_count" },
  364. { LLM_KV_ATTENTION_HEAD_COUNT_KV, "%s.attention.head_count_kv" },
  365. { LLM_KV_ATTENTION_MAX_ALIBI_BIAS, "%s.attention.max_alibi_bias" },
  366. { LLM_KV_ATTENTION_CLAMP_KQV, "%s.attention.clamp_kqv" },
  367. { LLM_KV_ATTENTION_KEY_LENGTH, "%s.attention.key_length" },
  368. { LLM_KV_ATTENTION_VALUE_LENGTH, "%s.attention.value_length" },
  369. { LLM_KV_ATTENTION_LAYERNORM_EPS, "%s.attention.layer_norm_epsilon" },
  370. { LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, "%s.attention.layer_norm_rms_epsilon" },
  371. { LLM_KV_ATTENTION_CAUSAL, "%s.attention.causal" },
  372. { LLM_KV_ROPE_DIMENSION_COUNT, "%s.rope.dimension_count" },
  373. { LLM_KV_ROPE_FREQ_BASE, "%s.rope.freq_base" },
  374. { LLM_KV_ROPE_SCALE_LINEAR, "%s.rope.scale_linear" },
  375. { LLM_KV_ROPE_SCALING_TYPE, "%s.rope.scaling.type" },
  376. { LLM_KV_ROPE_SCALING_FACTOR, "%s.rope.scaling.factor" },
  377. { LLM_KV_ROPE_SCALING_ORIG_CTX_LEN, "%s.rope.scaling.original_context_length" },
  378. { LLM_KV_ROPE_SCALING_FINETUNED, "%s.rope.scaling.finetuned" },
  379. { LLM_KV_SPLIT_NO, "split.no" },
  380. { LLM_KV_SPLIT_COUNT, "split.count" },
  381. { LLM_KV_SPLIT_TENSORS_COUNT, "split.tensors.count" },
  382. { LLM_KV_SSM_CONV_KERNEL, "%s.ssm.conv_kernel" },
  383. { LLM_KV_SSM_INNER_SIZE, "%s.ssm.inner_size" },
  384. { LLM_KV_SSM_STATE_SIZE, "%s.ssm.state_size" },
  385. { LLM_KV_SSM_TIME_STEP_RANK, "%s.ssm.time_step_rank" },
  386. { LLM_KV_TOKENIZER_MODEL, "tokenizer.ggml.model" },
  387. { LLM_KV_TOKENIZER_PRE, "tokenizer.ggml.pre" },
  388. { LLM_KV_TOKENIZER_LIST, "tokenizer.ggml.tokens" },
  389. { LLM_KV_TOKENIZER_TOKEN_TYPE, "tokenizer.ggml.token_type" },
  390. { LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, "tokenizer.ggml.token_type_count" },
  391. { LLM_KV_TOKENIZER_SCORES, "tokenizer.ggml.scores" },
  392. { LLM_KV_TOKENIZER_MERGES, "tokenizer.ggml.merges" },
  393. { LLM_KV_TOKENIZER_BOS_ID, "tokenizer.ggml.bos_token_id" },
  394. { LLM_KV_TOKENIZER_EOS_ID, "tokenizer.ggml.eos_token_id" },
  395. { LLM_KV_TOKENIZER_UNK_ID, "tokenizer.ggml.unknown_token_id" },
  396. { LLM_KV_TOKENIZER_SEP_ID, "tokenizer.ggml.seperator_token_id" },
  397. { LLM_KV_TOKENIZER_PAD_ID, "tokenizer.ggml.padding_token_id" },
  398. { LLM_KV_TOKENIZER_CLS_ID, "tokenizer.ggml.cls_token_id" },
  399. { LLM_KV_TOKENIZER_MASK_ID, "tokenizer.ggml.mask_token_id" },
  400. { LLM_KV_TOKENIZER_ADD_BOS, "tokenizer.ggml.add_bos_token" },
  401. { LLM_KV_TOKENIZER_ADD_EOS, "tokenizer.ggml.add_eos_token" },
  402. { LLM_KV_TOKENIZER_ADD_PREFIX, "tokenizer.ggml.add_space_prefix" },
  403. { LLM_KV_TOKENIZER_HF_JSON, "tokenizer.huggingface.json" },
  404. { LLM_KV_TOKENIZER_RWKV, "tokenizer.rwkv.world" },
  405. { LLM_KV_TOKENIZER_PREFIX_ID, "tokenizer.ggml.prefix_token_id" },
  406. { LLM_KV_TOKENIZER_SUFFIX_ID, "tokenizer.ggml.suffix_token_id" },
  407. { LLM_KV_TOKENIZER_MIDDLE_ID, "tokenizer.ggml.middle_token_id" },
  408. { LLM_KV_TOKENIZER_EOT_ID, "tokenizer.ggml.eot_token_id" },
  409. };
  410. struct LLM_KV {
  411. LLM_KV(llm_arch arch) : arch(arch) {}
  412. llm_arch arch;
  413. std::string operator()(llm_kv kv) const {
  414. return ::format(LLM_KV_NAMES.at(kv), LLM_ARCH_NAMES.at(arch));
  415. }
  416. };
  417. enum llm_tensor {
  418. LLM_TENSOR_TOKEN_EMBD,
  419. LLM_TENSOR_TOKEN_EMBD_NORM,
  420. LLM_TENSOR_TOKEN_TYPES,
  421. LLM_TENSOR_POS_EMBD,
  422. LLM_TENSOR_OUTPUT,
  423. LLM_TENSOR_OUTPUT_NORM,
  424. LLM_TENSOR_ROPE_FREQS,
  425. LLM_TENSOR_ATTN_Q,
  426. LLM_TENSOR_ATTN_K,
  427. LLM_TENSOR_ATTN_V,
  428. LLM_TENSOR_ATTN_QKV,
  429. LLM_TENSOR_ATTN_OUT,
  430. LLM_TENSOR_ATTN_NORM,
  431. LLM_TENSOR_ATTN_NORM_2,
  432. LLM_TENSOR_ATTN_OUT_NORM,
  433. LLM_TENSOR_ATTN_ROT_EMBD,
  434. LLM_TENSOR_FFN_GATE_INP,
  435. LLM_TENSOR_FFN_GATE_INP_SHEXP,
  436. LLM_TENSOR_FFN_NORM,
  437. LLM_TENSOR_FFN_GATE,
  438. LLM_TENSOR_FFN_DOWN,
  439. LLM_TENSOR_FFN_UP,
  440. LLM_TENSOR_FFN_ACT,
  441. LLM_TENSOR_FFN_DOWN_EXP, // split experts for backward compatibility
  442. LLM_TENSOR_FFN_GATE_EXP,
  443. LLM_TENSOR_FFN_UP_EXP,
  444. LLM_TENSOR_FFN_DOWN_EXPS, // merged experts
  445. LLM_TENSOR_FFN_GATE_EXPS,
  446. LLM_TENSOR_FFN_UP_EXPS,
  447. LLM_TENSOR_FFN_DOWN_SHEXP,
  448. LLM_TENSOR_FFN_GATE_SHEXP,
  449. LLM_TENSOR_FFN_UP_SHEXP,
  450. LLM_TENSOR_ATTN_Q_NORM,
  451. LLM_TENSOR_ATTN_K_NORM,
  452. LLM_TENSOR_LAYER_OUT_NORM,
  453. LLM_TENSOR_SSM_IN,
  454. LLM_TENSOR_SSM_CONV1D,
  455. LLM_TENSOR_SSM_X,
  456. LLM_TENSOR_SSM_DT,
  457. LLM_TENSOR_SSM_A,
  458. LLM_TENSOR_SSM_D,
  459. LLM_TENSOR_SSM_OUT,
  460. };
  461. static const std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NAMES = {
  462. {
  463. LLM_ARCH_LLAMA,
  464. {
  465. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  466. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  467. { LLM_TENSOR_OUTPUT, "output" },
  468. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  469. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  470. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  471. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  472. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  473. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  474. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  475. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  476. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  477. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  478. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  479. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  480. { LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" },
  481. { LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" },
  482. { LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" },
  483. { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
  484. { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
  485. { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
  486. },
  487. },
  488. {
  489. LLM_ARCH_BAICHUAN,
  490. {
  491. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  492. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  493. { LLM_TENSOR_OUTPUT, "output" },
  494. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  495. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  496. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  497. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  498. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  499. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  500. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  501. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  502. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  503. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  504. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  505. },
  506. },
  507. {
  508. LLM_ARCH_FALCON,
  509. {
  510. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  511. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  512. { LLM_TENSOR_OUTPUT, "output" },
  513. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  514. { LLM_TENSOR_ATTN_NORM_2, "blk.%d.attn_norm_2" },
  515. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  516. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  517. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  518. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  519. },
  520. },
  521. {
  522. LLM_ARCH_GROK,
  523. {
  524. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  525. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  526. { LLM_TENSOR_OUTPUT, "output" },
  527. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  528. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  529. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  530. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  531. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  532. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  533. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  534. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  535. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  536. { LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" },
  537. { LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" },
  538. { LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" },
  539. { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
  540. { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
  541. { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
  542. { LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" },
  543. { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
  544. },
  545. },
  546. {
  547. LLM_ARCH_GPT2,
  548. {
  549. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  550. { LLM_TENSOR_POS_EMBD, "position_embd" },
  551. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  552. { LLM_TENSOR_OUTPUT, "output" },
  553. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  554. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  555. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  556. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  557. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  558. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  559. },
  560. },
  561. {
  562. LLM_ARCH_GPTJ,
  563. {
  564. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  565. },
  566. },
  567. {
  568. LLM_ARCH_GPTNEOX,
  569. {
  570. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  571. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  572. { LLM_TENSOR_OUTPUT, "output" },
  573. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  574. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  575. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  576. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  577. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  578. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  579. },
  580. },
  581. {
  582. LLM_ARCH_PERSIMMON,
  583. {
  584. { LLM_TENSOR_TOKEN_EMBD, "token_embd"},
  585. { LLM_TENSOR_OUTPUT_NORM, "output_norm"},
  586. { LLM_TENSOR_OUTPUT, "output"},
  587. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm"},
  588. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv"},
  589. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output"},
  590. { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm"},
  591. { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm"},
  592. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm"},
  593. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down"},
  594. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up"},
  595. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd"},
  596. },
  597. },
  598. {
  599. LLM_ARCH_MPT,
  600. {
  601. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  602. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  603. { LLM_TENSOR_OUTPUT, "output"},
  604. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  605. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  606. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  607. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  608. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  609. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  610. { LLM_TENSOR_FFN_ACT, "blk.%d.ffn.act" },
  611. { LLM_TENSOR_POS_EMBD, "position_embd" },
  612. { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm"},
  613. { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm"},
  614. },
  615. },
  616. {
  617. LLM_ARCH_STARCODER,
  618. {
  619. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  620. { LLM_TENSOR_POS_EMBD, "position_embd" },
  621. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  622. { LLM_TENSOR_OUTPUT, "output" },
  623. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  624. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  625. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  626. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  627. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  628. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  629. },
  630. },
  631. {
  632. LLM_ARCH_REFACT,
  633. {
  634. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  635. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  636. { LLM_TENSOR_OUTPUT, "output" },
  637. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  638. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  639. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  640. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  641. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  642. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  643. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  644. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  645. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  646. },
  647. },
  648. {
  649. LLM_ARCH_BERT,
  650. {
  651. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  652. { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
  653. { LLM_TENSOR_TOKEN_TYPES, "token_types" },
  654. { LLM_TENSOR_POS_EMBD, "position_embd" },
  655. { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
  656. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  657. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  658. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  659. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  660. { LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" },
  661. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  662. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  663. },
  664. },
  665. {
  666. LLM_ARCH_NOMIC_BERT,
  667. {
  668. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  669. { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
  670. { LLM_TENSOR_TOKEN_TYPES, "token_types" },
  671. { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
  672. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  673. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  674. { LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" },
  675. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  676. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  677. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  678. },
  679. },
  680. {
  681. LLM_ARCH_JINA_BERT_V2,
  682. {
  683. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  684. { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
  685. { LLM_TENSOR_TOKEN_TYPES, "token_types" },
  686. { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
  687. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  688. { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" },
  689. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  690. { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
  691. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  692. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  693. { LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" },
  694. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  695. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  696. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  697. },
  698. },
  699. {
  700. LLM_ARCH_BLOOM,
  701. {
  702. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  703. { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
  704. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  705. { LLM_TENSOR_OUTPUT, "output" },
  706. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  707. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  708. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  709. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  710. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  711. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  712. },
  713. },
  714. {
  715. LLM_ARCH_STABLELM,
  716. {
  717. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  718. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  719. { LLM_TENSOR_OUTPUT, "output" },
  720. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  721. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  722. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  723. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  724. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  725. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  726. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  727. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  728. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  729. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  730. { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" },
  731. { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
  732. },
  733. },
  734. {
  735. LLM_ARCH_QWEN,
  736. {
  737. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  738. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  739. { LLM_TENSOR_OUTPUT, "output" },
  740. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  741. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  742. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  743. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  744. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  745. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  746. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  747. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  748. },
  749. },
  750. {
  751. LLM_ARCH_QWEN2,
  752. {
  753. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  754. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  755. { LLM_TENSOR_OUTPUT, "output" },
  756. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  757. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  758. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  759. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  760. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  761. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  762. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  763. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  764. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  765. },
  766. },
  767. {
  768. LLM_ARCH_QWEN2MOE,
  769. {
  770. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  771. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  772. { LLM_TENSOR_OUTPUT, "output" },
  773. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  774. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  775. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  776. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  777. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  778. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  779. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  780. { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
  781. { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
  782. { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
  783. { LLM_TENSOR_FFN_GATE_INP_SHEXP, "blk.%d.ffn_gate_inp_shexp" },
  784. { LLM_TENSOR_FFN_GATE_SHEXP, "blk.%d.ffn_gate_shexp" },
  785. { LLM_TENSOR_FFN_DOWN_SHEXP, "blk.%d.ffn_down_shexp" },
  786. { LLM_TENSOR_FFN_UP_SHEXP, "blk.%d.ffn_up_shexp" },
  787. },
  788. },
  789. {
  790. LLM_ARCH_PHI2,
  791. {
  792. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  793. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  794. { LLM_TENSOR_OUTPUT, "output" },
  795. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  796. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  797. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  798. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  799. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  800. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  801. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  802. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  803. },
  804. },
  805. {
  806. LLM_ARCH_PHI3,
  807. {
  808. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  809. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  810. { LLM_TENSOR_OUTPUT, "output" },
  811. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  812. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  813. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  814. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  815. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  816. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  817. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  818. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  819. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  820. },
  821. },
  822. {
  823. LLM_ARCH_PLAMO,
  824. {
  825. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  826. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  827. { LLM_TENSOR_OUTPUT, "output" },
  828. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  829. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  830. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  831. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  832. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  833. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  834. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  835. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  836. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  837. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  838. },
  839. },
  840. {
  841. LLM_ARCH_CODESHELL,
  842. {
  843. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  844. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  845. { LLM_TENSOR_OUTPUT, "output" },
  846. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  847. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  848. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  849. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  850. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  851. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  852. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  853. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  854. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  855. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  856. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  857. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  858. },
  859. },
  860. {
  861. LLM_ARCH_ORION,
  862. {
  863. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  864. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  865. { LLM_TENSOR_OUTPUT, "output" },
  866. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  867. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  868. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  869. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  870. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  871. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  872. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  873. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  874. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  875. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  876. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  877. },
  878. },
  879. {
  880. LLM_ARCH_INTERNLM2,
  881. {
  882. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  883. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  884. { LLM_TENSOR_OUTPUT, "output" },
  885. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  886. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  887. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  888. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  889. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  890. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  891. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  892. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  893. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  894. },
  895. },
  896. {
  897. LLM_ARCH_MINICPM,
  898. {
  899. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  900. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  901. { LLM_TENSOR_OUTPUT, "output" },
  902. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  903. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  904. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  905. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  906. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  907. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  908. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  909. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  910. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  911. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  912. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  913. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  914. { LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" },
  915. { LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" },
  916. { LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" },
  917. },
  918. },
  919. {
  920. LLM_ARCH_GEMMA,
  921. {
  922. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  923. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  924. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  925. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  926. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  927. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  928. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  929. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  930. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  931. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  932. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  933. },
  934. },
  935. {
  936. LLM_ARCH_STARCODER2,
  937. {
  938. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  939. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  940. { LLM_TENSOR_OUTPUT, "output" },
  941. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  942. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  943. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  944. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  945. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  946. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  947. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  948. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  949. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  950. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  951. },
  952. },
  953. {
  954. LLM_ARCH_MAMBA,
  955. {
  956. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  957. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  958. { LLM_TENSOR_OUTPUT, "output" },
  959. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  960. { LLM_TENSOR_SSM_IN, "blk.%d.ssm_in" },
  961. { LLM_TENSOR_SSM_CONV1D, "blk.%d.ssm_conv1d" },
  962. { LLM_TENSOR_SSM_X, "blk.%d.ssm_x" },
  963. { LLM_TENSOR_SSM_DT, "blk.%d.ssm_dt" },
  964. { LLM_TENSOR_SSM_A, "blk.%d.ssm_a" },
  965. { LLM_TENSOR_SSM_D, "blk.%d.ssm_d" },
  966. { LLM_TENSOR_SSM_OUT, "blk.%d.ssm_out" },
  967. },
  968. },
  969. {
  970. LLM_ARCH_XVERSE,
  971. {
  972. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  973. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  974. { LLM_TENSOR_OUTPUT, "output" },
  975. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  976. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  977. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  978. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  979. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  980. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  981. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  982. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  983. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  984. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  985. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  986. },
  987. },
  988. {
  989. LLM_ARCH_COMMAND_R,
  990. {
  991. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  992. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  993. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  994. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  995. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  996. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  997. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  998. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  999. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  1000. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  1001. { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" },
  1002. { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
  1003. },
  1004. },
  1005. {
  1006. LLM_ARCH_DBRX,
  1007. {
  1008. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  1009. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  1010. { LLM_TENSOR_OUTPUT, "output" },
  1011. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  1012. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  1013. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  1014. { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
  1015. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  1016. { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
  1017. { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
  1018. { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
  1019. },
  1020. },
  1021. {
  1022. LLM_ARCH_OLMO,
  1023. {
  1024. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  1025. { LLM_TENSOR_OUTPUT, "output" },
  1026. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  1027. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  1028. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  1029. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  1030. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  1031. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  1032. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  1033. },
  1034. },
  1035. {
  1036. LLM_ARCH_UNKNOWN,
  1037. {
  1038. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  1039. },
  1040. },
  1041. };
  1042. static llm_arch llm_arch_from_string(const std::string & name) {
  1043. for (const auto & kv : LLM_ARCH_NAMES) { // NOLINT
  1044. if (kv.second == name) {
  1045. return kv.first;
  1046. }
  1047. }
  1048. return LLM_ARCH_UNKNOWN;
  1049. }
  1050. // helper to handle gguf constants
  1051. // usage:
  1052. //
  1053. // const auto tn = LLM_TN(LLM_ARCH_LLAMA);
  1054. //
  1055. // std::string name = tn(LLM_TENSOR_OUTPUT); -> "output"
  1056. // std::string name = tn(LLM_TENSOR_TOKEN_EMBD, "bias"); -> "token_embd.bias"
  1057. // std::string name = tn(LLM_TENSOR_ATTN_NORM, "weight", 3); -> "blk.3.attn_norm.weight"
  1058. //
  1059. struct LLM_TN {
  1060. LLM_TN(llm_arch arch) : arch(arch) {}
  1061. llm_arch arch;
  1062. std::string operator()(llm_tensor tensor) const {
  1063. if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
  1064. return "__missing__";
  1065. }
  1066. return LLM_TENSOR_NAMES.at(arch).at(tensor);
  1067. }
  1068. std::string operator()(llm_tensor tensor, const std::string & suffix) const {
  1069. if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
  1070. return "__missing__";
  1071. }
  1072. return LLM_TENSOR_NAMES.at(arch).at(tensor) + "." + suffix;
  1073. }
  1074. std::string operator()(llm_tensor tensor, int bid) const {
  1075. if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
  1076. return "__missing__";
  1077. }
  1078. return ::format(LLM_TENSOR_NAMES.at(arch).at(tensor).c_str(), bid);
  1079. }
  1080. std::string operator()(llm_tensor tensor, const std::string & suffix, int bid) const {
  1081. if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
  1082. return "__missing__";
  1083. }
  1084. return ::format(LLM_TENSOR_NAMES.at(arch).at(tensor).c_str(), bid) + "." + suffix;
  1085. }
  1086. std::string operator()(llm_tensor tensor, const std::string & suffix, int bid, int xid) const {
  1087. if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
  1088. return "__missing__";
  1089. }
  1090. return ::format(LLM_TENSOR_NAMES.at(arch).at(tensor).c_str(), bid, xid) + "." + suffix;
  1091. }
  1092. };
  1093. //
  1094. // gguf helpers
  1095. //
  1096. static const std::map<llama_rope_scaling_type, const char *> LLAMA_ROPE_SCALING_TYPES = {
  1097. { LLAMA_ROPE_SCALING_TYPE_NONE, "none" },
  1098. { LLAMA_ROPE_SCALING_TYPE_LINEAR, "linear" },
  1099. { LLAMA_ROPE_SCALING_TYPE_YARN, "yarn" },
  1100. };
  1101. static llama_rope_scaling_type llama_rope_scaling_type_from_string(const std::string & name) {
  1102. for (const auto & kv : LLAMA_ROPE_SCALING_TYPES) {
  1103. if (kv.second == name) {
  1104. return (llama_rope_scaling_type) kv.first;
  1105. }
  1106. }
  1107. return LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED;
  1108. }
  1109. static std::string gguf_data_to_str(enum gguf_type type, const void * data, int i) {
  1110. switch (type) {
  1111. case GGUF_TYPE_UINT8: return std::to_string(((const uint8_t *)data)[i]);
  1112. case GGUF_TYPE_INT8: return std::to_string(((const int8_t *)data)[i]);
  1113. case GGUF_TYPE_UINT16: return std::to_string(((const uint16_t *)data)[i]);
  1114. case GGUF_TYPE_INT16: return std::to_string(((const int16_t *)data)[i]);
  1115. case GGUF_TYPE_UINT32: return std::to_string(((const uint32_t *)data)[i]);
  1116. case GGUF_TYPE_INT32: return std::to_string(((const int32_t *)data)[i]);
  1117. case GGUF_TYPE_UINT64: return std::to_string(((const uint64_t *)data)[i]);
  1118. case GGUF_TYPE_INT64: return std::to_string(((const int64_t *)data)[i]);
  1119. case GGUF_TYPE_FLOAT32: return std::to_string(((const float *)data)[i]);
  1120. case GGUF_TYPE_FLOAT64: return std::to_string(((const double *)data)[i]);
  1121. case GGUF_TYPE_BOOL: return ((const bool *)data)[i] ? "true" : "false";
  1122. default: return format("unknown type %d", type);
  1123. }
  1124. }
  1125. static std::string gguf_kv_to_str(const struct gguf_context * ctx_gguf, int i) {
  1126. const enum gguf_type type = gguf_get_kv_type(ctx_gguf, i);
  1127. switch (type) {
  1128. case GGUF_TYPE_STRING:
  1129. return gguf_get_val_str(ctx_gguf, i);
  1130. case GGUF_TYPE_ARRAY:
  1131. {
  1132. const enum gguf_type arr_type = gguf_get_arr_type(ctx_gguf, i);
  1133. int arr_n = gguf_get_arr_n(ctx_gguf, i);
  1134. const void * data = gguf_get_arr_data(ctx_gguf, i);
  1135. std::stringstream ss;
  1136. ss << "[";
  1137. for (int j = 0; j < arr_n; j++) {
  1138. if (arr_type == GGUF_TYPE_STRING) {
  1139. std::string val = gguf_get_arr_str(ctx_gguf, i, j);
  1140. // escape quotes
  1141. replace_all(val, "\\", "\\\\");
  1142. replace_all(val, "\"", "\\\"");
  1143. ss << '"' << val << '"';
  1144. } else if (arr_type == GGUF_TYPE_ARRAY) {
  1145. ss << "???";
  1146. } else {
  1147. ss << gguf_data_to_str(arr_type, data, j);
  1148. }
  1149. if (j < arr_n - 1) {
  1150. ss << ", ";
  1151. }
  1152. }
  1153. ss << "]";
  1154. return ss.str();
  1155. }
  1156. default:
  1157. return gguf_data_to_str(type, gguf_get_val_data(ctx_gguf, i), 0);
  1158. }
  1159. }
  1160. //
  1161. // llama helpers
  1162. //
  1163. #if defined(_WIN32)
  1164. static std::string llama_format_win_err(DWORD err) {
  1165. LPSTR buf;
  1166. size_t size = FormatMessageA(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS,
  1167. NULL, err, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), (LPSTR)&buf, 0, NULL);
  1168. if (!size) {
  1169. return "FormatMessageA failed";
  1170. }
  1171. std::string ret(buf, size);
  1172. LocalFree(buf);
  1173. return ret;
  1174. }
  1175. #endif
  1176. template <typename T>
  1177. struct no_init {
  1178. T value;
  1179. no_init() { /* do nothing */ }
  1180. };
  1181. struct llama_file {
  1182. // use FILE * so we don't have to re-open the file to mmap
  1183. FILE * fp;
  1184. size_t size;
  1185. llama_file(const char * fname, const char * mode) {
  1186. fp = ggml_fopen(fname, mode);
  1187. if (fp == NULL) {
  1188. throw std::runtime_error(format("failed to open %s: %s", fname, strerror(errno)));
  1189. }
  1190. seek(0, SEEK_END);
  1191. size = tell();
  1192. seek(0, SEEK_SET);
  1193. }
  1194. size_t tell() const {
  1195. #ifdef _WIN32
  1196. __int64 ret = _ftelli64(fp);
  1197. #else
  1198. long ret = std::ftell(fp);
  1199. #endif
  1200. GGML_ASSERT(ret != -1); // this really shouldn't fail
  1201. return (size_t) ret;
  1202. }
  1203. void seek(size_t offset, int whence) const {
  1204. #ifdef _WIN32
  1205. int ret = _fseeki64(fp, (__int64) offset, whence);
  1206. #else
  1207. int ret = std::fseek(fp, (long) offset, whence);
  1208. #endif
  1209. GGML_ASSERT(ret == 0); // same
  1210. }
  1211. void read_raw(void * ptr, size_t len) const {
  1212. if (len == 0) {
  1213. return;
  1214. }
  1215. errno = 0;
  1216. std::size_t ret = std::fread(ptr, len, 1, fp);
  1217. if (ferror(fp)) {
  1218. throw std::runtime_error(format("read error: %s", strerror(errno)));
  1219. }
  1220. if (ret != 1) {
  1221. throw std::runtime_error("unexpectedly reached end of file");
  1222. }
  1223. }
  1224. uint32_t read_u32() const {
  1225. uint32_t ret;
  1226. read_raw(&ret, sizeof(ret));
  1227. return ret;
  1228. }
  1229. void write_raw(const void * ptr, size_t len) const {
  1230. if (len == 0) {
  1231. return;
  1232. }
  1233. errno = 0;
  1234. size_t ret = std::fwrite(ptr, len, 1, fp);
  1235. if (ret != 1) {
  1236. throw std::runtime_error(format("write error: %s", strerror(errno)));
  1237. }
  1238. }
  1239. void write_u32(std::uint32_t val) const {
  1240. write_raw(&val, sizeof(val));
  1241. }
  1242. ~llama_file() {
  1243. if (fp) {
  1244. std::fclose(fp);
  1245. }
  1246. }
  1247. };
  1248. using llama_files = std::vector<std::unique_ptr<llama_file>>;
  1249. struct llama_mmap {
  1250. void * addr;
  1251. size_t size;
  1252. llama_mmap(const llama_mmap &) = delete;
  1253. #ifdef _POSIX_MAPPED_FILES
  1254. static constexpr bool SUPPORTED = true;
  1255. // list of mapped fragments (first_offset, last_offset)
  1256. std::vector<std::pair<size_t, size_t>> mapped_fragments;
  1257. llama_mmap(struct llama_file * file, size_t prefetch = (size_t) -1 /* -1 = max value */, bool numa = false) {
  1258. size = file->size;
  1259. int fd = fileno(file->fp);
  1260. int flags = MAP_SHARED;
  1261. // prefetch/readahead impairs performance on NUMA systems
  1262. if (numa) { prefetch = 0; }
  1263. #ifdef __linux__
  1264. // advise the kernel to read the file sequentially (increases readahead)
  1265. if (posix_fadvise(fd, 0, 0, POSIX_FADV_SEQUENTIAL)) {
  1266. LLAMA_LOG_WARN("warning: posix_fadvise(.., POSIX_FADV_SEQUENTIAL) failed: %s\n",
  1267. strerror(errno));
  1268. }
  1269. if (prefetch) { flags |= MAP_POPULATE; }
  1270. #endif
  1271. addr = mmap(NULL, file->size, PROT_READ, flags, fd, 0);
  1272. if (addr == MAP_FAILED) { // NOLINT
  1273. throw std::runtime_error(format("mmap failed: %s", strerror(errno)));
  1274. }
  1275. if (prefetch > 0) {
  1276. // advise the kernel to preload the mapped memory
  1277. if (posix_madvise(addr, std::min(file->size, prefetch), POSIX_MADV_WILLNEED)) {
  1278. LLAMA_LOG_WARN("warning: posix_madvise(.., POSIX_MADV_WILLNEED) failed: %s\n",
  1279. strerror(errno));
  1280. }
  1281. }
  1282. if (numa) {
  1283. // advise the kernel not to use readahead
  1284. // (because the next page might not belong on the same node)
  1285. if (posix_madvise(addr, file->size, POSIX_MADV_RANDOM)) {
  1286. LLAMA_LOG_WARN("warning: posix_madvise(.., POSIX_MADV_RANDOM) failed: %s\n",
  1287. strerror(errno));
  1288. }
  1289. }
  1290. // initialize list of mapped_fragments
  1291. mapped_fragments.emplace_back(0, file->size);
  1292. }
  1293. static void align_range(size_t * first, size_t * last, size_t page_size) {
  1294. // align first to the next page
  1295. size_t offset_in_page = *first & (page_size - 1);
  1296. size_t offset_to_page = offset_in_page == 0 ? 0 : page_size - offset_in_page;
  1297. *first += offset_to_page;
  1298. // align last to the previous page
  1299. *last = *last & ~(page_size - 1);
  1300. if (*last <= *first) {
  1301. *last = *first;
  1302. }
  1303. }
  1304. // partially unmap the file in the range [first, last)
  1305. void unmap_fragment(size_t first, size_t last) {
  1306. // note: this function must not be called multiple times with overlapping ranges
  1307. // otherwise, there is a risk of invalidating addresses that have been repurposed for other mappings
  1308. int page_size = sysconf(_SC_PAGESIZE);
  1309. align_range(&first, &last, page_size);
  1310. size_t len = last - first;
  1311. if (len == 0) {
  1312. return;
  1313. }
  1314. GGML_ASSERT(first % page_size == 0);
  1315. GGML_ASSERT(last % page_size == 0);
  1316. GGML_ASSERT(last > first);
  1317. void * next_page_start = (uint8_t *) addr + first;
  1318. // unmap the range
  1319. if (munmap(next_page_start, len)) {
  1320. LLAMA_LOG_WARN("warning: munmap failed: %s\n", strerror(errno));
  1321. }
  1322. // update the list of mapped fragments to avoid unmapping the same range again in the destructor
  1323. std::vector<std::pair<size_t, size_t>> new_mapped_fragments;
  1324. for (const auto & frag : mapped_fragments) {
  1325. if (frag.first < first && frag.second > last) {
  1326. // the range is in the middle of the fragment, split it
  1327. new_mapped_fragments.emplace_back(frag.first, first);
  1328. new_mapped_fragments.emplace_back(last, frag.second);
  1329. } else if (frag.first < first && frag.second > first) {
  1330. // the range starts in the middle of the fragment
  1331. new_mapped_fragments.emplace_back(frag.first, first);
  1332. } else if (frag.first < last && frag.second > last) {
  1333. // the range ends in the middle of the fragment
  1334. new_mapped_fragments.emplace_back(last, frag.second);
  1335. } else if (frag.first >= first && frag.second <= last) {
  1336. // the range covers the entire fragment
  1337. } else {
  1338. // the range is outside the fragment
  1339. new_mapped_fragments.push_back(frag);
  1340. }
  1341. }
  1342. mapped_fragments = std::move(new_mapped_fragments);
  1343. }
  1344. ~llama_mmap() {
  1345. for (const auto & frag : mapped_fragments) {
  1346. if (munmap((char *) addr + frag.first, frag.second - frag.first)) {
  1347. LLAMA_LOG_WARN("warning: munmap failed: %s\n", strerror(errno));
  1348. }
  1349. }
  1350. }
  1351. #elif defined(_WIN32)
  1352. static constexpr bool SUPPORTED = true;
  1353. llama_mmap(struct llama_file * file, size_t prefetch = (size_t) -1, bool numa = false) {
  1354. GGML_UNUSED(numa);
  1355. size = file->size;
  1356. HANDLE hFile = (HANDLE) _get_osfhandle(_fileno(file->fp));
  1357. HANDLE hMapping = CreateFileMappingA(hFile, NULL, PAGE_READONLY, 0, 0, NULL);
  1358. if (hMapping == NULL) {
  1359. DWORD error = GetLastError();
  1360. throw std::runtime_error(format("CreateFileMappingA failed: %s", llama_format_win_err(error).c_str()));
  1361. }
  1362. addr = MapViewOfFile(hMapping, FILE_MAP_READ, 0, 0, 0);
  1363. DWORD error = GetLastError();
  1364. CloseHandle(hMapping);
  1365. if (addr == NULL) {
  1366. throw std::runtime_error(format("MapViewOfFile failed: %s", llama_format_win_err(error).c_str()));
  1367. }
  1368. if (prefetch > 0) {
  1369. #if _WIN32_WINNT >= 0x602
  1370. // PrefetchVirtualMemory is only present on Windows 8 and above, so we dynamically load it
  1371. BOOL (WINAPI *pPrefetchVirtualMemory) (HANDLE, ULONG_PTR, PWIN32_MEMORY_RANGE_ENTRY, ULONG);
  1372. HMODULE hKernel32 = GetModuleHandleW(L"kernel32.dll");
  1373. // may fail on pre-Windows 8 systems
  1374. pPrefetchVirtualMemory = reinterpret_cast<decltype(pPrefetchVirtualMemory)> (GetProcAddress(hKernel32, "PrefetchVirtualMemory"));
  1375. if (pPrefetchVirtualMemory) {
  1376. // advise the kernel to preload the mapped memory
  1377. WIN32_MEMORY_RANGE_ENTRY range;
  1378. range.VirtualAddress = addr;
  1379. range.NumberOfBytes = (SIZE_T) std::min(size, prefetch);
  1380. if (!pPrefetchVirtualMemory(GetCurrentProcess(), 1, &range, 0)) {
  1381. LLAMA_LOG_WARN("warning: PrefetchVirtualMemory failed: %s\n",
  1382. llama_format_win_err(GetLastError()).c_str());
  1383. }
  1384. }
  1385. #else
  1386. throw std::runtime_error("PrefetchVirtualMemory unavailable");
  1387. #endif
  1388. }
  1389. }
  1390. void unmap_fragment(size_t first, size_t last) {
  1391. // not supported
  1392. GGML_UNUSED(first);
  1393. GGML_UNUSED(last);
  1394. }
  1395. ~llama_mmap() {
  1396. if (!UnmapViewOfFile(addr)) {
  1397. LLAMA_LOG_WARN("warning: UnmapViewOfFile failed: %s\n",
  1398. llama_format_win_err(GetLastError()).c_str());
  1399. }
  1400. }
  1401. #else
  1402. static constexpr bool SUPPORTED = false;
  1403. llama_mmap(struct llama_file * file, size_t prefetch = -1, bool numa = false) {
  1404. GGML_UNUSED(file);
  1405. GGML_UNUSED(prefetch);
  1406. GGML_UNUSED(numa);
  1407. throw std::runtime_error("mmap not supported");
  1408. }
  1409. void unmap_fragment(size_t first, size_t last) {
  1410. GGML_UNUSED(first);
  1411. GGML_UNUSED(last);
  1412. throw std::runtime_error("mmap not supported");
  1413. }
  1414. #endif
  1415. };
  1416. using llama_mmaps = std::vector<std::unique_ptr<llama_mmap>>;
  1417. // Represents some region of memory being locked using mlock or VirtualLock;
  1418. // will automatically unlock on destruction.
  1419. struct llama_mlock {
  1420. void * addr = NULL;
  1421. size_t size = 0;
  1422. bool failed_already = false;
  1423. llama_mlock() {}
  1424. llama_mlock(const llama_mlock &) = delete;
  1425. ~llama_mlock() {
  1426. if (size) {
  1427. raw_unlock(addr, size);
  1428. }
  1429. }
  1430. void init(void * ptr) {
  1431. GGML_ASSERT(addr == NULL && size == 0); // NOLINT
  1432. addr = ptr;
  1433. }
  1434. void grow_to(size_t target_size) {
  1435. GGML_ASSERT(addr);
  1436. if (failed_already) {
  1437. return;
  1438. }
  1439. size_t granularity = lock_granularity();
  1440. target_size = (target_size + granularity - 1) & ~(granularity - 1);
  1441. if (target_size > size) {
  1442. if (raw_lock((uint8_t *) addr + size, target_size - size)) {
  1443. size = target_size;
  1444. } else {
  1445. failed_already = true;
  1446. }
  1447. }
  1448. }
  1449. #ifdef _POSIX_MEMLOCK_RANGE
  1450. static constexpr bool SUPPORTED = true;
  1451. static size_t lock_granularity() {
  1452. return (size_t) sysconf(_SC_PAGESIZE);
  1453. }
  1454. #ifdef __APPLE__
  1455. #define MLOCK_SUGGESTION \
  1456. "Try increasing the sysctl values 'vm.user_wire_limit' and 'vm.global_user_wire_limit' and/or " \
  1457. "decreasing 'vm.global_no_user_wire_amount'. Also try increasing RLIMIT_MEMLOCK (ulimit -l).\n"
  1458. #else
  1459. #define MLOCK_SUGGESTION \
  1460. "Try increasing RLIMIT_MEMLOCK ('ulimit -l' as root).\n"
  1461. #endif
  1462. bool raw_lock(const void * addr, size_t size) const {
  1463. if (!mlock(addr, size)) {
  1464. return true;
  1465. }
  1466. char* errmsg = std::strerror(errno);
  1467. bool suggest = (errno == ENOMEM);
  1468. // Check if the resource limit is fine after all
  1469. struct rlimit lock_limit;
  1470. if (suggest && getrlimit(RLIMIT_MEMLOCK, &lock_limit)) {
  1471. suggest = false;
  1472. }
  1473. if (suggest && (lock_limit.rlim_max > lock_limit.rlim_cur + size)) {
  1474. suggest = false;
  1475. }
  1476. LLAMA_LOG_WARN("warning: failed to mlock %zu-byte buffer (after previously locking %zu bytes): %s\n%s",
  1477. size, this->size, errmsg, suggest ? MLOCK_SUGGESTION : "");
  1478. return false;
  1479. }
  1480. #undef MLOCK_SUGGESTION
  1481. static void raw_unlock(void * addr, size_t size) {
  1482. if (munlock(addr, size)) {
  1483. LLAMA_LOG_WARN("warning: failed to munlock buffer: %s\n", std::strerror(errno));
  1484. }
  1485. }
  1486. #elif defined(_WIN32)
  1487. static constexpr bool SUPPORTED = true;
  1488. static size_t lock_granularity() {
  1489. SYSTEM_INFO si;
  1490. GetSystemInfo(&si);
  1491. return (size_t) si.dwPageSize;
  1492. }
  1493. bool raw_lock(void * ptr, size_t len) const {
  1494. for (int tries = 1; ; tries++) {
  1495. if (VirtualLock(ptr, len)) {
  1496. return true;
  1497. }
  1498. if (tries == 2) {
  1499. LLAMA_LOG_WARN("warning: failed to VirtualLock %zu-byte buffer (after previously locking %zu bytes): %s\n",
  1500. len, size, llama_format_win_err(GetLastError()).c_str());
  1501. return false;
  1502. }
  1503. // It failed but this was only the first try; increase the working
  1504. // set size and try again.
  1505. SIZE_T min_ws_size, max_ws_size;
  1506. if (!GetProcessWorkingSetSize(GetCurrentProcess(), &min_ws_size, &max_ws_size)) {
  1507. LLAMA_LOG_WARN("warning: GetProcessWorkingSetSize failed: %s\n",
  1508. llama_format_win_err(GetLastError()).c_str());
  1509. return false;
  1510. }
  1511. // Per MSDN: "The maximum number of pages that a process can lock
  1512. // is equal to the number of pages in its minimum working set minus
  1513. // a small overhead."
  1514. // Hopefully a megabyte is enough overhead:
  1515. size_t increment = len + 1048576;
  1516. // The minimum must be <= the maximum, so we need to increase both:
  1517. min_ws_size += increment;
  1518. max_ws_size += increment;
  1519. if (!SetProcessWorkingSetSize(GetCurrentProcess(), min_ws_size, max_ws_size)) {
  1520. LLAMA_LOG_WARN("warning: SetProcessWorkingSetSize failed: %s\n",
  1521. llama_format_win_err(GetLastError()).c_str());
  1522. return false;
  1523. }
  1524. }
  1525. }
  1526. static void raw_unlock(void * ptr, size_t len) {
  1527. if (!VirtualUnlock(ptr, len)) {
  1528. LLAMA_LOG_WARN("warning: failed to VirtualUnlock buffer: %s\n",
  1529. llama_format_win_err(GetLastError()).c_str());
  1530. }
  1531. }
  1532. #else
  1533. static constexpr bool SUPPORTED = false;
  1534. static size_t lock_granularity() {
  1535. return (size_t) 65536;
  1536. }
  1537. bool raw_lock(const void * addr, size_t len) const {
  1538. LLAMA_LOG_WARN("warning: mlock not supported on this system\n");
  1539. return false;
  1540. }
  1541. static void raw_unlock(const void * addr, size_t len) {}
  1542. #endif
  1543. };
  1544. using llama_mlocks = std::vector<std::unique_ptr<llama_mlock>>;
  1545. static std::string llama_token_to_piece(const struct llama_context * ctx, llama_token token, bool special) {
  1546. std::vector<char> result(8, 0);
  1547. const int n_tokens = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size(), special);
  1548. if (n_tokens < 0) {
  1549. result.resize(-n_tokens);
  1550. int check = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size(), special);
  1551. GGML_ASSERT(check == -n_tokens);
  1552. }
  1553. else {
  1554. result.resize(n_tokens);
  1555. }
  1556. return std::string(result.data(), result.size());
  1557. }
  1558. static ggml_backend_buffer_type_t llama_default_buffer_type_cpu(bool host_buffer) {
  1559. ggml_backend_buffer_type_t buft = nullptr;
  1560. #if defined(GGML_USE_CUDA)
  1561. // host buffers should only be used when data is expected to be copied to/from the GPU
  1562. if (host_buffer) {
  1563. buft = ggml_backend_cuda_host_buffer_type();
  1564. }
  1565. #elif defined(GGML_USE_SYCL)
  1566. if (host_buffer) {
  1567. buft = ggml_backend_sycl_host_buffer_type();
  1568. }
  1569. #elif defined(GGML_USE_CPU_HBM)
  1570. buft = ggml_backend_cpu_hbm_buffer_type();
  1571. #elif defined(GGML_USE_VULKAN)
  1572. if (host_buffer) {
  1573. buft = ggml_backend_vk_host_buffer_type();
  1574. }
  1575. #endif
  1576. if (buft == nullptr) {
  1577. buft = ggml_backend_cpu_buffer_type();
  1578. }
  1579. return buft;
  1580. GGML_UNUSED(host_buffer);
  1581. }
  1582. //
  1583. // globals
  1584. //
  1585. struct llama_state {
  1586. llama_state() {
  1587. #ifdef GGML_USE_METAL
  1588. ggml_backend_metal_log_set_callback(log_callback, log_callback_user_data);
  1589. #endif
  1590. }
  1591. // We save the log callback globally
  1592. ggml_log_callback log_callback = llama_log_callback_default;
  1593. void * log_callback_user_data = nullptr;
  1594. };
  1595. static llama_state g_state;
  1596. // available llama models
  1597. enum e_model {
  1598. MODEL_UNKNOWN,
  1599. MODEL_17M,
  1600. MODEL_22M,
  1601. MODEL_33M,
  1602. MODEL_109M,
  1603. MODEL_137M,
  1604. MODEL_335M,
  1605. MODEL_0_5B,
  1606. MODEL_1B,
  1607. MODEL_2B,
  1608. MODEL_3B,
  1609. MODEL_4B,
  1610. MODEL_7B,
  1611. MODEL_8B,
  1612. MODEL_12B,
  1613. MODEL_13B,
  1614. MODEL_14B,
  1615. MODEL_15B,
  1616. MODEL_20B,
  1617. MODEL_30B,
  1618. MODEL_34B,
  1619. MODEL_35B,
  1620. MODEL_40B,
  1621. MODEL_65B,
  1622. MODEL_70B,
  1623. MODEL_314B,
  1624. MODEL_SMALL,
  1625. MODEL_MEDIUM,
  1626. MODEL_LARGE,
  1627. MODEL_XL,
  1628. MODEL_A2_7B,
  1629. MODEL_8x7B,
  1630. MODEL_8x22B,
  1631. MODEL_16x12B,
  1632. };
  1633. static const size_t kiB = 1024;
  1634. static const size_t MiB = 1024*kiB;
  1635. static const size_t GiB = 1024*MiB;
  1636. struct llama_hparams {
  1637. bool vocab_only;
  1638. bool rope_finetuned;
  1639. uint32_t n_vocab;
  1640. uint32_t n_ctx_train; // context size the model was trained on
  1641. uint32_t n_embd;
  1642. uint32_t n_head;
  1643. uint32_t n_head_kv;
  1644. uint32_t n_layer;
  1645. uint32_t n_rot;
  1646. uint32_t n_embd_head_k; // dimension of keys (d_k). d_q is assumed to be the same, but there are n_head q heads, and only n_head_kv k-v heads
  1647. uint32_t n_embd_head_v; // dimension of values (d_v) aka n_embd_head
  1648. uint32_t n_ff;
  1649. uint32_t n_expert = 0;
  1650. uint32_t n_expert_used = 0;
  1651. uint32_t n_vocab_type = 0; // for BERT-style token types
  1652. float f_norm_eps;
  1653. float f_norm_rms_eps;
  1654. float rope_freq_base_train;
  1655. float rope_freq_scale_train;
  1656. uint32_t n_yarn_orig_ctx;
  1657. // for State Space Models
  1658. uint32_t ssm_d_conv = 0;
  1659. uint32_t ssm_d_inner = 0;
  1660. uint32_t ssm_d_state = 0;
  1661. uint32_t ssm_dt_rank = 0;
  1662. float f_clamp_kqv = 0.0f;
  1663. float f_max_alibi_bias = 0.0f;
  1664. float f_logit_scale = 0.0f;
  1665. bool causal_attn = true;
  1666. bool use_alibi = false;
  1667. enum llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_NONE;
  1668. enum llama_rope_type rope_type = LLAMA_ROPE_TYPE_NONE;
  1669. enum llama_rope_scaling_type rope_scaling_type_train = LLAMA_ROPE_SCALING_TYPE_NONE;
  1670. bool operator!=(const llama_hparams & other) const {
  1671. if (this->vocab_only != other.vocab_only) return true;
  1672. if (this->n_vocab != other.n_vocab) return true;
  1673. if (this->n_ctx_train != other.n_ctx_train) return true;
  1674. if (this->n_embd != other.n_embd) return true;
  1675. if (this->n_head != other.n_head) return true;
  1676. if (this->n_head_kv != other.n_head_kv) return true;
  1677. if (this->n_layer != other.n_layer) return true;
  1678. if (this->n_rot != other.n_rot) return true;
  1679. if (this->n_embd_head_k != other.n_embd_head_k) return true;
  1680. if (this->n_embd_head_v != other.n_embd_head_v) return true;
  1681. if (this->n_ff != other.n_ff) return true;
  1682. if (this->n_expert != other.n_expert) return true;
  1683. if (this->n_expert_used != other.n_expert_used) return true;
  1684. if (this->rope_finetuned != other.rope_finetuned) return true;
  1685. if (this->n_yarn_orig_ctx != other.n_yarn_orig_ctx) return true;
  1686. if (this->ssm_d_conv != other.ssm_d_conv) return true;
  1687. if (this->ssm_d_inner != other.ssm_d_inner) return true;
  1688. if (this->ssm_d_state != other.ssm_d_state) return true;
  1689. if (this->ssm_dt_rank != other.ssm_dt_rank) return true;
  1690. const float EPSILON = 1e-9f;
  1691. if (!is_float_close(this->f_norm_eps, other.f_norm_eps, EPSILON)) return true;
  1692. if (!is_float_close(this->f_norm_rms_eps, other.f_norm_rms_eps, EPSILON)) return true;
  1693. if (!is_float_close(this->rope_freq_base_train, other.rope_freq_base_train, EPSILON)) return true;
  1694. if (!is_float_close(this->rope_freq_scale_train, other.rope_freq_scale_train, EPSILON)) return true;
  1695. return false;
  1696. }
  1697. uint32_t n_gqa() const {
  1698. if (n_head_kv == 0) {
  1699. return 0;
  1700. }
  1701. return n_head/n_head_kv;
  1702. }
  1703. uint32_t n_embd_k_gqa() const { // dimension of key embeddings across all k-v heads
  1704. return n_embd_head_k * n_head_kv;
  1705. }
  1706. uint32_t n_embd_v_gqa() const { // dimension of value embeddings across all k-v heads
  1707. return n_embd_head_v * n_head_kv;
  1708. }
  1709. uint32_t n_embd_k_s() const { // dimension of the rolling state embeddings
  1710. // corresponds to Mamba's conv_states size
  1711. // TODO: maybe support other convolution strides than 1
  1712. // NOTE: since the first column of the conv_state is shifted out each time, it's not actually needed
  1713. return (ssm_d_conv > 0 ? ssm_d_conv - 1 : 0) * ssm_d_inner;
  1714. }
  1715. uint32_t n_embd_v_s() const { // dimension of the recurrent state embeddings
  1716. // corresponds to Mamba's ssm_states size
  1717. return ssm_d_state * ssm_d_inner;
  1718. }
  1719. };
  1720. struct llama_cparams {
  1721. uint32_t n_ctx; // context size used during inference
  1722. uint32_t n_batch;
  1723. uint32_t n_ubatch;
  1724. uint32_t n_seq_max;
  1725. uint32_t n_threads; // number of threads to use for generation
  1726. uint32_t n_threads_batch; // number of threads to use for batch processing
  1727. float rope_freq_base;
  1728. float rope_freq_scale;
  1729. uint32_t n_yarn_orig_ctx;
  1730. // These hyperparameters are not exposed in GGUF, because all
  1731. // existing YaRN models use the same values for them.
  1732. float yarn_ext_factor;
  1733. float yarn_attn_factor;
  1734. float yarn_beta_fast;
  1735. float yarn_beta_slow;
  1736. float defrag_thold;
  1737. bool embeddings;
  1738. bool causal_attn;
  1739. bool offload_kqv;
  1740. bool flash_attn;
  1741. enum llama_pooling_type pooling_type;
  1742. ggml_backend_sched_eval_callback cb_eval;
  1743. void * cb_eval_user_data;
  1744. };
  1745. struct llama_layer {
  1746. // normalization
  1747. struct ggml_tensor * attn_norm;
  1748. struct ggml_tensor * attn_norm_b;
  1749. struct ggml_tensor * attn_norm_2;
  1750. struct ggml_tensor * attn_norm_2_b;
  1751. struct ggml_tensor * attn_q_norm;
  1752. struct ggml_tensor * attn_q_norm_b;
  1753. struct ggml_tensor * attn_k_norm;
  1754. struct ggml_tensor * attn_k_norm_b;
  1755. struct ggml_tensor * attn_out_norm;
  1756. struct ggml_tensor * attn_out_norm_b;
  1757. // attention
  1758. struct ggml_tensor * wq;
  1759. struct ggml_tensor * wk;
  1760. struct ggml_tensor * wv;
  1761. struct ggml_tensor * wo;
  1762. struct ggml_tensor * wqkv;
  1763. // attention bias
  1764. struct ggml_tensor * bq;
  1765. struct ggml_tensor * bk;
  1766. struct ggml_tensor * bv;
  1767. struct ggml_tensor * bo;
  1768. struct ggml_tensor * bqkv;
  1769. // normalization
  1770. struct ggml_tensor * ffn_norm;
  1771. struct ggml_tensor * ffn_norm_b;
  1772. struct ggml_tensor * layer_out_norm;
  1773. struct ggml_tensor * layer_out_norm_b;
  1774. // ff
  1775. struct ggml_tensor * ffn_gate; // w1
  1776. struct ggml_tensor * ffn_down; // w2
  1777. struct ggml_tensor * ffn_up; // w3
  1778. // ff MoE
  1779. struct ggml_tensor * ffn_gate_inp;
  1780. struct ggml_tensor * ffn_gate_exps;
  1781. struct ggml_tensor * ffn_down_exps;
  1782. struct ggml_tensor * ffn_up_exps ;
  1783. // ff shared expert (shexp)
  1784. struct ggml_tensor * ffn_gate_inp_shexp;
  1785. struct ggml_tensor * ffn_gate_shexp;
  1786. struct ggml_tensor * ffn_down_shexp;
  1787. struct ggml_tensor * ffn_up_shexp;
  1788. // ff bias
  1789. struct ggml_tensor * ffn_down_b; // b2
  1790. struct ggml_tensor * ffn_up_b; // b3
  1791. struct ggml_tensor * ffn_act;
  1792. // mamba proj
  1793. struct ggml_tensor * ssm_in;
  1794. struct ggml_tensor * ssm_x;
  1795. struct ggml_tensor * ssm_dt;
  1796. struct ggml_tensor * ssm_out;
  1797. // mamba
  1798. struct ggml_tensor * ssm_conv1d;
  1799. struct ggml_tensor * ssm_a;
  1800. struct ggml_tensor * ssm_d;
  1801. // mamba bias
  1802. struct ggml_tensor * ssm_conv1d_b;
  1803. struct ggml_tensor * ssm_dt_b;
  1804. };
  1805. struct llama_kv_cell {
  1806. llama_pos pos = -1;
  1807. llama_pos delta = 0;
  1808. int32_t src = 0; // used by recurrent state models to copy states
  1809. std::set<llama_seq_id> seq_id;
  1810. bool has_seq_id(const llama_seq_id & id) const {
  1811. return seq_id.find(id) != seq_id.end();
  1812. }
  1813. bool is_empty() const {
  1814. return seq_id.empty();
  1815. }
  1816. bool is_same_seq(const llama_kv_cell & other) const {
  1817. return seq_id == other.seq_id;
  1818. }
  1819. };
  1820. // ring-buffer of cached KV data
  1821. struct llama_kv_cache {
  1822. bool has_shift = false;
  1823. bool do_defrag = false;
  1824. bool do_copy = false;
  1825. bool recurrent = false; // with recurrent state models, a cell can hold the state for more than one past token
  1826. bool v_trans = true; // the value tensor is transposed
  1827. // Note: The value of head isn't only used to optimize searching
  1828. // for a free KV slot. llama_decode_internal also uses it, so it
  1829. // cannot be freely changed after a slot has been allocated.
  1830. uint32_t head = 0;
  1831. uint32_t size = 0;
  1832. uint32_t used = 0; // used cells (i.e. at least one seq_id)
  1833. // computed before each graph build
  1834. uint32_t n = 0;
  1835. ggml_type type_k = GGML_TYPE_F16;
  1836. ggml_type type_v = GGML_TYPE_F16;
  1837. std::vector<llama_kv_cell> cells;
  1838. std::vector<struct ggml_tensor *> k_l; // per layer
  1839. std::vector<struct ggml_tensor *> v_l;
  1840. std::vector<struct ggml_context *> ctxs;
  1841. std::vector<ggml_backend_buffer_t> bufs;
  1842. size_t total_size() const {
  1843. size_t size = 0;
  1844. for (ggml_backend_buffer_t buf : bufs) {
  1845. size += ggml_backend_buffer_get_size(buf);
  1846. }
  1847. return size;
  1848. }
  1849. ~llama_kv_cache() {
  1850. for (struct ggml_context * ctx : ctxs) {
  1851. ggml_free(ctx);
  1852. }
  1853. for (ggml_backend_buffer_t buf : bufs) {
  1854. ggml_backend_buffer_free(buf);
  1855. }
  1856. }
  1857. };
  1858. struct llama_control_vector {
  1859. std::vector<struct ggml_tensor *> tensors; // per layer
  1860. std::vector<struct ggml_context *> ctxs;
  1861. std::vector<ggml_backend_buffer_t> bufs;
  1862. int32_t layer_start = -1;
  1863. int32_t layer_end = -1;
  1864. ggml_tensor * tensor_for(int il) const {
  1865. if (il < 0 || il < layer_start || il > layer_end || (size_t) il >= tensors.size()) {
  1866. return nullptr;
  1867. }
  1868. return tensors[il];
  1869. }
  1870. ~llama_control_vector() {
  1871. for (struct ggml_context * ctx : ctxs) {
  1872. ggml_free(ctx);
  1873. }
  1874. for (ggml_backend_buffer_t buf : bufs) {
  1875. ggml_backend_buffer_free(buf);
  1876. }
  1877. }
  1878. };
  1879. struct llama_vocab {
  1880. using id = int32_t;
  1881. using token = std::string;
  1882. using ttype = llama_token_type;
  1883. struct token_data {
  1884. token text;
  1885. float score;
  1886. ttype type;
  1887. };
  1888. enum llama_vocab_type type = LLAMA_VOCAB_TYPE_SPM;
  1889. enum llama_vocab_pre_type type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
  1890. std::unordered_map<token, id> token_to_id;
  1891. std::vector<token_data> id_to_token;
  1892. std::unordered_map<token, id> special_tokens_cache;
  1893. std::map<std::pair<std::string, std::string>, int> bpe_ranks;
  1894. // default LLaMA special tokens
  1895. id special_bos_id = 1;
  1896. id special_eos_id = 2;
  1897. id special_unk_id = 0;
  1898. id special_sep_id = -1;
  1899. id special_pad_id = -1;
  1900. id special_cls_id = -1;
  1901. id special_mask_id = -1;
  1902. int special_add_bos = -1; // -1 unknown, 1 add, 0 don't add.
  1903. int special_add_eos = -1; // -1 unknown, 1 add, 0 don't add.
  1904. id linefeed_id = 13;
  1905. id special_prefix_id = -1;
  1906. id special_suffix_id = -1;
  1907. id special_middle_id = -1;
  1908. id special_eot_id = -1; // TODO: move above after "eos_id", and here add "file separator" token
  1909. bool add_space_prefix = true;
  1910. int find_bpe_rank(const std::string & token_left, const std::string & token_right) const {
  1911. GGML_ASSERT(token_left.find(' ') == std::string::npos);
  1912. GGML_ASSERT(token_left.find('\n') == std::string::npos);
  1913. GGML_ASSERT(token_right.find(' ') == std::string::npos);
  1914. GGML_ASSERT(token_right.find('\n') == std::string::npos);
  1915. auto it = bpe_ranks.find(std::make_pair(token_left, token_right));
  1916. if (it == bpe_ranks.end()) {
  1917. return -1;
  1918. }
  1919. return it->second;
  1920. }
  1921. };
  1922. struct llama_model {
  1923. e_model type = MODEL_UNKNOWN;
  1924. llm_arch arch = LLM_ARCH_UNKNOWN;
  1925. llama_ftype ftype = LLAMA_FTYPE_ALL_F32;
  1926. std::string name = "n/a";
  1927. llama_hparams hparams = {};
  1928. llama_vocab vocab;
  1929. struct ggml_tensor * tok_embd;
  1930. struct ggml_tensor * type_embd;
  1931. struct ggml_tensor * pos_embd;
  1932. struct ggml_tensor * tok_norm;
  1933. struct ggml_tensor * tok_norm_b;
  1934. struct ggml_tensor * output_norm;
  1935. struct ggml_tensor * output_norm_b;
  1936. struct ggml_tensor * output;
  1937. struct ggml_tensor * output_b;
  1938. std::vector<llama_layer> layers;
  1939. llama_split_mode split_mode;
  1940. int main_gpu;
  1941. int n_gpu_layers;
  1942. std::vector<std::string> rpc_servers;
  1943. // gguf metadata
  1944. std::unordered_map<std::string, std::string> gguf_kv;
  1945. // layer -> buffer type mapping
  1946. struct layer_buft {
  1947. layer_buft() : buft_matrix(nullptr), buft(nullptr) {}
  1948. layer_buft(ggml_backend_buffer_type_t matrix) : buft_matrix(matrix), buft(matrix) {}
  1949. layer_buft(ggml_backend_buffer_type_t matrix, ggml_backend_buffer_type_t other) : buft_matrix(matrix), buft(other) {}
  1950. ggml_backend_buffer_type_t buft_matrix; // matrices only - used by split buffers and backends that support only matrix multiplication
  1951. ggml_backend_buffer_type_t buft; // everything else
  1952. };
  1953. layer_buft buft_input;
  1954. layer_buft buft_output;
  1955. std::vector<layer_buft> buft_layer;
  1956. // contexts where the model tensors metadata is stored
  1957. std::vector<struct ggml_context *> ctxs;
  1958. // the model memory buffers for the tensor data
  1959. std::vector<ggml_backend_buffer_t> bufs;
  1960. // model memory mapped files
  1961. llama_mmaps mappings;
  1962. // objects representing data potentially being locked in memory
  1963. llama_mlocks mlock_bufs;
  1964. llama_mlocks mlock_mmaps;
  1965. // for quantize-stats only
  1966. std::vector<std::pair<std::string, struct ggml_tensor *>> tensors_by_name;
  1967. int64_t t_load_us = 0;
  1968. int64_t t_start_us = 0;
  1969. ~llama_model() {
  1970. for (struct ggml_context * ctx : ctxs) {
  1971. ggml_free(ctx);
  1972. }
  1973. for (ggml_backend_buffer_t buf : bufs) {
  1974. #ifdef GGML_USE_CUDA
  1975. if (ggml_backend_buffer_get_type(buf) == ggml_backend_cpu_buffer_type()) {
  1976. ggml_backend_cuda_unregister_host_buffer(ggml_backend_buffer_get_base(buf));
  1977. }
  1978. #endif
  1979. ggml_backend_buffer_free(buf);
  1980. }
  1981. }
  1982. };
  1983. struct llama_context {
  1984. llama_context(const llama_model & model) : model(model), t_start_us(model.t_start_us), t_load_us(model.t_load_us) {}
  1985. ~llama_context() {
  1986. ggml_backend_sched_free(sched);
  1987. for (ggml_backend_t backend : backends) {
  1988. ggml_backend_free(backend);
  1989. }
  1990. ggml_backend_buffer_free(buf_output);
  1991. }
  1992. llama_cparams cparams;
  1993. std::vector<ggml_backend_t> backends;
  1994. #ifdef GGML_USE_METAL
  1995. ggml_backend_t backend_metal = nullptr;
  1996. #endif
  1997. ggml_backend_t backend_cpu = nullptr;
  1998. const llama_model & model;
  1999. // key + value cache for the self attention
  2000. struct llama_kv_cache kv_self;
  2001. std::mt19937 rng;
  2002. bool has_evaluated_once = false;
  2003. int64_t t_start_us;
  2004. int64_t t_load_us;
  2005. int64_t t_sample_us = 0;
  2006. int64_t t_p_eval_us = 0;
  2007. int64_t t_eval_us = 0;
  2008. int64_t t_compute_start_us = 0;
  2009. int64_t n_queued_tokens = 0;
  2010. int32_t n_sample = 0; // number of tokens sampled
  2011. int32_t n_p_eval = 0; // number of tokens in eval calls for the prompt (with batch size > 1)
  2012. int32_t n_eval = 0; // number of eval calls
  2013. // host buffer for the model output (logits and embeddings)
  2014. ggml_backend_buffer_t buf_output = nullptr;
  2015. // decode output (2-dimensional array: [n_outputs][n_vocab])
  2016. size_t logits_size = 0; // capacity (of floats) for logits
  2017. float * logits = nullptr;
  2018. std::vector<int32_t> output_ids; // map batch token positions to ids of the logits and embd buffers
  2019. size_t output_size = 0; // capacity (of tokens positions) for the output buffers
  2020. int32_t n_outputs = 0; // number of actually-used outputs in the current ubatch or last logical batch
  2021. bool logits_all = false;
  2022. // embeddings output (2-dimensional array: [n_outputs][n_embd])
  2023. // populated only when pooling_type == LLAMA_POOLING_TYPE_NONE
  2024. size_t embd_size = 0; // capacity (of floats) for embeddings
  2025. float * embd = nullptr;
  2026. // sequence embeddings output (map of [n_embd] vectors)
  2027. // populated only when pooling_type != LLAMA_POOLING_TYPE_NONE
  2028. std::map<llama_seq_id, std::vector<float>> embd_seq;
  2029. // memory buffers used to evaluate the model
  2030. std::vector<uint8_t> buf_compute_meta;
  2031. ggml_backend_sched_t sched = nullptr;
  2032. ggml_abort_callback abort_callback = nullptr;
  2033. void * abort_callback_data = nullptr;
  2034. // input tensors
  2035. struct ggml_tensor * inp_tokens; // I32 [n_batch]
  2036. struct ggml_tensor * inp_embd; // F32 [n_embd, n_batch]
  2037. struct ggml_tensor * inp_pos; // I32 [n_batch]
  2038. struct ggml_tensor * inp_out_ids; // I32 [n_outputs]
  2039. struct ggml_tensor * inp_KQ_mask; // F32 [kv_size, n_batch]
  2040. struct ggml_tensor * inp_K_shift; // I32 [kv_size]
  2041. struct ggml_tensor * inp_mean; // F32 [n_batch, n_batch]
  2042. struct ggml_tensor * inp_cls; // I32 [n_batch]
  2043. struct ggml_tensor * inp_s_copy; // I32 [kv_size]
  2044. struct ggml_tensor * inp_s_mask; // F32 [1, n_kv]
  2045. struct ggml_tensor * inp_s_seq; // I32 [n_kv, n_batch]
  2046. // control vectors
  2047. struct llama_control_vector cvec;
  2048. #ifdef GGML_USE_MPI
  2049. ggml_mpi_context * ctx_mpi = NULL;
  2050. #endif
  2051. };
  2052. static ggml_backend_buffer_type_t llama_default_buffer_type_offload(const llama_model & model, int gpu) {
  2053. ggml_backend_buffer_type_t buft = nullptr;
  2054. #ifdef GGML_USE_RPC
  2055. std::string endpoint = model.rpc_servers[gpu];
  2056. buft = ggml_backend_rpc_buffer_type(endpoint.c_str());
  2057. #elif defined(GGML_USE_METAL)
  2058. buft = ggml_backend_metal_buffer_type();
  2059. #elif defined(GGML_USE_CUDA)
  2060. buft = ggml_backend_cuda_buffer_type(gpu);
  2061. #elif defined(GGML_USE_VULKAN)
  2062. buft = ggml_backend_vk_buffer_type(gpu);
  2063. #elif defined(GGML_USE_SYCL)
  2064. buft = ggml_backend_sycl_buffer_type(gpu);
  2065. #elif defined(GGML_USE_CLBLAST)
  2066. buft = ggml_backend_opencl_buffer_type();
  2067. #elif defined(GGML_USE_KOMPUTE)
  2068. buft = ggml_backend_kompute_buffer_type(gpu);
  2069. if (buft == nullptr) {
  2070. LLAMA_LOG_WARN("%s: cannot use GPU %d, check `vulkaninfo --summary`\n", __func__, gpu);
  2071. }
  2072. #endif
  2073. if (buft == nullptr) {
  2074. buft = llama_default_buffer_type_cpu(true);
  2075. }
  2076. return buft;
  2077. GGML_UNUSED(model);
  2078. GGML_UNUSED(gpu);
  2079. }
  2080. static ggml_backend_buffer_type_t llama_default_buffer_type_split(const llama_model & model, int fallback_gpu, const float * tensor_split) {
  2081. ggml_backend_buffer_type_t buft = nullptr;
  2082. #ifdef GGML_USE_CUDA
  2083. if (ggml_backend_cuda_get_device_count() > 1) {
  2084. buft = ggml_backend_cuda_split_buffer_type(tensor_split);
  2085. }
  2086. #endif
  2087. #ifdef GGML_USE_SYCL
  2088. if (ggml_backend_sycl_get_device_count() > 1) {
  2089. buft = ggml_backend_sycl_split_buffer_type(tensor_split);
  2090. }
  2091. #endif
  2092. if (buft == nullptr) {
  2093. buft = llama_default_buffer_type_offload(model, fallback_gpu);
  2094. }
  2095. return buft;
  2096. GGML_UNUSED(tensor_split);
  2097. }
  2098. static size_t llama_get_device_count(const llama_model & model) {
  2099. #if defined(GGML_USE_RPC)
  2100. return model.rpc_servers.size();
  2101. #elif defined(GGML_USE_CUDA)
  2102. return ggml_backend_cuda_get_device_count();
  2103. #elif defined(GGML_USE_SYCL)
  2104. return ggml_backend_sycl_get_device_count();
  2105. #elif defined(GGML_USE_VULKAN)
  2106. return ggml_backend_vk_get_device_count();
  2107. #else
  2108. return 1;
  2109. #endif
  2110. GGML_UNUSED(model);
  2111. }
  2112. static size_t llama_get_device_memory(const llama_model & model, int device) {
  2113. #if defined(GGML_USE_RPC)
  2114. size_t total;
  2115. size_t free;
  2116. std::string endpoint = model.rpc_servers[device];
  2117. ggml_backend_rpc_get_device_memory(endpoint.c_str(), &free, &total);
  2118. return free;
  2119. #elif defined(GGML_USE_CUDA)
  2120. size_t total;
  2121. size_t free;
  2122. ggml_backend_cuda_get_device_memory(device, &free, &total);
  2123. return free;
  2124. #elif defined(GGML_USE_SYCL)
  2125. size_t total;
  2126. size_t free;
  2127. ggml_backend_sycl_get_device_memory(device, &free, &total);
  2128. return free;
  2129. #elif defined(GGML_USE_VULKAN)
  2130. size_t total;
  2131. size_t free;
  2132. ggml_backend_vk_get_device_memory(device, &free, &total);
  2133. return free;
  2134. #else
  2135. return 1;
  2136. #endif
  2137. GGML_UNUSED(model);
  2138. GGML_UNUSED(device);
  2139. }
  2140. //
  2141. // kv cache helpers
  2142. //
  2143. static bool llama_kv_cache_init(
  2144. struct llama_kv_cache & cache,
  2145. const llama_context * ctx,
  2146. ggml_type type_k,
  2147. ggml_type type_v,
  2148. uint32_t kv_size,
  2149. bool offload) {
  2150. const llama_model & model = ctx->model;
  2151. const llama_cparams & cparams = ctx->cparams;
  2152. const struct llama_hparams & hparams = model.hparams;
  2153. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  2154. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  2155. const int64_t n_layer = hparams.n_layer;
  2156. cache.has_shift = false;
  2157. // TODO: find a nicer way to add other recurrent model architectures
  2158. cache.recurrent = model.arch == LLM_ARCH_MAMBA;
  2159. cache.v_trans = !cparams.flash_attn;
  2160. // TODO: support mixed recurrent Transformer architectures
  2161. // NOTE: (!a || b) is a logical implication (a -> b)
  2162. GGML_ASSERT(!cache.recurrent || n_embd_k_gqa == hparams.n_embd_k_s());
  2163. GGML_ASSERT(!cache.recurrent || n_embd_v_gqa == hparams.n_embd_v_s());
  2164. GGML_ASSERT( cache.recurrent || n_embd_k_gqa == hparams.n_embd_k_gqa());
  2165. GGML_ASSERT( cache.recurrent || n_embd_v_gqa == hparams.n_embd_v_gqa());
  2166. cache.head = 0;
  2167. cache.size = kv_size;
  2168. cache.used = 0;
  2169. cache.type_k = type_k;
  2170. cache.type_v = type_v;
  2171. cache.cells.clear();
  2172. cache.cells.resize(kv_size);
  2173. if (cache.recurrent) {
  2174. // init state copy sources
  2175. for (uint32_t i = 0; i < cache.size; ++i) {
  2176. cache.cells[i].src = i;
  2177. }
  2178. }
  2179. #ifdef GGML_USE_CLBLAST
  2180. offload = false;
  2181. #endif
  2182. // count used buffer types
  2183. std::map<ggml_backend_buffer_type_t, int> buft_layer_count;
  2184. if (offload) {
  2185. for (int64_t i = 0; i < n_layer; ++i) {
  2186. buft_layer_count[model.buft_layer[i].buft]++;
  2187. }
  2188. } else {
  2189. buft_layer_count[llama_default_buffer_type_cpu(true)] = n_layer;
  2190. }
  2191. // create a context for each buffer type
  2192. std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
  2193. for (auto & it : buft_layer_count) {
  2194. int n_layers = it.second;
  2195. struct ggml_init_params params = {
  2196. /*.mem_size =*/ 2u*n_layers*ggml_tensor_overhead(),
  2197. /*.mem_buffer =*/ NULL,
  2198. /*.no_alloc =*/ true,
  2199. };
  2200. ggml_context * ctx = ggml_init(params);
  2201. if (!ctx) {
  2202. LLAMA_LOG_ERROR("%s: failed to allocate context for kv cache\n", __func__);
  2203. return false;
  2204. }
  2205. ctx_map[it.first] = ctx;
  2206. cache.ctxs.push_back(ctx);
  2207. }
  2208. cache.k_l.reserve(n_layer);
  2209. cache.v_l.reserve(n_layer);
  2210. for (int i = 0; i < (int) n_layer; i++) {
  2211. struct ggml_context * ctx = offload ? ctx_map.at(model.buft_layer[i].buft) : cache.ctxs.front();
  2212. ggml_tensor * k = ggml_new_tensor_1d(ctx, type_k, n_embd_k_gqa*kv_size);
  2213. ggml_tensor * v = ggml_new_tensor_1d(ctx, type_v, n_embd_v_gqa*kv_size);
  2214. ggml_format_name(k, "cache_k_l%d", i);
  2215. ggml_format_name(v, "cache_v_l%d", i);
  2216. cache.k_l.push_back(k);
  2217. cache.v_l.push_back(v);
  2218. }
  2219. // allocate tensors and initialize the buffers to avoid NaNs in the padding
  2220. for (auto it : ctx_map) {
  2221. ggml_backend_buffer_type_t buft = it.first;
  2222. ggml_context * ctx = it.second;
  2223. ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
  2224. if (!buf) {
  2225. LLAMA_LOG_ERROR("%s: failed to allocate buffer for kv cache\n", __func__);
  2226. return false;
  2227. }
  2228. ggml_backend_buffer_clear(buf, 0);
  2229. LLAMA_LOG_INFO("%s: %10s KV buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf), ggml_backend_buffer_get_size(buf)/1024.0/1024.0);
  2230. cache.bufs.push_back(buf);
  2231. }
  2232. return true;
  2233. }
  2234. // find an empty slot of size "n_tokens" in the cache
  2235. // updates the cache head
  2236. // Note: On success, it's important that cache.head points
  2237. // to the first cell of the slot.
  2238. static bool llama_kv_cache_find_slot(
  2239. struct llama_kv_cache & cache,
  2240. const struct llama_batch & batch) {
  2241. const uint32_t n_ctx = cache.size;
  2242. const uint32_t n_tokens = batch.n_tokens;
  2243. if (cache.recurrent) {
  2244. // For recurrent state architectures (like Mamba),
  2245. // each KV cache cell can store the state for a whole sequence.
  2246. llama_seq_id min = cache.size - 1;
  2247. llama_seq_id max = 0;
  2248. for (uint32_t i = 0; i < n_tokens; ++i) {
  2249. for (int32_t j = 0; j < batch.n_seq_id[i]; ++j) {
  2250. llama_seq_id seq_id = batch.seq_id[i][j];
  2251. // make sure it's a valid seq_id
  2252. if ((uint32_t) seq_id < cache.size) {
  2253. if (seq_id > max) {
  2254. max = seq_id;
  2255. }
  2256. if (seq_id < min) {
  2257. min = seq_id;
  2258. }
  2259. // Assuming the tokens are in-order
  2260. if (batch.pos[i] != cache.cells[seq_id].pos + 1) {
  2261. // What should happen when the pos backtracks or skips a value?
  2262. // Clearing the state mid-batch would require special-casing which isn't done.
  2263. LLAMA_LOG_WARN("%s: non-consecutive token position %d after %d for sequence %d\n",
  2264. __func__, batch.pos[i], cache.cells[seq_id].pos, seq_id);
  2265. }
  2266. if (cache.cells[seq_id].pos < 0 && 0 <= batch.pos[i]) {
  2267. cache.used += 1;
  2268. }
  2269. cache.cells[seq_id].pos = batch.pos[i];
  2270. // NOTE: seq_ids are not inserted here; they are handled when the input tensors are set
  2271. } else {
  2272. // too big seq_id
  2273. // TODO: would it be possible to resize the KV cache size instead?
  2274. LLAMA_LOG_ERROR("%s: seq_id=%d >= kv_size=%d Try using a bigger --parallel value\n", __func__, seq_id, cache.size);
  2275. return false;
  2276. }
  2277. }
  2278. }
  2279. // allow getting the range of used cells, from head to head + n
  2280. cache.head = min;
  2281. cache.n = max - min + 1;
  2282. // sanity check
  2283. return max >= min;
  2284. }
  2285. // otherwise, one cell per token.
  2286. if (n_tokens > n_ctx) {
  2287. LLAMA_LOG_ERROR("%s: n_tokens=%d > n_ctx=%d\n", __func__, n_tokens, n_ctx);
  2288. return false;
  2289. }
  2290. uint32_t n_tested = 0;
  2291. while (true) {
  2292. if (cache.head + n_tokens > n_ctx) {
  2293. n_tested += n_ctx - cache.head;
  2294. cache.head = 0;
  2295. continue;
  2296. }
  2297. bool found = true;
  2298. for (uint32_t i = 0; i < n_tokens; i++) {
  2299. if (cache.cells[cache.head + i].pos >= 0) {
  2300. found = false;
  2301. cache.head += i + 1;
  2302. n_tested += i + 1;
  2303. break;
  2304. }
  2305. }
  2306. if (found) {
  2307. break;
  2308. }
  2309. if (n_tested >= n_ctx) {
  2310. //LLAMA_LOG_ERROR("%s: failed to find a slot for %d tokens\n", __func__, n_tokens);
  2311. return false;
  2312. }
  2313. }
  2314. for (uint32_t i = 0; i < n_tokens; i++) {
  2315. cache.cells[cache.head + i].pos = batch.pos[i];
  2316. for (int32_t j = 0; j < batch.n_seq_id[i]; j++) {
  2317. cache.cells[cache.head + i].seq_id.insert(batch.seq_id[i][j]);
  2318. }
  2319. }
  2320. cache.used += n_tokens;
  2321. return true;
  2322. }
  2323. // find how many cells are currently in use
  2324. static uint32_t llama_kv_cache_cell_max(const struct llama_kv_cache & cache) {
  2325. for (uint32_t i = cache.size; i > 0; --i) {
  2326. const llama_kv_cell & cell = cache.cells[i - 1];
  2327. if (cell.pos >= 0 && !cell.is_empty()) {
  2328. return i;
  2329. }
  2330. }
  2331. return 0;
  2332. }
  2333. static void llama_kv_cache_clear(struct llama_kv_cache & cache) {
  2334. for (int32_t i = 0; i < (int32_t) cache.size; ++i) {
  2335. cache.cells[i].pos = -1;
  2336. cache.cells[i].seq_id.clear();
  2337. }
  2338. cache.head = 0;
  2339. cache.used = 0;
  2340. for (auto & buf : cache.bufs) {
  2341. ggml_backend_buffer_clear(buf, 0);
  2342. }
  2343. }
  2344. static bool llama_kv_cache_seq_rm(
  2345. struct llama_kv_cache & cache,
  2346. llama_seq_id seq_id,
  2347. llama_pos p0,
  2348. llama_pos p1) {
  2349. uint32_t new_head = cache.size;
  2350. if (p0 < 0) p0 = 0;
  2351. if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
  2352. // models like Mamba can't have a state partially erased
  2353. if (cache.recurrent) {
  2354. if (seq_id >= (int64_t) cache.size) {
  2355. // could be fatal
  2356. return false;
  2357. }
  2358. if (0 <= seq_id) {
  2359. // partial intersection is invalid
  2360. if ((0 < p0 && p0 <= cache.cells[seq_id].pos) || (0 < p1 && p1 <= cache.cells[seq_id].pos)) {
  2361. return false;
  2362. }
  2363. } else {
  2364. // seq_id is negative, then the range should include everything or nothing
  2365. if (p0 != p1 && (p0 != 0 || p1 != std::numeric_limits<llama_pos>::max())) {
  2366. return false;
  2367. }
  2368. }
  2369. }
  2370. for (uint32_t i = 0; i < cache.size; ++i) {
  2371. if (cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
  2372. if (seq_id < 0) {
  2373. cache.cells[i].seq_id.clear();
  2374. } else if (cache.cells[i].has_seq_id(seq_id)) {
  2375. cache.cells[i].seq_id.erase(seq_id);
  2376. } else {
  2377. continue;
  2378. }
  2379. if (cache.cells[i].is_empty()) {
  2380. // keep count of the number of used cells
  2381. if (cache.cells[i].pos >= 0) cache.used--;
  2382. cache.cells[i].pos = -1;
  2383. if (new_head == cache.size) new_head = i;
  2384. }
  2385. }
  2386. }
  2387. // If we freed up a slot, set head to it so searching can start there.
  2388. if (new_head != cache.size && new_head < cache.head) cache.head = new_head;
  2389. return true;
  2390. }
  2391. static void llama_kv_cache_seq_cp(
  2392. struct llama_kv_cache & cache,
  2393. llama_seq_id seq_id_src,
  2394. llama_seq_id seq_id_dst,
  2395. llama_pos p0,
  2396. llama_pos p1) {
  2397. if (p0 < 0) p0 = 0;
  2398. if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
  2399. if (cache.recurrent) {
  2400. if ((uint32_t) seq_id_dst < cache.size && (uint32_t) seq_id_src < cache.size) {
  2401. seq_id_src = cache.cells[seq_id_src].src;
  2402. GGML_ASSERT((uint32_t) seq_id_src < cache.size);
  2403. // intent to "copy from"
  2404. // supports copy chains thanks to taking the source of the source
  2405. cache.cells[seq_id_dst].src = seq_id_src;
  2406. // preserve the "keep or clear" status of the copied sequence
  2407. if (cache.cells[seq_id_src].has_seq_id(seq_id_src)) {
  2408. cache.cells[seq_id_dst].seq_id.insert(seq_id_dst);
  2409. } else {
  2410. cache.cells[seq_id_dst].seq_id.erase(seq_id_dst);
  2411. }
  2412. cache.do_copy = true;
  2413. cache.cells[seq_id_dst].pos = cache.cells[seq_id_src].pos;
  2414. }
  2415. return;
  2416. }
  2417. // otherwise, this is the KV cache of a Transformer-like model
  2418. cache.head = 0;
  2419. for (uint32_t i = 0; i < cache.size; ++i) {
  2420. if (cache.cells[i].has_seq_id(seq_id_src) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
  2421. cache.cells[i].seq_id.insert(seq_id_dst);
  2422. }
  2423. }
  2424. }
  2425. static void llama_kv_cache_seq_keep(struct llama_kv_cache & cache, llama_seq_id seq_id) {
  2426. uint32_t new_head = cache.size;
  2427. for (uint32_t i = 0; i < cache.size; ++i) {
  2428. if (!cache.cells[i].has_seq_id(seq_id)) {
  2429. if (cache.cells[i].pos >= 0) cache.used--;
  2430. cache.cells[i].pos = -1;
  2431. cache.cells[i].seq_id.clear();
  2432. if (new_head == cache.size) new_head = i;
  2433. } else {
  2434. cache.cells[i].seq_id.clear();
  2435. cache.cells[i].seq_id.insert(seq_id);
  2436. }
  2437. }
  2438. // If we freed up a slot, set head to it so searching can start there.
  2439. if (new_head != cache.size && new_head < cache.head) cache.head = new_head;
  2440. }
  2441. static void llama_kv_cache_seq_add(
  2442. struct llama_kv_cache & cache,
  2443. llama_seq_id seq_id,
  2444. llama_pos p0,
  2445. llama_pos p1,
  2446. llama_pos delta) {
  2447. uint32_t new_head = cache.size;
  2448. if (p0 < 0) p0 = 0;
  2449. if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
  2450. if (cache.recurrent) {
  2451. // for Mamba-like models, only the pos needs to be shifted
  2452. if (0 <= seq_id && seq_id < (int64_t) cache.size) {
  2453. llama_kv_cell & cell = cache.cells[seq_id];
  2454. if (cell.has_seq_id(seq_id) && p0 <= cell.pos && cell.pos < p1) {
  2455. cell.pos += delta;
  2456. }
  2457. }
  2458. return;
  2459. }
  2460. for (uint32_t i = 0; i < cache.size; ++i) {
  2461. if (cache.cells[i].has_seq_id(seq_id) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
  2462. cache.has_shift = true;
  2463. cache.cells[i].pos += delta;
  2464. cache.cells[i].delta += delta;
  2465. if (cache.cells[i].pos < 0) {
  2466. if (!cache.cells[i].is_empty()) {
  2467. cache.used--;
  2468. }
  2469. cache.cells[i].pos = -1;
  2470. cache.cells[i].seq_id.clear();
  2471. if (new_head == cache.size) {
  2472. new_head = i;
  2473. }
  2474. }
  2475. }
  2476. }
  2477. // If we freed up a slot, set head to it so searching can start there.
  2478. // Otherwise we just start the next search from the beginning.
  2479. cache.head = new_head != cache.size ? new_head : 0;
  2480. }
  2481. static void llama_kv_cache_seq_div(
  2482. struct llama_kv_cache & cache,
  2483. llama_seq_id seq_id,
  2484. llama_pos p0,
  2485. llama_pos p1,
  2486. int d) {
  2487. if (p0 < 0) p0 = 0;
  2488. if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
  2489. if (cache.recurrent) {
  2490. // for Mamba-like models, only the pos needs to be changed
  2491. if (0 <= seq_id && seq_id < (int64_t) cache.size) {
  2492. llama_kv_cell & cell = cache.cells[seq_id];
  2493. if (cell.has_seq_id(seq_id) && p0 <= cell.pos && cell.pos < p1) {
  2494. cell.pos /= d;
  2495. }
  2496. }
  2497. return;
  2498. }
  2499. for (uint32_t i = 0; i < cache.size; ++i) {
  2500. if (cache.cells[i].has_seq_id(seq_id) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
  2501. cache.has_shift = true;
  2502. {
  2503. llama_pos p_old = cache.cells[i].pos;
  2504. cache.cells[i].pos /= d;
  2505. cache.cells[i].delta += cache.cells[i].pos - p_old;
  2506. }
  2507. }
  2508. }
  2509. }
  2510. static llama_pos llama_kv_cache_seq_pos_max(struct llama_kv_cache & cache, llama_seq_id seq_id) {
  2511. llama_pos result = 0;
  2512. for (uint32_t i = 0; i < cache.size; ++i) {
  2513. if (cache.cells[i].has_seq_id(seq_id)) {
  2514. result = std::max(result, cache.cells[i].pos);
  2515. }
  2516. }
  2517. return result;
  2518. }
  2519. static void llama_kv_cache_defrag(struct llama_kv_cache & cache) {
  2520. cache.do_defrag = true;
  2521. }
  2522. static uint32_t llama_kv_cache_get_padding(const struct llama_cparams & cparams) {
  2523. // the FA kernels require padding to avoid extra runtime boundary checks
  2524. return cparams.flash_attn ? 256u : 32u;
  2525. }
  2526. //
  2527. // model loading and saving
  2528. //
  2529. enum llama_fver {
  2530. GGUF_FILE_VERSION_V1 = 1,
  2531. GGUF_FILE_VERSION_V2 = 2,
  2532. GGUF_FILE_VERSION_V3 = 3,
  2533. };
  2534. static const char * llama_file_version_name(llama_fver version) {
  2535. switch (version) {
  2536. case GGUF_FILE_VERSION_V1: return "GGUF V1 (support until nov 2023)";
  2537. case GGUF_FILE_VERSION_V2: return "GGUF V2";
  2538. case GGUF_FILE_VERSION_V3: return "GGUF V3 (latest)";
  2539. }
  2540. return "unknown";
  2541. }
  2542. static std::string llama_format_tensor_shape(const std::vector<int64_t> & ne) {
  2543. char buf[256];
  2544. snprintf(buf, sizeof(buf), "%5" PRId64, ne.at(0));
  2545. for (size_t i = 1; i < ne.size(); i++) {
  2546. snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), ", %5" PRId64, ne.at(i));
  2547. }
  2548. return buf;
  2549. }
  2550. static std::string llama_format_tensor_shape(const struct ggml_tensor * t) {
  2551. char buf[256];
  2552. snprintf(buf, sizeof(buf), "%5" PRId64, t->ne[0]);
  2553. for (int i = 1; i < GGML_MAX_DIMS; i++) {
  2554. snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), ", %5" PRId64, t->ne[i]);
  2555. }
  2556. return buf;
  2557. }
  2558. namespace GGUFMeta {
  2559. template <typename T, gguf_type gt_, T (*gfun)(const gguf_context *, const int)>
  2560. struct GKV_Base_Type {
  2561. static constexpr gguf_type gt = gt_;
  2562. static T getter(const gguf_context * ctx, const int kid) {
  2563. return gfun(ctx, kid);
  2564. }
  2565. };
  2566. template<typename T> struct GKV_Base;
  2567. template<> struct GKV_Base<bool >: GKV_Base_Type<bool, GGUF_TYPE_BOOL, gguf_get_val_bool> {};
  2568. template<> struct GKV_Base<uint8_t >: GKV_Base_Type<uint8_t, GGUF_TYPE_UINT8, gguf_get_val_u8 > {};
  2569. template<> struct GKV_Base<uint16_t >: GKV_Base_Type<uint16_t, GGUF_TYPE_UINT16, gguf_get_val_u16 > {};
  2570. template<> struct GKV_Base<uint32_t >: GKV_Base_Type<uint32_t, GGUF_TYPE_UINT32, gguf_get_val_u32 > {};
  2571. template<> struct GKV_Base<uint64_t >: GKV_Base_Type<uint64_t, GGUF_TYPE_UINT64, gguf_get_val_u64 > {};
  2572. template<> struct GKV_Base<int8_t >: GKV_Base_Type<int8_t, GGUF_TYPE_INT8, gguf_get_val_i8 > {};
  2573. template<> struct GKV_Base<int16_t >: GKV_Base_Type<int16_t, GGUF_TYPE_INT16, gguf_get_val_i16 > {};
  2574. template<> struct GKV_Base<int32_t >: GKV_Base_Type<int32_t, GGUF_TYPE_INT32, gguf_get_val_i32 > {};
  2575. template<> struct GKV_Base<int64_t >: GKV_Base_Type<int64_t, GGUF_TYPE_INT64, gguf_get_val_i64 > {};
  2576. template<> struct GKV_Base<float >: GKV_Base_Type<float, GGUF_TYPE_FLOAT32, gguf_get_val_f32 > {};
  2577. template<> struct GKV_Base<double >: GKV_Base_Type<double, GGUF_TYPE_FLOAT64, gguf_get_val_f64 > {};
  2578. template<> struct GKV_Base<const char *>: GKV_Base_Type<const char *, GGUF_TYPE_STRING, gguf_get_val_str > {};
  2579. template<> struct GKV_Base<std::string> {
  2580. static constexpr gguf_type gt = GGUF_TYPE_STRING;
  2581. static std::string getter(const gguf_context * ctx, const int kid) {
  2582. return gguf_get_val_str(ctx, kid);
  2583. }
  2584. };
  2585. struct ArrayInfo {
  2586. const gguf_type gt;
  2587. const size_t length;
  2588. const void * data;
  2589. };
  2590. template<> struct GKV_Base<ArrayInfo> {
  2591. public:
  2592. static constexpr gguf_type gt = GGUF_TYPE_ARRAY;
  2593. static ArrayInfo getter(const gguf_context *ctx, const int k) {
  2594. return ArrayInfo {
  2595. gguf_get_arr_type(ctx, k),
  2596. size_t(gguf_get_arr_n(ctx, k)),
  2597. gguf_get_arr_data(ctx, k),
  2598. };
  2599. }
  2600. };
  2601. template<typename T>
  2602. class GKV : public GKV_Base<T> {
  2603. GKV() = delete;
  2604. public:
  2605. static T get_kv(const gguf_context * ctx, const int k) {
  2606. const enum gguf_type kt = gguf_get_kv_type(ctx, k);
  2607. if (kt != GKV::gt) {
  2608. throw std::runtime_error(format("key %s has wrong type %s but expected type %s",
  2609. gguf_get_key(ctx, k), gguf_type_name(kt), gguf_type_name(GKV::gt)));
  2610. }
  2611. return GKV::getter(ctx, k);
  2612. }
  2613. static const char * override_type_to_str(const llama_model_kv_override_type ty) {
  2614. switch (ty) {
  2615. case LLAMA_KV_OVERRIDE_TYPE_BOOL: return "bool";
  2616. case LLAMA_KV_OVERRIDE_TYPE_INT: return "int";
  2617. case LLAMA_KV_OVERRIDE_TYPE_FLOAT: return "float";
  2618. case LLAMA_KV_OVERRIDE_TYPE_STR: return "str";
  2619. }
  2620. return "unknown";
  2621. }
  2622. static bool validate_override(const llama_model_kv_override_type expected_type, const struct llama_model_kv_override * ovrd) {
  2623. if (!ovrd) { return false; }
  2624. if (ovrd->tag == expected_type) {
  2625. LLAMA_LOG_INFO("%s: Using metadata override (%5s) '%s' = ",
  2626. __func__, override_type_to_str(ovrd->tag), ovrd->key);
  2627. switch (ovrd->tag) {
  2628. case LLAMA_KV_OVERRIDE_TYPE_BOOL: {
  2629. LLAMA_LOG_INFO("%s\n", ovrd->val_bool ? "true" : "false");
  2630. } break;
  2631. case LLAMA_KV_OVERRIDE_TYPE_INT: {
  2632. LLAMA_LOG_INFO("%" PRId64 "\n", ovrd->val_i64);
  2633. } break;
  2634. case LLAMA_KV_OVERRIDE_TYPE_FLOAT: {
  2635. LLAMA_LOG_INFO("%.6f\n", ovrd->val_f64);
  2636. } break;
  2637. case LLAMA_KV_OVERRIDE_TYPE_STR: {
  2638. LLAMA_LOG_INFO("%s\n", ovrd->val_str);
  2639. } break;
  2640. default:
  2641. // Shouldn't be possible to end up here, but just in case...
  2642. throw std::runtime_error(
  2643. format("Unsupported attempt to override %s type for metadata key %s\n",
  2644. override_type_to_str(ovrd->tag), ovrd->key));
  2645. }
  2646. return true;
  2647. }
  2648. LLAMA_LOG_WARN("%s: Warning: Bad metadata override type for key '%s', expected %s but got %s\n",
  2649. __func__, ovrd->key, override_type_to_str(expected_type), override_type_to_str(ovrd->tag));
  2650. return false;
  2651. }
  2652. template<typename OT>
  2653. static typename std::enable_if<std::is_same<OT, bool>::value, bool>::type
  2654. try_override(OT & target, const struct llama_model_kv_override * ovrd) {
  2655. if (validate_override(LLAMA_KV_OVERRIDE_TYPE_BOOL, ovrd)) {
  2656. target = ovrd->val_bool;
  2657. return true;
  2658. }
  2659. return false;
  2660. }
  2661. template<typename OT>
  2662. static typename std::enable_if<!std::is_same<OT, bool>::value && std::is_integral<OT>::value, bool>::type
  2663. try_override(OT & target, const struct llama_model_kv_override * ovrd) {
  2664. if (validate_override(LLAMA_KV_OVERRIDE_TYPE_INT, ovrd)) {
  2665. target = ovrd->val_i64;
  2666. return true;
  2667. }
  2668. return false;
  2669. }
  2670. template<typename OT>
  2671. static typename std::enable_if<std::is_floating_point<OT>::value, bool>::type
  2672. try_override(T & target, const struct llama_model_kv_override * ovrd) {
  2673. if (validate_override(LLAMA_KV_OVERRIDE_TYPE_FLOAT, ovrd)) {
  2674. target = ovrd->val_f64;
  2675. return true;
  2676. }
  2677. return false;
  2678. }
  2679. template<typename OT>
  2680. static typename std::enable_if<std::is_same<OT, std::string>::value, bool>::type
  2681. try_override(T & target, const struct llama_model_kv_override * ovrd) {
  2682. if (validate_override(LLAMA_KV_OVERRIDE_TYPE_STR, ovrd)) {
  2683. target = ovrd->val_str;
  2684. return true;
  2685. }
  2686. return false;
  2687. }
  2688. static bool set(const gguf_context * ctx, const int k, T & target, const struct llama_model_kv_override * ovrd = nullptr) {
  2689. if (try_override<T>(target, ovrd)) {
  2690. return true;
  2691. }
  2692. if (k < 0) { return false; }
  2693. target = get_kv(ctx, k);
  2694. return true;
  2695. }
  2696. static bool set(const gguf_context * ctx, const char * key, T & target, const struct llama_model_kv_override * ovrd = nullptr) {
  2697. return set(ctx, gguf_find_key(ctx, key), target, ovrd);
  2698. }
  2699. static bool set(const gguf_context * ctx, const std::string & key, T & target, const struct llama_model_kv_override * ovrd = nullptr) {
  2700. return set(ctx, key.c_str(), target, ovrd);
  2701. }
  2702. };
  2703. }
  2704. using llama_buf_map = std::unordered_map<uint32_t, ggml_backend_buffer_t>;
  2705. struct llama_model_loader {
  2706. int n_kv = 0;
  2707. int n_tensors = 0;
  2708. int n_created = 0;
  2709. int64_t n_elements = 0;
  2710. size_t n_bytes = 0;
  2711. bool use_mmap = false;
  2712. bool check_tensors;
  2713. llama_files files;
  2714. llama_ftype ftype;
  2715. llama_fver fver;
  2716. llama_mmaps mappings;
  2717. // Holds information on a model weight
  2718. struct llama_tensor_weight {
  2719. uint16_t idx; // source file index
  2720. size_t offs; // tensor data offset in the original file
  2721. ggml_tensor * tensor;
  2722. llama_tensor_weight(const llama_file * file, uint16_t idx, const char * name, const struct gguf_context * gguf_ctx, ggml_tensor * tensor) : idx(idx), tensor(tensor) {
  2723. const int tensor_idx = gguf_find_tensor(gguf_ctx, name);
  2724. offs = gguf_get_data_offset(gguf_ctx) + gguf_get_tensor_offset(gguf_ctx, tensor_idx);
  2725. if (offs + ggml_nbytes(tensor) < offs || offs + ggml_nbytes(tensor) > file->size) {
  2726. throw std::runtime_error(format("tensor '%s' data is not within the file bounds, model is corrupted or incomplete", name));
  2727. }
  2728. }
  2729. };
  2730. std::vector<llama_tensor_weight> weights;
  2731. std::unordered_map<std::string, struct llama_model_kv_override> kv_overrides;
  2732. struct gguf_context * meta = NULL;
  2733. std::vector<ggml_context *> contexts;
  2734. std::string arch_name;
  2735. LLM_KV llm_kv = LLM_KV(LLM_ARCH_UNKNOWN);
  2736. llama_model_loader(const std::string & fname, bool use_mmap, bool check_tensors, const struct llama_model_kv_override * param_overrides_p) {
  2737. int trace = 0;
  2738. if (getenv("LLAMA_TRACE")) {
  2739. trace = atoi(getenv("LLAMA_TRACE"));
  2740. }
  2741. if (param_overrides_p != nullptr) {
  2742. for (const struct llama_model_kv_override *p = param_overrides_p; p->key[0] != 0; p++) {
  2743. kv_overrides.insert({std::string(p->key), *p});
  2744. }
  2745. }
  2746. struct ggml_context * ctx = NULL;
  2747. struct gguf_init_params params = {
  2748. /*.no_alloc = */ true,
  2749. /*.ctx = */ &ctx,
  2750. };
  2751. meta = gguf_init_from_file(fname.c_str(), params);
  2752. if (!meta) {
  2753. throw std::runtime_error(format("%s: failed to load model from %s\n", __func__, fname.c_str()));
  2754. }
  2755. get_key(llm_kv(LLM_KV_GENERAL_ARCHITECTURE), arch_name, false);
  2756. llm_kv = LLM_KV(llm_arch_from_string(arch_name));
  2757. files.emplace_back(new llama_file(fname.c_str(), "rb"));
  2758. contexts.emplace_back(ctx);
  2759. // Save tensors data offset of the main file.
  2760. // For subsidiary files, `meta` tensor data offset must not be used,
  2761. // so we build a unified tensors index for weights.
  2762. for (ggml_tensor * cur = ggml_get_first_tensor(ctx); cur; cur = ggml_get_next_tensor(ctx, cur)) {
  2763. weights.emplace_back(files.back().get(), 0, cur->name, meta, cur);
  2764. }
  2765. uint16_t n_split = 0;
  2766. get_key(llm_kv(LLM_KV_SPLIT_COUNT), n_split, false);
  2767. // Load additional GGML contexts
  2768. if (n_split > 1) {
  2769. uint16_t idx = 0;
  2770. get_key(llm_kv(LLM_KV_SPLIT_NO), idx);
  2771. if (idx != 0) {
  2772. throw std::runtime_error(format("illegal split file: %d, model must be loaded with the first split", idx));
  2773. }
  2774. char split_prefix[PATH_MAX] = {0};
  2775. if (!llama_split_prefix(split_prefix, sizeof(split_prefix), fname.c_str(), idx, n_split)) {
  2776. throw std::runtime_error(format("invalid split file: %s", fname.c_str()));
  2777. }
  2778. if (trace > 0) {
  2779. LLAMA_LOG_INFO("%s: loading additional %d GGUFs\n", __func__, n_split);
  2780. }
  2781. char split_path[PATH_MAX] = {0};
  2782. for (idx = 1; idx < n_split; idx++) {
  2783. llama_split_path(split_path, sizeof(split_path), split_prefix, idx, n_split);
  2784. struct gguf_init_params split_params = {
  2785. /*.no_alloc = */ true,
  2786. /*.ctx = */ &ctx,
  2787. };
  2788. struct gguf_context * ctx_gguf = gguf_init_from_file(split_path, split_params);
  2789. if (!ctx_gguf) {
  2790. throw std::runtime_error(format("%s: failed to load GGUF split from %s\n", __func__, split_path));
  2791. }
  2792. files.emplace_back(new llama_file(split_path, "rb"));
  2793. contexts.emplace_back(ctx);
  2794. // Save tensors data offset info of the shard.
  2795. for (ggml_tensor * cur = ggml_get_first_tensor(ctx); cur; cur = ggml_get_next_tensor(ctx, cur)) {
  2796. weights.emplace_back(files.back().get(), idx, cur->name, ctx_gguf, cur);
  2797. }
  2798. gguf_free(ctx_gguf);
  2799. }
  2800. get_key(llm_kv(LLM_KV_SPLIT_TENSORS_COUNT), n_tensors);
  2801. // sanity check
  2802. {
  2803. const int n_tensors_loaded = (int) weights.size();
  2804. if (n_tensors != n_tensors_loaded) {
  2805. throw std::runtime_error(format("corrupted model: %d tensors expected but %d found", n_tensors, n_tensors_loaded));
  2806. }
  2807. }
  2808. LLAMA_LOG_INFO("%s: additional %d GGUFs metadata loaded.\n", __func__, n_split - 1);
  2809. }
  2810. n_kv = gguf_get_n_kv(meta);
  2811. n_tensors = weights.size();
  2812. fver = (enum llama_fver) gguf_get_version(meta);
  2813. std::set<std::string> tensor_names;
  2814. for (auto & w : weights) {
  2815. n_elements += ggml_nelements(w.tensor);
  2816. n_bytes += ggml_nbytes(w.tensor);
  2817. // make sure there is no duplicated tensor names
  2818. const std::string name(w.tensor->name);
  2819. auto found = tensor_names.find(name);
  2820. if (found != tensor_names.end()) {
  2821. throw std::runtime_error(format("invalid model: tensor '%s' is duplicated", w.tensor->name));
  2822. }
  2823. tensor_names.insert(name);
  2824. }
  2825. LLAMA_LOG_INFO("%s: loaded meta data with %d key-value pairs and %d tensors from %s (version %s)\n",
  2826. __func__, n_kv, n_tensors, fname.c_str(), llama_file_version_name(fver));
  2827. // determine file type based on the number of tensors for each quantization and print meta data
  2828. // TODO: make optional
  2829. {
  2830. std::map<enum ggml_type, uint32_t> n_type;
  2831. uint32_t n_type_max = 0;
  2832. enum ggml_type type_max = GGML_TYPE_F32;
  2833. for (int i = 0; i < n_tensors; i++) {
  2834. const ggml_tensor * tensor = weights.at(i).tensor;
  2835. enum ggml_type type = tensor->type;
  2836. n_type[type]++;
  2837. if (n_type_max < n_type[type]) {
  2838. n_type_max = n_type[type];
  2839. type_max = type;
  2840. }
  2841. if (trace > 0) {
  2842. const uint16_t sid = weights.at(i).idx;
  2843. LLAMA_LOG_INFO("%s: - tensor %4d, split %2d: %32s %-8s [ %s ]\n", __func__, i, sid, ggml_get_name(tensor), ggml_type_name(type), llama_format_tensor_shape(tensor).c_str());
  2844. }
  2845. }
  2846. switch (type_max) {
  2847. case GGML_TYPE_F32: ftype = LLAMA_FTYPE_ALL_F32; break;
  2848. case GGML_TYPE_F16: ftype = LLAMA_FTYPE_MOSTLY_F16; break;
  2849. case GGML_TYPE_BF16: ftype = LLAMA_FTYPE_MOSTLY_BF16; break;
  2850. case GGML_TYPE_Q4_0: ftype = LLAMA_FTYPE_MOSTLY_Q4_0; break;
  2851. case GGML_TYPE_Q4_1: ftype = LLAMA_FTYPE_MOSTLY_Q4_1; break;
  2852. case GGML_TYPE_Q5_0: ftype = LLAMA_FTYPE_MOSTLY_Q5_0; break;
  2853. case GGML_TYPE_Q5_1: ftype = LLAMA_FTYPE_MOSTLY_Q5_1; break;
  2854. case GGML_TYPE_Q8_0: ftype = LLAMA_FTYPE_MOSTLY_Q8_0; break;
  2855. case GGML_TYPE_Q2_K: ftype = LLAMA_FTYPE_MOSTLY_Q2_K; break;
  2856. case GGML_TYPE_Q3_K: ftype = LLAMA_FTYPE_MOSTLY_Q3_K_M; break;
  2857. case GGML_TYPE_Q4_K: ftype = LLAMA_FTYPE_MOSTLY_Q4_K_M; break;
  2858. case GGML_TYPE_Q5_K: ftype = LLAMA_FTYPE_MOSTLY_Q5_K_M; break;
  2859. case GGML_TYPE_Q6_K: ftype = LLAMA_FTYPE_MOSTLY_Q6_K; break;
  2860. case GGML_TYPE_IQ2_XXS: ftype = LLAMA_FTYPE_MOSTLY_IQ2_XXS; break;
  2861. case GGML_TYPE_IQ2_XS: ftype = LLAMA_FTYPE_MOSTLY_IQ2_XS; break;
  2862. case GGML_TYPE_IQ2_S: ftype = LLAMA_FTYPE_MOSTLY_IQ2_S; break;
  2863. case GGML_TYPE_IQ3_XXS: ftype = LLAMA_FTYPE_MOSTLY_IQ3_XXS; break;
  2864. case GGML_TYPE_IQ1_S: ftype = LLAMA_FTYPE_MOSTLY_IQ1_S; break;
  2865. case GGML_TYPE_IQ1_M: ftype = LLAMA_FTYPE_MOSTLY_IQ1_M; break;
  2866. case GGML_TYPE_IQ4_NL: ftype = LLAMA_FTYPE_MOSTLY_IQ4_NL; break;
  2867. case GGML_TYPE_IQ4_XS: ftype = LLAMA_FTYPE_MOSTLY_IQ4_XS; break;
  2868. case GGML_TYPE_IQ3_S: ftype = LLAMA_FTYPE_MOSTLY_IQ3_S; break;
  2869. default:
  2870. {
  2871. LLAMA_LOG_WARN("%s: unknown type %s\n", __func__, ggml_type_name(type_max));
  2872. ftype = LLAMA_FTYPE_ALL_F32;
  2873. } break;
  2874. }
  2875. // this is a way to mark that we have "guessed" the file type
  2876. ftype = (llama_ftype) (ftype | LLAMA_FTYPE_GUESSED);
  2877. {
  2878. const int kid = gguf_find_key(meta, "general.file_type");
  2879. if (kid >= 0) {
  2880. ftype = (llama_ftype) gguf_get_val_u32(meta, kid);
  2881. }
  2882. }
  2883. LLAMA_LOG_INFO("%s: Dumping metadata keys/values. Note: KV overrides do not apply in this output.\n", __func__);
  2884. for (int i = 0; i < n_kv; i++) {
  2885. const char * name = gguf_get_key(meta, i);
  2886. const enum gguf_type type = gguf_get_kv_type(meta, i);
  2887. const std::string type_name =
  2888. type == GGUF_TYPE_ARRAY
  2889. ? format("%s[%s,%d]", gguf_type_name(type), gguf_type_name(gguf_get_arr_type(meta, i)), gguf_get_arr_n(meta, i))
  2890. : gguf_type_name(type);
  2891. std::string value = gguf_kv_to_str(meta, i);
  2892. const size_t MAX_VALUE_LEN = 40;
  2893. if (value.size() > MAX_VALUE_LEN) {
  2894. value = format("%s...", value.substr(0, MAX_VALUE_LEN - 3).c_str());
  2895. }
  2896. replace_all(value, "\n", "\\n");
  2897. LLAMA_LOG_INFO("%s: - kv %3d: %42s %-16s = %s\n", __func__, i, name, type_name.c_str(), value.c_str());
  2898. }
  2899. // print type counts
  2900. for (auto & kv : n_type) {
  2901. if (kv.second == 0) {
  2902. continue;
  2903. }
  2904. LLAMA_LOG_INFO("%s: - type %4s: %4d tensors\n", __func__, ggml_type_name(kv.first), kv.second);
  2905. }
  2906. }
  2907. if (!llama_mmap::SUPPORTED) {
  2908. LLAMA_LOG_WARN("%s: mmap is not supported on this platform\n", __func__);
  2909. use_mmap = false;
  2910. }
  2911. this->use_mmap = use_mmap;
  2912. this->check_tensors = check_tensors;
  2913. }
  2914. ~llama_model_loader() {
  2915. if (meta) {
  2916. gguf_free(meta);
  2917. }
  2918. for (auto * ctx : contexts) {
  2919. ggml_free(ctx);
  2920. }
  2921. }
  2922. template<typename T>
  2923. typename std::enable_if<std::is_integral<T>::value, bool>::type
  2924. get_arr_n(const std::string & key, T & result, const bool required = true) {
  2925. const int kid = gguf_find_key(meta, key.c_str());
  2926. if (kid < 0) {
  2927. if (required) {
  2928. throw std::runtime_error(format("key not found in model: %s", key.c_str()));
  2929. }
  2930. return false;
  2931. }
  2932. struct GGUFMeta::ArrayInfo arr_info =
  2933. GGUFMeta::GKV<GGUFMeta::ArrayInfo>::get_kv(meta, kid);
  2934. result = arr_info.length;
  2935. return true;
  2936. }
  2937. template<typename T>
  2938. typename std::enable_if<std::is_integral<T>::value, bool>::type
  2939. get_arr_n(const enum llm_kv kid, T & result, const bool required = true) {
  2940. return get_arr_n(llm_kv(kid), result, required);
  2941. }
  2942. template<typename T>
  2943. bool get_key(const std::string & key, T & result, const bool required = true) {
  2944. auto it = kv_overrides.find(key);
  2945. const struct llama_model_kv_override * override =
  2946. it != kv_overrides.end() ? &it->second : nullptr;
  2947. const bool found = GGUFMeta::GKV<T>::set(meta, key, result, override);
  2948. if (required && !found) {
  2949. throw std::runtime_error(format("key not found in model: %s", key.c_str()));
  2950. }
  2951. return found;
  2952. }
  2953. template<typename T>
  2954. bool get_key(const enum llm_kv kid, T & result, const bool required = true) {
  2955. return get_key(llm_kv(kid), result, required);
  2956. }
  2957. std::string get_arch_name() const {
  2958. return arch_name;
  2959. }
  2960. enum llm_arch get_arch() const {
  2961. return llm_kv.arch;
  2962. }
  2963. const char * get_tensor_name(int i) const {
  2964. return weights.at(i).tensor->name;
  2965. }
  2966. const llama_tensor_weight * get_weight(const char * name) const {
  2967. for (const auto & weight : weights) {
  2968. if (strcmp(name, weight.tensor->name) == 0) {
  2969. return &weight;
  2970. }
  2971. }
  2972. return nullptr;
  2973. }
  2974. const llama_tensor_weight * get_weight(int i) const {
  2975. return get_weight(get_tensor_name(i));
  2976. }
  2977. const llama_tensor_weight & require_weight(const char * name) const {
  2978. const llama_tensor_weight * weight = get_weight(name);
  2979. if (!weight) {
  2980. throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name));
  2981. }
  2982. return *weight;
  2983. }
  2984. struct ggml_tensor * get_tensor_meta(const char * name) const {
  2985. const auto * weight = get_weight(name);
  2986. if (!weight) {
  2987. return nullptr;
  2988. }
  2989. return weight->tensor;
  2990. }
  2991. struct ggml_tensor * require_tensor_meta(const char * name) const {
  2992. struct ggml_tensor * tensor = get_tensor_meta(name);
  2993. if (!tensor) {
  2994. throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name));
  2995. }
  2996. return tensor;
  2997. }
  2998. struct ggml_tensor * get_tensor_meta(int i) const {
  2999. return get_tensor_meta(get_tensor_name(i));
  3000. }
  3001. struct ggml_tensor * create_tensor_for(struct ggml_context * ctx, const struct ggml_tensor * cur) {
  3002. struct ggml_tensor * tensor = ggml_dup_tensor(ctx, cur);
  3003. ggml_set_name(tensor, ggml_get_name(cur));
  3004. n_created++;
  3005. return tensor;
  3006. }
  3007. const struct ggml_tensor * check_tensor_dims(const std::string & name, const std::vector<int64_t> & ne, bool required) const {
  3008. const struct ggml_tensor * cur = get_tensor_meta(name.c_str());
  3009. if (cur == NULL) {
  3010. if (!required) {
  3011. return NULL;
  3012. }
  3013. throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name.c_str()));
  3014. }
  3015. {
  3016. bool is_ok = true;
  3017. for (size_t i = 0; i < GGML_MAX_DIMS; ++i) {
  3018. if ((i < ne.size() && ne[i] != cur->ne[i]) || (i >= ne.size() && cur->ne[i] != 1)) {
  3019. is_ok = false;
  3020. break;
  3021. }
  3022. }
  3023. if (!is_ok) {
  3024. throw std::runtime_error(
  3025. format("%s: tensor '%s' has wrong shape; expected %s, got %s",
  3026. __func__, name.c_str(),
  3027. llama_format_tensor_shape(ne).c_str(),
  3028. llama_format_tensor_shape(cur).c_str()));
  3029. }
  3030. }
  3031. return cur;
  3032. }
  3033. struct ggml_tensor * create_tensor(struct ggml_context * ctx, const std::string & name, const std::vector<int64_t> & ne, bool required = true) {
  3034. const struct ggml_tensor * cur = check_tensor_dims(name, ne, required);
  3035. if (cur == NULL) {
  3036. return NULL;
  3037. }
  3038. return create_tensor_for(ctx, cur);
  3039. }
  3040. struct ggml_tensor * create_tensor_as_view(struct ggml_context * ctx, struct ggml_tensor * base, const std::string & name, const std::vector<int64_t> & ne, size_t offset, bool required = true) {
  3041. const struct ggml_tensor * cur = check_tensor_dims(name, ne, required);
  3042. if (cur == NULL) {
  3043. return NULL;
  3044. }
  3045. if (cur->type != base->type) {
  3046. throw std::runtime_error(format("%s: tensor '%s' has wrong type; expected %s, got %s", __func__, name.c_str(), ggml_type_name(base->type), ggml_type_name(cur->type)));
  3047. }
  3048. std::array<int64_t, GGML_MAX_DIMS> dims;
  3049. for (size_t i = 0; i < GGML_MAX_DIMS; ++i) {
  3050. dims[i] = i < ne.size() ? ne[i] : 1;
  3051. }
  3052. struct ggml_tensor * tensor = ggml_view_4d(ctx, base,
  3053. dims[0], dims[1], dims[2], dims[3],
  3054. cur->nb[1], cur->nb[2], cur->nb[3],
  3055. offset);
  3056. ggml_set_name(tensor, name.c_str());
  3057. n_created++;
  3058. return tensor;
  3059. }
  3060. void done_getting_tensors() const {
  3061. if (n_created != n_tensors) {
  3062. throw std::runtime_error(format("%s: wrong number of tensors; expected %d, got %d", __func__, n_tensors, n_created));
  3063. }
  3064. }
  3065. void init_mappings(bool prefetch = true, llama_mlocks * mlock_mmaps = nullptr) {
  3066. if (use_mmap) {
  3067. mappings.reserve(files.size());
  3068. mmaps_used.reserve(files.size());
  3069. for (const auto & file : files) {
  3070. std::unique_ptr<llama_mmap> mapping(new llama_mmap(file.get(), prefetch ? -1 : 0, ggml_is_numa()));
  3071. mmaps_used.emplace_back(mapping->size, 0);
  3072. if (mlock_mmaps) {
  3073. std::unique_ptr<llama_mlock> mlock_mmap(new llama_mlock());
  3074. mlock_mmap->init(mapping->addr);
  3075. mlock_mmaps->emplace_back(std::move(mlock_mmap));
  3076. }
  3077. mappings.emplace_back(std::move(mapping));
  3078. }
  3079. }
  3080. // compute the total size of all tensors for progress reporting
  3081. for (auto & w : weights) {
  3082. size_data += ggml_nbytes(w.tensor);
  3083. }
  3084. }
  3085. void get_mapping_range(size_t * first, size_t * last, void ** addr, int idx, ggml_context * ctx) const {
  3086. GGML_ASSERT(!mappings.empty());
  3087. const auto & mapping = mappings.at(idx);
  3088. *first = mapping->size;
  3089. *last = 0;
  3090. *addr = mapping->addr;
  3091. for (ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor; tensor = ggml_get_next_tensor(ctx, tensor)) {
  3092. try {
  3093. const auto * weight = get_weight(ggml_get_name(tensor));
  3094. if (!weight) {
  3095. continue;
  3096. }
  3097. if (weight->idx != idx) {
  3098. continue;
  3099. }
  3100. *first = std::min(*first, weight->offs);
  3101. *last = std::max(*last, weight->offs + ggml_nbytes(tensor));
  3102. } catch(...) {
  3103. // the tensor is not in the model
  3104. }
  3105. }
  3106. }
  3107. // for backwards compatibility, does not support ggml-backend
  3108. void load_data_for(struct ggml_tensor * cur) const {
  3109. const auto & w = require_weight(ggml_get_name(cur));
  3110. if (use_mmap) {
  3111. const auto & mapping = mappings.at(w.idx);
  3112. if (cur->data == nullptr) {
  3113. cur->data = (uint8_t *)mapping->addr + w.offs;
  3114. } else {
  3115. memcpy(cur->data, (uint8_t *)mapping->addr + w.offs, ggml_nbytes(cur));
  3116. }
  3117. } else {
  3118. GGML_ASSERT(cur->data != nullptr);
  3119. GGML_ASSERT(w.idx < files.size());
  3120. const auto & file = files.at(w.idx);
  3121. file->seek(w.offs, SEEK_SET);
  3122. file->read_raw(cur->data, ggml_nbytes(cur));
  3123. }
  3124. if (check_tensors && !ggml_validate_row_data(cur->type, cur->data, ggml_nbytes(cur))) {
  3125. throw std::runtime_error(format("tensor '%s' has invalid data", ggml_get_name(cur)));
  3126. }
  3127. }
  3128. size_t size_done = 0;
  3129. size_t size_data = 0;
  3130. std::vector<std::pair<size_t, size_t>> mmaps_used;
  3131. // Returns false if cancelled by progress_callback
  3132. bool load_all_data(
  3133. struct ggml_context * ctx,
  3134. llama_buf_map & bufs_mmap,
  3135. llama_mlocks * lmlocks,
  3136. llama_progress_callback progress_callback,
  3137. void * progress_callback_user_data) {
  3138. GGML_ASSERT(size_data != 0 && "call init_mappings() first");
  3139. std::vector<no_init<uint8_t>> read_buf;
  3140. std::vector<std::future<std::pair<ggml_tensor *, bool>>> validation_result;
  3141. for (struct ggml_tensor * cur = ggml_get_first_tensor(ctx); cur != NULL; cur = ggml_get_next_tensor(ctx, cur)) {
  3142. const auto * weight = get_weight(ggml_get_name(cur));
  3143. if (weight == nullptr) {
  3144. // this can happen with split experts models
  3145. continue;
  3146. }
  3147. if (progress_callback) {
  3148. if (!progress_callback((float) size_done / size_data, progress_callback_user_data)) {
  3149. return false;
  3150. }
  3151. }
  3152. size_t n_size = ggml_nbytes(cur);
  3153. if (use_mmap) {
  3154. const auto & mapping = mappings.at(weight->idx);
  3155. ggml_backend_buffer_t buf_mmap = nullptr;
  3156. if (bufs_mmap.count(weight->idx)) {
  3157. buf_mmap = bufs_mmap.at(weight->idx);
  3158. }
  3159. uint8_t * data = (uint8_t *) mapping->addr + weight->offs;
  3160. if (check_tensors) {
  3161. validation_result.emplace_back(std::async(std::launch::async, [cur, data, n_size] {
  3162. return std::make_pair(cur, ggml_validate_row_data(cur->type, data, n_size));
  3163. }));
  3164. }
  3165. GGML_ASSERT(buf_mmap || cur->data); // either we have a buffer to allocate the tensor in, or it is already allocated
  3166. if (buf_mmap && cur->data == nullptr) {
  3167. ggml_backend_tensor_alloc(buf_mmap, cur, data);
  3168. if (lmlocks) {
  3169. const auto & lmlock = lmlocks->at(weight->idx);
  3170. lmlock->grow_to(weight->offs + n_size);
  3171. }
  3172. auto & mmap_used = mmaps_used[weight->idx];
  3173. mmap_used.first = std::min(mmap_used.first, weight->offs);
  3174. mmap_used.second = std::max(mmap_used.second, weight->offs + n_size);
  3175. } else {
  3176. ggml_backend_tensor_set(cur, data, 0, n_size);
  3177. }
  3178. } else {
  3179. GGML_ASSERT(weight->idx < files.size());
  3180. const auto & file = files.at(weight->idx);
  3181. if (ggml_backend_buffer_is_host(cur->buffer)) {
  3182. file->seek(weight->offs, SEEK_SET);
  3183. file->read_raw(cur->data, n_size);
  3184. if (check_tensors) {
  3185. validation_result.emplace_back(std::async(std::launch::async, [cur, n_size] {
  3186. return std::make_pair(cur, ggml_validate_row_data(cur->type, cur->data, n_size));
  3187. }));
  3188. }
  3189. } else {
  3190. read_buf.resize(n_size);
  3191. file->seek(weight->offs, SEEK_SET);
  3192. file->read_raw(read_buf.data(), n_size);
  3193. ggml_backend_tensor_set(cur, read_buf.data(), 0, n_size);
  3194. if (check_tensors && !ggml_validate_row_data(cur->type, read_buf.data(), n_size)) {
  3195. throw std::runtime_error(format("tensor '%s' has invalid data", ggml_get_name(cur)));
  3196. }
  3197. }
  3198. }
  3199. size_done += n_size;
  3200. }
  3201. // check validation results
  3202. bool validation_failed = false;
  3203. for (auto & future : validation_result) {
  3204. auto result = future.get();
  3205. if (!result.second) {
  3206. LLAMA_LOG_ERROR("%s: tensor '%s' has invalid data\n", __func__, ggml_get_name(result.first));
  3207. validation_failed = true;
  3208. }
  3209. }
  3210. if (validation_failed) {
  3211. throw std::runtime_error("found tensors with invalid data");
  3212. }
  3213. // check if this is the last call and do final cleanup
  3214. if (size_done >= size_data) {
  3215. // unmap offloaded tensors and metadata
  3216. if (use_mmap) {
  3217. for (uint32_t idx = 0; idx < mappings.size(); idx++) {
  3218. const auto & mmap_used = mmaps_used.at(idx);
  3219. auto & mapping = mappings.at(idx);
  3220. mapping->unmap_fragment(0, mmap_used.first);
  3221. if (mmap_used.second != 0) {
  3222. mapping->unmap_fragment(mmap_used.second, mapping->size);
  3223. }
  3224. }
  3225. }
  3226. if (progress_callback) {
  3227. // Even though the model is done loading, we still honor
  3228. // cancellation since we need to free allocations.
  3229. return progress_callback(1.0f, progress_callback_user_data);
  3230. }
  3231. }
  3232. return true;
  3233. }
  3234. };
  3235. template<>
  3236. bool llama_model_loader::get_key(const enum llm_kv kid, enum llama_pooling_type & result, const bool required) {
  3237. uint32_t tmp;
  3238. const bool found = get_key(kid, tmp, required);
  3239. if (found) {
  3240. result = (enum llama_pooling_type) tmp;
  3241. } else {
  3242. result = LLAMA_POOLING_TYPE_UNSPECIFIED;
  3243. }
  3244. return found;
  3245. }
  3246. //
  3247. // load LLaMA models
  3248. //
  3249. static const char * llama_model_arch_name(llm_arch arch) {
  3250. auto it = LLM_ARCH_NAMES.find(arch);
  3251. if (it == LLM_ARCH_NAMES.end()) {
  3252. return "unknown";
  3253. }
  3254. return it->second;
  3255. }
  3256. static std::string llama_model_ftype_name(llama_ftype ftype) {
  3257. if (ftype & LLAMA_FTYPE_GUESSED) {
  3258. return llama_model_ftype_name((enum llama_ftype) (ftype & ~LLAMA_FTYPE_GUESSED)) + " (guessed)";
  3259. }
  3260. switch (ftype) {
  3261. case LLAMA_FTYPE_ALL_F32: return "all F32";
  3262. case LLAMA_FTYPE_MOSTLY_F16: return "F16";
  3263. case LLAMA_FTYPE_MOSTLY_BF16: return "BF16";
  3264. case LLAMA_FTYPE_MOSTLY_Q4_0: return "Q4_0";
  3265. case LLAMA_FTYPE_MOSTLY_Q4_1: return "Q4_1";
  3266. case LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16:
  3267. return "Q4_1, some F16";
  3268. case LLAMA_FTYPE_MOSTLY_Q5_0: return "Q5_0";
  3269. case LLAMA_FTYPE_MOSTLY_Q5_1: return "Q5_1";
  3270. case LLAMA_FTYPE_MOSTLY_Q8_0: return "Q8_0";
  3271. // K-quants
  3272. case LLAMA_FTYPE_MOSTLY_Q2_K: return "Q2_K - Medium";
  3273. case LLAMA_FTYPE_MOSTLY_Q2_K_S: return "Q2_K - Small";
  3274. case LLAMA_FTYPE_MOSTLY_Q3_K_S: return "Q3_K - Small";
  3275. case LLAMA_FTYPE_MOSTLY_Q3_K_M: return "Q3_K - Medium";
  3276. case LLAMA_FTYPE_MOSTLY_Q3_K_L: return "Q3_K - Large";
  3277. case LLAMA_FTYPE_MOSTLY_Q4_K_S: return "Q4_K - Small";
  3278. case LLAMA_FTYPE_MOSTLY_Q4_K_M: return "Q4_K - Medium";
  3279. case LLAMA_FTYPE_MOSTLY_Q5_K_S: return "Q5_K - Small";
  3280. case LLAMA_FTYPE_MOSTLY_Q5_K_M: return "Q5_K - Medium";
  3281. case LLAMA_FTYPE_MOSTLY_Q6_K: return "Q6_K";
  3282. case LLAMA_FTYPE_MOSTLY_IQ2_XXS:return "IQ2_XXS - 2.0625 bpw";
  3283. case LLAMA_FTYPE_MOSTLY_IQ2_XS: return "IQ2_XS - 2.3125 bpw";
  3284. case LLAMA_FTYPE_MOSTLY_IQ2_S: return "IQ2_S - 2.5 bpw";
  3285. case LLAMA_FTYPE_MOSTLY_IQ2_M: return "IQ2_M - 2.7 bpw";
  3286. case LLAMA_FTYPE_MOSTLY_IQ3_XS: return "IQ3_XS - 3.3 bpw";
  3287. case LLAMA_FTYPE_MOSTLY_IQ3_XXS:return "IQ3_XXS - 3.0625 bpw";
  3288. case LLAMA_FTYPE_MOSTLY_IQ1_S :return "IQ1_S - 1.5625 bpw";
  3289. case LLAMA_FTYPE_MOSTLY_IQ1_M :return "IQ1_M - 1.75 bpw";
  3290. case LLAMA_FTYPE_MOSTLY_IQ4_NL: return "IQ4_NL - 4.5 bpw";
  3291. case LLAMA_FTYPE_MOSTLY_IQ4_XS: return "IQ4_XS - 4.25 bpw";
  3292. case LLAMA_FTYPE_MOSTLY_IQ3_S: return "IQ3_S - 3.4375 bpw";
  3293. case LLAMA_FTYPE_MOSTLY_IQ3_M: return "IQ3_S mix - 3.66 bpw";
  3294. default: return "unknown, may not work";
  3295. }
  3296. }
  3297. static const char * llama_model_type_name(e_model type) {
  3298. switch (type) {
  3299. case MODEL_22M: return "22M";
  3300. case MODEL_33M: return "33M";
  3301. case MODEL_109M: return "109M";
  3302. case MODEL_137M: return "137M";
  3303. case MODEL_0_5B: return "0.5B";
  3304. case MODEL_1B: return "1B";
  3305. case MODEL_2B: return "2B";
  3306. case MODEL_3B: return "3B";
  3307. case MODEL_7B: return "7B";
  3308. case MODEL_8B: return "8B";
  3309. case MODEL_12B: return "12B";
  3310. case MODEL_13B: return "13B";
  3311. case MODEL_14B: return "14B";
  3312. case MODEL_15B: return "15B";
  3313. case MODEL_20B: return "20B";
  3314. case MODEL_30B: return "30B";
  3315. case MODEL_34B: return "34B";
  3316. case MODEL_35B: return "35B";
  3317. case MODEL_40B: return "40B";
  3318. case MODEL_65B: return "65B";
  3319. case MODEL_70B: return "70B";
  3320. case MODEL_314B: return "314B";
  3321. case MODEL_SMALL: return "0.1B";
  3322. case MODEL_MEDIUM: return "0.4B";
  3323. case MODEL_LARGE: return "0.8B";
  3324. case MODEL_XL: return "1.5B";
  3325. case MODEL_A2_7B: return "A2.7B";
  3326. case MODEL_8x7B: return "8x7B";
  3327. case MODEL_8x22B: return "8x22B";
  3328. case MODEL_16x12B: return "16x12B";
  3329. default: return "?B";
  3330. }
  3331. }
  3332. static const char * llama_model_vocab_type_name(enum llama_vocab_type type){
  3333. switch (type) {
  3334. case LLAMA_VOCAB_TYPE_NONE: return "no vocab";
  3335. case LLAMA_VOCAB_TYPE_SPM: return "SPM";
  3336. case LLAMA_VOCAB_TYPE_BPE: return "BPE";
  3337. case LLAMA_VOCAB_TYPE_WPM: return "WPM";
  3338. default: return "unknown";
  3339. }
  3340. }
  3341. static void llm_load_arch(llama_model_loader & ml, llama_model & model) {
  3342. model.arch = ml.get_arch();
  3343. if (model.arch == LLM_ARCH_UNKNOWN) {
  3344. throw std::runtime_error("unknown model architecture: '" + ml.get_arch_name() + "'");
  3345. }
  3346. }
  3347. static void llm_load_hparams(
  3348. llama_model_loader & ml,
  3349. llama_model & model) {
  3350. auto & hparams = model.hparams;
  3351. const gguf_context * ctx = ml.meta;
  3352. // get metadata as string
  3353. for (int i = 0; i < gguf_get_n_kv(ctx); i++) {
  3354. enum gguf_type type = gguf_get_kv_type(ctx, i);
  3355. if (type == GGUF_TYPE_ARRAY) {
  3356. continue;
  3357. }
  3358. const char * name = gguf_get_key(ctx, i);
  3359. const std::string value = gguf_kv_to_str(ctx, i);
  3360. model.gguf_kv.emplace(name, value);
  3361. }
  3362. // get general kv
  3363. ml.get_key(LLM_KV_GENERAL_NAME, model.name, false);
  3364. // get hparams kv
  3365. ml.get_key(LLM_KV_VOCAB_SIZE, hparams.n_vocab, false) || ml.get_arr_n(LLM_KV_TOKENIZER_LIST, hparams.n_vocab);
  3366. // everything past this point is not vocab-related
  3367. if (hparams.vocab_only) {
  3368. return;
  3369. }
  3370. ml.get_key(LLM_KV_CONTEXT_LENGTH, hparams.n_ctx_train);
  3371. ml.get_key(LLM_KV_EMBEDDING_LENGTH, hparams.n_embd);
  3372. ml.get_key(LLM_KV_FEED_FORWARD_LENGTH, hparams.n_ff);
  3373. ml.get_key(LLM_KV_ATTENTION_HEAD_COUNT, hparams.n_head);
  3374. ml.get_key(LLM_KV_BLOCK_COUNT, hparams.n_layer);
  3375. ml.get_key(LLM_KV_EXPERT_COUNT, hparams.n_expert, false);
  3376. ml.get_key(LLM_KV_EXPERT_USED_COUNT, hparams.n_expert_used, false);
  3377. GGML_ASSERT(hparams.n_expert <= LLAMA_MAX_EXPERTS);
  3378. GGML_ASSERT(hparams.n_expert_used <= hparams.n_expert);
  3379. if (hparams.n_expert > 0) {
  3380. GGML_ASSERT(hparams.n_expert_used > 0);
  3381. } else {
  3382. GGML_ASSERT(hparams.n_expert_used == 0);
  3383. }
  3384. // n_head_kv is optional, default to n_head
  3385. hparams.n_head_kv = hparams.n_head;
  3386. ml.get_key(LLM_KV_ATTENTION_HEAD_COUNT_KV, hparams.n_head_kv, false);
  3387. bool rope_finetuned = false;
  3388. ml.get_key(LLM_KV_ROPE_SCALING_FINETUNED, rope_finetuned, false);
  3389. hparams.rope_finetuned = rope_finetuned;
  3390. hparams.n_yarn_orig_ctx = hparams.n_ctx_train;
  3391. ml.get_key(LLM_KV_ROPE_SCALING_ORIG_CTX_LEN, hparams.n_yarn_orig_ctx, false);
  3392. // rope_freq_base (optional)
  3393. hparams.rope_freq_base_train = 10000.0f;
  3394. ml.get_key(LLM_KV_ROPE_FREQ_BASE, hparams.rope_freq_base_train, false);
  3395. std::string rope_scaling("linear");
  3396. ml.get_key(LLM_KV_ROPE_SCALING_TYPE, rope_scaling, false);
  3397. hparams.rope_scaling_type_train = llama_rope_scaling_type_from_string(rope_scaling);
  3398. GGML_ASSERT(hparams.rope_scaling_type_train != LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED);
  3399. // rope_freq_scale (inverse of the kv) is optional
  3400. float ropescale = 0.0f;
  3401. if (!ml.get_key(LLM_KV_ROPE_SCALING_FACTOR, ropescale, false)) {
  3402. // try the old key name
  3403. ml.get_key(LLM_KV_ROPE_SCALE_LINEAR, ropescale, false);
  3404. }
  3405. hparams.rope_freq_scale_train = ropescale == 0.0f ? 1.0f : 1.0f/ropescale;
  3406. // sanity check for n_rot (optional)
  3407. {
  3408. hparams.n_rot = (hparams.n_head == 0) ? 0 : hparams.n_embd / hparams.n_head;
  3409. ml.get_key(LLM_KV_ROPE_DIMENSION_COUNT, hparams.n_rot, false);
  3410. if (model.arch == LLM_ARCH_LLAMA || model.arch == LLM_ARCH_FALCON) {
  3411. if (hparams.n_rot != hparams.n_embd / hparams.n_head) {
  3412. throw std::runtime_error(format("invalid n_rot: %u, expected %u", hparams.n_rot, hparams.n_embd / hparams.n_head));
  3413. }
  3414. }
  3415. // gpt-neox n_rot = rotary_pct * (n_embd / n_head)
  3416. // gpt-j n_rot = rotary_dim
  3417. }
  3418. hparams.n_embd_head_k = (hparams.n_head == 0) ? 0 : hparams.n_embd / hparams.n_head;
  3419. ml.get_key(LLM_KV_ATTENTION_KEY_LENGTH, hparams.n_embd_head_k, false);
  3420. hparams.n_embd_head_v = (hparams.n_head == 0) ? 0 : hparams.n_embd / hparams.n_head;
  3421. ml.get_key(LLM_KV_ATTENTION_VALUE_LENGTH, hparams.n_embd_head_v, false);
  3422. // arch-specific KVs
  3423. switch (model.arch) {
  3424. case LLM_ARCH_LLAMA:
  3425. {
  3426. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3427. if (hparams.n_expert == 8) {
  3428. switch (hparams.n_layer) {
  3429. case 32: model.type = e_model::MODEL_8x7B; break;
  3430. case 56: model.type = e_model::MODEL_8x22B; break;
  3431. default: model.type = e_model::MODEL_UNKNOWN;
  3432. }
  3433. } else {
  3434. switch (hparams.n_layer) {
  3435. case 22: model.type = e_model::MODEL_1B; break;
  3436. case 26: model.type = e_model::MODEL_3B; break;
  3437. case 32: model.type = hparams.n_vocab < 40000 ? e_model::MODEL_7B : e_model::MODEL_8B; break;
  3438. case 40: model.type = e_model::MODEL_13B; break;
  3439. case 48: model.type = e_model::MODEL_34B; break;
  3440. case 60: model.type = e_model::MODEL_30B; break;
  3441. case 80: model.type = hparams.n_head == hparams.n_head_kv ? e_model::MODEL_65B : e_model::MODEL_70B; break;
  3442. default: model.type = e_model::MODEL_UNKNOWN;
  3443. }
  3444. }
  3445. } break;
  3446. case LLM_ARCH_MINICPM:
  3447. {
  3448. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3449. switch (hparams.n_layer) {
  3450. case 40: model.type = e_model::MODEL_2B; break;
  3451. default: model.type = e_model::MODEL_UNKNOWN;
  3452. }
  3453. } break;
  3454. case LLM_ARCH_GROK:
  3455. {
  3456. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3457. switch (hparams.n_layer) {
  3458. case 64: model.type = e_model::MODEL_314B; break;
  3459. default: model.type = e_model::MODEL_UNKNOWN;
  3460. }
  3461. } break;
  3462. case LLM_ARCH_FALCON:
  3463. {
  3464. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3465. switch (hparams.n_layer) {
  3466. case 32: model.type = e_model::MODEL_7B; break;
  3467. case 60: model.type = e_model::MODEL_40B; break;
  3468. default: model.type = e_model::MODEL_UNKNOWN;
  3469. }
  3470. } break;
  3471. case LLM_ARCH_BAICHUAN:
  3472. {
  3473. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3474. switch (hparams.n_layer) {
  3475. case 32: model.type = e_model::MODEL_7B; break;
  3476. case 40: model.type = e_model::MODEL_13B; break;
  3477. default: model.type = e_model::MODEL_UNKNOWN;
  3478. }
  3479. if (model.type == e_model::MODEL_13B) {
  3480. // TODO: become GGUF KV parameter
  3481. hparams.f_max_alibi_bias = 8.0f;
  3482. }
  3483. } break;
  3484. case LLM_ARCH_STARCODER:
  3485. {
  3486. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3487. switch (hparams.n_layer) {
  3488. case 24: model.type = e_model::MODEL_1B; break;
  3489. case 36: model.type = e_model::MODEL_3B; break;
  3490. case 42: model.type = e_model::MODEL_7B; break;
  3491. case 40: model.type = e_model::MODEL_15B; break;
  3492. default: model.type = e_model::MODEL_UNKNOWN;
  3493. }
  3494. } break;
  3495. case LLM_ARCH_PERSIMMON:
  3496. {
  3497. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3498. switch (hparams.n_layer) {
  3499. case 36: model.type = e_model::MODEL_8B; break;
  3500. default: model.type = e_model::MODEL_UNKNOWN;
  3501. }
  3502. } break;
  3503. case LLM_ARCH_REFACT:
  3504. {
  3505. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3506. switch (hparams.n_layer) {
  3507. case 32: model.type = e_model::MODEL_1B; break;
  3508. default: model.type = e_model::MODEL_UNKNOWN;
  3509. }
  3510. // TODO: become GGUF KV parameter
  3511. hparams.f_max_alibi_bias = 8.0f;
  3512. } break;
  3513. case LLM_ARCH_BERT:
  3514. {
  3515. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3516. ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
  3517. ml.get_key(LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, hparams.n_vocab_type);
  3518. ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type, false);
  3519. switch (hparams.n_layer) {
  3520. case 3:
  3521. model.type = e_model::MODEL_17M; break; // bge-micro
  3522. case 6:
  3523. model.type = e_model::MODEL_22M; break; // MiniLM-L6
  3524. case 12:
  3525. switch (hparams.n_embd) {
  3526. case 384: model.type = e_model::MODEL_33M; break; // MiniLM-L12, bge-small
  3527. case 768: model.type = e_model::MODEL_109M; break; // bge-base
  3528. } break;
  3529. case 24:
  3530. model.type = e_model::MODEL_335M; break; // bge-large
  3531. }
  3532. } break;
  3533. case LLM_ARCH_JINA_BERT_V2:
  3534. {
  3535. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3536. ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
  3537. ml.get_key(LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, hparams.n_vocab_type);
  3538. ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type);
  3539. hparams.f_max_alibi_bias = 8.0f;
  3540. switch (hparams.n_layer) {
  3541. case 4: model.type = e_model::MODEL_33M; break; // jina-embeddings-small
  3542. case 12: model.type = e_model::MODEL_137M; break; // jina-embeddings-base
  3543. }
  3544. } break;
  3545. case LLM_ARCH_NOMIC_BERT:
  3546. {
  3547. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3548. ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
  3549. ml.get_key(LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, hparams.n_vocab_type);
  3550. ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type);
  3551. if (hparams.n_layer == 12 && hparams.n_embd == 768) {
  3552. model.type = e_model::MODEL_137M;
  3553. }
  3554. } break;
  3555. case LLM_ARCH_BLOOM:
  3556. {
  3557. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3558. switch (hparams.n_layer) {
  3559. case 24: model.type = e_model::MODEL_1B; break;
  3560. case 30:
  3561. switch (hparams.n_embd) {
  3562. case 2560: model.type = e_model::MODEL_3B; break;
  3563. case 4096: model.type = e_model::MODEL_7B; break;
  3564. } break;
  3565. }
  3566. // TODO: become GGUF KV parameter
  3567. hparams.f_max_alibi_bias = 8.0f;
  3568. } break;
  3569. case LLM_ARCH_MPT:
  3570. {
  3571. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3572. ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv, false);
  3573. ml.get_key(LLM_KV_ATTENTION_MAX_ALIBI_BIAS, hparams.f_max_alibi_bias);
  3574. switch (hparams.n_layer) {
  3575. case 32: model.type = e_model::MODEL_7B; break;
  3576. case 48: model.type = e_model::MODEL_30B; break;
  3577. default: model.type = e_model::MODEL_UNKNOWN;
  3578. }
  3579. } break;
  3580. case LLM_ARCH_STABLELM:
  3581. {
  3582. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3583. switch (hparams.n_layer) {
  3584. case 24: model.type = e_model::MODEL_1B; break;
  3585. case 32: model.type = e_model::MODEL_3B; break;
  3586. case 40: model.type = e_model::MODEL_12B; break;
  3587. default: model.type = e_model::MODEL_UNKNOWN;
  3588. }
  3589. } break;
  3590. case LLM_ARCH_QWEN:
  3591. {
  3592. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3593. switch (hparams.n_layer) {
  3594. case 32: model.type = e_model::MODEL_7B; break;
  3595. case 40: model.type = e_model::MODEL_13B; break;
  3596. default: model.type = e_model::MODEL_UNKNOWN;
  3597. }
  3598. } break;
  3599. case LLM_ARCH_QWEN2:
  3600. {
  3601. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3602. switch (hparams.n_layer) {
  3603. case 24: model.type = hparams.n_embd == 1024 ? e_model::MODEL_0_5B : e_model::MODEL_1B; break;
  3604. case 32: model.type = e_model::MODEL_7B; break;
  3605. case 40: model.type = hparams.n_head == 20 ? e_model::MODEL_4B : e_model::MODEL_13B; break;
  3606. case 80: model.type = e_model::MODEL_70B; break;
  3607. default: model.type = e_model::MODEL_UNKNOWN;
  3608. }
  3609. } break;
  3610. case LLM_ARCH_QWEN2MOE:
  3611. {
  3612. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3613. switch (hparams.n_layer) {
  3614. case 24: model.type = e_model::MODEL_A2_7B; break;
  3615. default: model.type = e_model::MODEL_UNKNOWN;
  3616. }
  3617. } break;
  3618. case LLM_ARCH_PHI2:
  3619. {
  3620. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3621. switch (hparams.n_layer) {
  3622. case 24: model.type = e_model::MODEL_1B; break;
  3623. case 32: model.type = e_model::MODEL_3B; break;
  3624. default: model.type = e_model::MODEL_UNKNOWN;
  3625. }
  3626. } break;
  3627. case LLM_ARCH_PHI3:
  3628. {
  3629. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3630. switch (hparams.n_layer) {
  3631. case 24: model.type = e_model::MODEL_1B; break;
  3632. case 32: model.type = e_model::MODEL_3B; break;
  3633. default: model.type = e_model::MODEL_UNKNOWN;
  3634. }
  3635. } break;
  3636. case LLM_ARCH_PLAMO:
  3637. {
  3638. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3639. switch (hparams.n_layer) {
  3640. case 40: model.type = e_model::MODEL_13B; break;
  3641. default: model.type = e_model::MODEL_UNKNOWN;
  3642. }
  3643. } break;
  3644. case LLM_ARCH_GPT2:
  3645. {
  3646. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3647. switch (hparams.n_layer) {
  3648. case 12: model.type = e_model::MODEL_SMALL; break;
  3649. case 24: model.type = e_model::MODEL_MEDIUM; break;
  3650. case 36: model.type = e_model::MODEL_LARGE; break;
  3651. case 48: model.type = e_model::MODEL_XL; break;
  3652. default: model.type = e_model::MODEL_UNKNOWN;
  3653. }
  3654. } break;
  3655. case LLM_ARCH_CODESHELL:
  3656. {
  3657. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3658. switch (hparams.n_layer) {
  3659. case 42: model.type = e_model::MODEL_SMALL; break;
  3660. default: model.type = e_model::MODEL_UNKNOWN;
  3661. }
  3662. } break;
  3663. case LLM_ARCH_ORION:
  3664. {
  3665. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3666. switch (hparams.n_layer) {
  3667. case 40: model.type = e_model::MODEL_14B; break;
  3668. default: model.type = e_model::MODEL_UNKNOWN;
  3669. }
  3670. } break;
  3671. case LLM_ARCH_INTERNLM2:
  3672. {
  3673. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3674. switch (hparams.n_layer) {
  3675. case 32: model.type = e_model::MODEL_7B; break;
  3676. case 48: model.type = e_model::MODEL_20B; break;
  3677. default: model.type = e_model::MODEL_UNKNOWN;
  3678. }
  3679. } break;
  3680. case LLM_ARCH_GEMMA:
  3681. {
  3682. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3683. switch (hparams.n_layer) {
  3684. case 18: model.type = e_model::MODEL_2B; break;
  3685. case 28: model.type = e_model::MODEL_7B; break;
  3686. default: model.type = e_model::MODEL_UNKNOWN;
  3687. }
  3688. } break;
  3689. case LLM_ARCH_STARCODER2:
  3690. {
  3691. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3692. switch (hparams.n_layer) {
  3693. case 30: model.type = e_model::MODEL_3B; break;
  3694. case 32: model.type = e_model::MODEL_7B; break;
  3695. case 40: model.type = e_model::MODEL_15B; break;
  3696. default: model.type = e_model::MODEL_UNKNOWN;
  3697. }
  3698. } break;
  3699. case LLM_ARCH_MAMBA:
  3700. {
  3701. ml.get_key(LLM_KV_SSM_CONV_KERNEL, hparams.ssm_d_conv);
  3702. ml.get_key(LLM_KV_SSM_INNER_SIZE, hparams.ssm_d_inner);
  3703. ml.get_key(LLM_KV_SSM_STATE_SIZE, hparams.ssm_d_state);
  3704. ml.get_key(LLM_KV_SSM_TIME_STEP_RANK, hparams.ssm_dt_rank);
  3705. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3706. switch (hparams.n_layer) {
  3707. case 24:
  3708. switch (hparams.n_embd) {
  3709. case 768: model.type = e_model::MODEL_SMALL; break;
  3710. default: model.type = e_model::MODEL_UNKNOWN;
  3711. } break;
  3712. case 48:
  3713. switch (hparams.n_embd) {
  3714. case 1024: model.type = e_model::MODEL_MEDIUM; break;
  3715. case 1536: model.type = e_model::MODEL_LARGE; break;
  3716. case 2048: model.type = e_model::MODEL_XL; break;
  3717. default: model.type = e_model::MODEL_UNKNOWN;
  3718. } break;
  3719. case 64:
  3720. switch (hparams.n_embd) {
  3721. case 2560: model.type = e_model::MODEL_3B; break;
  3722. default: model.type = e_model::MODEL_UNKNOWN;
  3723. } break;
  3724. default: model.type = e_model::MODEL_UNKNOWN;
  3725. }
  3726. } break;
  3727. case LLM_ARCH_XVERSE:
  3728. {
  3729. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3730. switch (hparams.n_layer) {
  3731. case 32: model.type = e_model::MODEL_7B; break;
  3732. case 40: model.type = e_model::MODEL_13B; break;
  3733. case 80: model.type = e_model::MODEL_65B; break;
  3734. default: model.type = e_model::MODEL_UNKNOWN;
  3735. }
  3736. } break;
  3737. case LLM_ARCH_COMMAND_R:
  3738. {
  3739. ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale);
  3740. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3741. switch (hparams.n_layer) {
  3742. case 40: model.type = e_model::MODEL_35B; break;
  3743. default: model.type = e_model::MODEL_UNKNOWN;
  3744. }
  3745. } break;
  3746. case LLM_ARCH_DBRX:
  3747. {
  3748. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3749. ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv);
  3750. switch (hparams.n_layer) {
  3751. case 40: model.type = e_model::MODEL_16x12B; break;
  3752. default: model.type = e_model::MODEL_UNKNOWN;
  3753. }
  3754. } break;
  3755. case LLM_ARCH_OLMO:
  3756. {
  3757. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3758. ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv, false);
  3759. switch (hparams.n_layer) {
  3760. case 22: model.type = e_model::MODEL_1B; break;
  3761. case 32: model.type = e_model::MODEL_7B; break;
  3762. case 80: model.type = e_model::MODEL_70B; break;
  3763. default: model.type = e_model::MODEL_UNKNOWN;
  3764. }
  3765. } break;
  3766. default: (void)0;
  3767. }
  3768. model.ftype = ml.ftype;
  3769. if (hparams.f_max_alibi_bias > 0.0f) {
  3770. hparams.use_alibi = true;
  3771. }
  3772. hparams.rope_type = llama_rope_type(&model);
  3773. }
  3774. // TODO: This should probably be in llama.h
  3775. static std::vector<llama_vocab::id> llama_tokenize_internal(
  3776. const llama_vocab & vocab, std::string raw_text, bool add_special, bool parse_special = false
  3777. );
  3778. static llama_token llama_byte_to_token(const llama_vocab & vocab, uint8_t ch);
  3779. static void llm_load_vocab(
  3780. llama_model_loader & ml,
  3781. llama_model & model) {
  3782. auto & vocab = model.vocab;
  3783. struct gguf_context * ctx = ml.meta;
  3784. const auto kv = LLM_KV(model.arch);
  3785. // determine vocab type
  3786. {
  3787. std::string tokenizer_model;
  3788. std::string tokenizer_pre;
  3789. ml.get_key(LLM_KV_TOKENIZER_MODEL, tokenizer_model);
  3790. ml.get_key(LLM_KV_TOKENIZER_PRE, tokenizer_pre, false);
  3791. if (tokenizer_model == "no_vocab") {
  3792. vocab.type = LLAMA_VOCAB_TYPE_NONE;
  3793. // default special tokens
  3794. vocab.special_bos_id = -1;
  3795. vocab.special_eos_id = -1;
  3796. vocab.special_unk_id = -1;
  3797. vocab.special_sep_id = -1;
  3798. vocab.special_pad_id = -1;
  3799. vocab.special_cls_id = -1;
  3800. vocab.special_mask_id = -1;
  3801. vocab.linefeed_id = -1;
  3802. return;
  3803. } else if (tokenizer_model == "llama") {
  3804. vocab.type = LLAMA_VOCAB_TYPE_SPM;
  3805. // default special tokens
  3806. vocab.special_bos_id = 1;
  3807. vocab.special_eos_id = 2;
  3808. vocab.special_unk_id = 0;
  3809. vocab.special_sep_id = -1;
  3810. vocab.special_pad_id = -1;
  3811. vocab.special_cls_id = -1;
  3812. vocab.special_mask_id = -1;
  3813. // For Fill-In-the-Middle (FIM)/infill models which where converted
  3814. // prior to support of FIM special tokens in GGUF, the following
  3815. // will allow those models to continue to work. The general names
  3816. // of the known models are currently CodeLlama (LLM_ARCH_LLAMA) and
  3817. // CodeGemma (LLM_ARCH_GEMMA). This can potentially be removed once
  3818. // new versions of these models have been published.
  3819. std::string gen_name;
  3820. ml.get_key(LLM_KV_GENERAL_NAME, gen_name, false);
  3821. std::transform(gen_name.begin(), gen_name.end(), gen_name.begin(),
  3822. [](unsigned char c){ return std::tolower(c); });
  3823. if (gen_name.find("code") != std::string::npos) {
  3824. if (model.arch == LLM_ARCH_LLAMA) {
  3825. vocab.special_prefix_id = 32007;
  3826. vocab.special_suffix_id = 32008;
  3827. vocab.special_middle_id = 32009;
  3828. vocab.special_eot_id = 32010;
  3829. } else if (model.arch == LLM_ARCH_GEMMA) {
  3830. vocab.special_prefix_id = 67;
  3831. vocab.special_suffix_id = 69;
  3832. vocab.special_middle_id = 68;
  3833. // TODO: this is not EOT, it is "file separator" token, needs fix
  3834. // https://huggingface.co/google/codegemma-7b-it/blob/9b1d9231388358c04d90bd003458f5070d97db44/tokenizer_config.json#L565-L572
  3835. //vocab.special_eot_id = 70;
  3836. vocab.special_eot_id = 107;
  3837. }
  3838. }
  3839. const int add_space_prefix_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_ADD_PREFIX).c_str());
  3840. if (add_space_prefix_keyidx != -1) {
  3841. vocab.add_space_prefix = gguf_get_val_bool(ctx, add_space_prefix_keyidx);
  3842. } // The default value of add_space_prefix is true.
  3843. } else if (tokenizer_model == "bert") {
  3844. vocab.type = LLAMA_VOCAB_TYPE_WPM;
  3845. // default special tokens
  3846. vocab.special_bos_id = -1;
  3847. vocab.special_eos_id = -1;
  3848. vocab.special_unk_id = 100;
  3849. vocab.special_sep_id = 102;
  3850. vocab.special_pad_id = 0;
  3851. vocab.special_cls_id = 101;
  3852. vocab.special_mask_id = 103;
  3853. vocab.add_space_prefix = false;
  3854. } else {
  3855. if (tokenizer_model == "gpt2") {
  3856. vocab.type = LLAMA_VOCAB_TYPE_BPE;
  3857. } else {
  3858. LLAMA_LOG_WARN("%s: unknown tokenizer: '%s'", __func__, tokenizer_model.c_str());
  3859. LLAMA_LOG_WARN("%s: using default tokenizer: 'llama'", __func__);
  3860. vocab.type = LLAMA_VOCAB_TYPE_SPM;
  3861. return;
  3862. }
  3863. // read bpe merges and populate bpe ranks
  3864. const int merges_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_MERGES).c_str());
  3865. if (merges_keyidx == -1) {
  3866. throw std::runtime_error("cannot find tokenizer merges in model file\n");
  3867. }
  3868. const int n_merges = gguf_get_arr_n(ctx, merges_keyidx);
  3869. for (int i = 0; i < n_merges; i++) {
  3870. const std::string word = gguf_get_arr_str(ctx, merges_keyidx, i);
  3871. GGML_ASSERT(unicode_cpts_from_utf8(word).size() > 0);
  3872. std::string first;
  3873. std::string second;
  3874. const size_t pos = word.find(' ', 1);
  3875. if (pos != std::string::npos) {
  3876. first = word.substr(0, pos);
  3877. second = word.substr(pos + 1);
  3878. }
  3879. vocab.bpe_ranks.emplace(std::make_pair(first, second), i);
  3880. }
  3881. // default special tokens
  3882. vocab.special_bos_id = 11;
  3883. vocab.special_eos_id = 11;
  3884. vocab.special_unk_id = -1;
  3885. vocab.special_sep_id = -1;
  3886. vocab.special_pad_id = -1;
  3887. vocab.special_cls_id = -1;
  3888. vocab.special_mask_id = -1;
  3889. }
  3890. // for now, only BPE models have pre-tokenizers
  3891. if (vocab.type == LLAMA_VOCAB_TYPE_BPE) {
  3892. if (tokenizer_pre.empty()) {
  3893. LLAMA_LOG_WARN("%s: missing pre-tokenizer type, using: 'default'\n", __func__);
  3894. LLAMA_LOG_WARN("%s: \n", __func__);
  3895. LLAMA_LOG_WARN("%s: ************************************ \n", __func__);
  3896. LLAMA_LOG_WARN("%s: GENERATION QUALITY WILL BE DEGRADED! \n", __func__);
  3897. LLAMA_LOG_WARN("%s: CONSIDER REGENERATING THE MODEL \n", __func__);
  3898. LLAMA_LOG_WARN("%s: ************************************ \n", __func__);
  3899. LLAMA_LOG_WARN("%s: \n", __func__);
  3900. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
  3901. } else if (
  3902. tokenizer_pre == "default") {
  3903. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
  3904. } else if (
  3905. tokenizer_pre == "llama3" ||
  3906. tokenizer_pre == "llama-v3" ||
  3907. tokenizer_pre == "llama-bpe") {
  3908. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_LLAMA3;
  3909. } else if (
  3910. tokenizer_pre == "deepseek-llm") {
  3911. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_LLM;
  3912. } else if (
  3913. tokenizer_pre == "deepseek-coder") {
  3914. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_CODER;
  3915. } else if (
  3916. tokenizer_pre == "falcon") {
  3917. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_FALCON;
  3918. } else if (
  3919. tokenizer_pre == "mpt") {
  3920. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_MPT;
  3921. } else if (
  3922. tokenizer_pre == "starcoder") {
  3923. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_STARCODER;
  3924. } else if (
  3925. tokenizer_pre == "gpt-2" ||
  3926. tokenizer_pre == "jina-es" ||
  3927. tokenizer_pre == "jina-de" ||
  3928. tokenizer_pre == "jina-v2-es" ||
  3929. tokenizer_pre == "jina-v2-de") {
  3930. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_GPT2;
  3931. } else if (
  3932. tokenizer_pre == "refact") {
  3933. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_REFACT;
  3934. } else if (
  3935. tokenizer_pre == "command-r") {
  3936. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_COMMAND_R;
  3937. } else if (
  3938. tokenizer_pre == "qwen2") {
  3939. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_QWEN2;
  3940. } else if (
  3941. tokenizer_pre == "olmo") {
  3942. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_OLMO;
  3943. } else if (
  3944. tokenizer_pre == "dbrx") {
  3945. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DBRX;
  3946. } else {
  3947. throw std::runtime_error(format("unknown pre-tokenizer type: '%s'", tokenizer_pre.c_str()));
  3948. }
  3949. } else {
  3950. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
  3951. }
  3952. }
  3953. const int token_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_LIST).c_str());
  3954. if (token_idx == -1) {
  3955. throw std::runtime_error("cannot find tokenizer vocab in model file\n");
  3956. }
  3957. const float * scores = nullptr;
  3958. const int score_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_SCORES).c_str());
  3959. if (score_idx != -1) {
  3960. scores = (const float * ) gguf_get_arr_data(ctx, score_idx);
  3961. }
  3962. const int * toktypes = nullptr;
  3963. const int toktype_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_TOKEN_TYPE).c_str());
  3964. if (toktype_idx != -1) {
  3965. toktypes = (const int * ) gguf_get_arr_data(ctx, toktype_idx);
  3966. }
  3967. const uint32_t n_vocab = gguf_get_arr_n(ctx, token_idx);
  3968. vocab.id_to_token.resize(n_vocab);
  3969. for (uint32_t i = 0; i < n_vocab; i++) {
  3970. std::string word = gguf_get_arr_str(ctx, token_idx, i);
  3971. GGML_ASSERT(unicode_cpts_from_utf8(word).size() > 0);
  3972. vocab.token_to_id[word] = i;
  3973. auto & token_data = vocab.id_to_token[i];
  3974. token_data.text = std::move(word);
  3975. token_data.score = scores ? scores[i] : 0.0f;
  3976. token_data.type = toktypes ? (llama_token_type) toktypes[i] : LLAMA_TOKEN_TYPE_NORMAL;
  3977. }
  3978. GGML_ASSERT(vocab.id_to_token.size() == vocab.token_to_id.size());
  3979. // determine the newline token: LLaMA "<0x0A>" == 10 == '\n', Falcon 193 == '\n'
  3980. if (vocab.type == LLAMA_VOCAB_TYPE_SPM) {
  3981. try {
  3982. vocab.linefeed_id = llama_byte_to_token(vocab, '\n');
  3983. } catch (const std::exception & e) {
  3984. LLAMA_LOG_WARN("%s: SPM vocabulary, but newline token not found: %s! Using special_pad_id instead.", __func__, e.what());
  3985. vocab.linefeed_id = vocab.special_pad_id;
  3986. }
  3987. } else if (vocab.type == LLAMA_VOCAB_TYPE_WPM) {
  3988. vocab.linefeed_id = vocab.special_pad_id;
  3989. } else {
  3990. const std::vector<int> ids = llama_tokenize_internal(vocab, "\xC4\x8A", false); // U+010A
  3991. GGML_ASSERT(!ids.empty() && "model vocab missing newline token");
  3992. vocab.linefeed_id = ids[0];
  3993. }
  3994. // special tokens
  3995. {
  3996. const std::vector<std::pair<enum llm_kv, int32_t &>> special_token_types = {
  3997. { LLM_KV_TOKENIZER_BOS_ID, vocab.special_bos_id },
  3998. { LLM_KV_TOKENIZER_EOS_ID, vocab.special_eos_id },
  3999. { LLM_KV_TOKENIZER_UNK_ID, vocab.special_unk_id },
  4000. { LLM_KV_TOKENIZER_SEP_ID, vocab.special_sep_id },
  4001. { LLM_KV_TOKENIZER_PAD_ID, vocab.special_pad_id },
  4002. { LLM_KV_TOKENIZER_CLS_ID, vocab.special_cls_id },
  4003. { LLM_KV_TOKENIZER_MASK_ID, vocab.special_mask_id },
  4004. { LLM_KV_TOKENIZER_PREFIX_ID, vocab.special_prefix_id },
  4005. { LLM_KV_TOKENIZER_SUFFIX_ID, vocab.special_suffix_id },
  4006. { LLM_KV_TOKENIZER_MIDDLE_ID, vocab.special_middle_id },
  4007. { LLM_KV_TOKENIZER_EOT_ID, vocab.special_eot_id },
  4008. };
  4009. for (const auto & it : special_token_types) {
  4010. const std::string & key = kv(std::get<0>(it));
  4011. int32_t & id = std::get<1>(it);
  4012. uint32_t new_id;
  4013. if (!ml.get_key(std::get<0>(it), new_id, false)) {
  4014. continue;
  4015. }
  4016. if (new_id >= vocab.id_to_token.size()) {
  4017. LLAMA_LOG_WARN("%s: bad special token: '%s' = %ud, using default id %d\n",
  4018. __func__, key.c_str(), new_id, id);
  4019. } else {
  4020. id = new_id;
  4021. }
  4022. }
  4023. // Handle add_bos_token and add_eos_token
  4024. {
  4025. bool temp = true;
  4026. if (ml.get_key(LLM_KV_TOKENIZER_ADD_BOS, temp, false)) {
  4027. vocab.special_add_bos = int(temp);
  4028. }
  4029. if (ml.get_key(LLM_KV_TOKENIZER_ADD_EOS, temp, false)) {
  4030. vocab.special_add_eos = int(temp);
  4031. }
  4032. }
  4033. // find EOT token: "<|eot_id|>", "<|im_end|>", "<end_of_turn>", etc.
  4034. //
  4035. // TODO: convert scripts should provide this token through the KV metadata LLAMA_KV_TOKENIZER_EOT_ID
  4036. // for now, we apply this workaround to find the EOT token based on its text
  4037. if (vocab.special_eot_id == -1) {
  4038. for (const auto & t : vocab.token_to_id) {
  4039. if (
  4040. // TODO: gemma "<end_of_turn>" is exported as a normal token, so the following check does not work
  4041. // need to fix convert script
  4042. //vocab.id_to_token[t.second].type == LLAMA_TOKEN_TYPE_CONTROL &&
  4043. (t.first == "<|eot_id|>" ||
  4044. t.first == "<|im_end|>" ||
  4045. t.first == "<|end|>" ||
  4046. t.first == "<end_of_turn>"
  4047. )
  4048. ) {
  4049. vocab.special_eot_id = t.second;
  4050. break;
  4051. }
  4052. }
  4053. }
  4054. }
  4055. // build special tokens cache
  4056. {
  4057. // TODO: It is unclear (to me) at this point, whether special tokes are guaranteed to be of a deterministic type,
  4058. // and will always be correctly labeled in 'added_tokens.json' etc.
  4059. // The assumption is, since special tokens aren't meant to be exposed to end user, they are designed
  4060. // to be unmatchable by the tokenizer, therefore tokens from the vocab, which are unmatchable by the tokenizer
  4061. // are special tokens.
  4062. // From testing, this appears to correlate 1:1 with special tokens.
  4063. //
  4064. // Counting special tokens and verifying in only one direction
  4065. // is sufficient to detect difference in those two sets.
  4066. //
  4067. uint32_t special_tokens_count_by_type = 0;
  4068. uint32_t special_tokens_count_from_verification = 0;
  4069. bool special_tokens_definition_mismatch = false;
  4070. for (const auto & t : vocab.token_to_id) {
  4071. const auto & token = t.first;
  4072. const auto & id = t.second;
  4073. // Count all non-normal tokens in the vocab while iterating
  4074. if (vocab.id_to_token[id].type != LLAMA_TOKEN_TYPE_NORMAL) {
  4075. special_tokens_count_by_type++;
  4076. }
  4077. // Skip single character tokens
  4078. if (token.length() > 1) {
  4079. bool is_tokenizable = false;
  4080. // Split token string representation in two, in all possible ways
  4081. // and check if both halves can be matched to a valid token
  4082. for (unsigned i = 1; i < token.length();) {
  4083. const auto left = token.substr(0, i);
  4084. const auto right = token.substr(i);
  4085. // check if we didnt partition in the middle of a utf sequence
  4086. auto utf = utf8_len(left.at(left.length() - 1));
  4087. if (utf == 1) {
  4088. if (vocab.token_to_id.find(left) != vocab.token_to_id.end() &&
  4089. vocab.token_to_id.find(right) != vocab.token_to_id.end() ) {
  4090. is_tokenizable = true;
  4091. break;
  4092. }
  4093. i++;
  4094. } else {
  4095. // skip over the rest of multibyte utf sequence
  4096. i += utf - 1;
  4097. }
  4098. }
  4099. if (!is_tokenizable) {
  4100. // Some tokens are multibyte, but they are utf sequences with equivalent text length of 1
  4101. // it's faster to re-filter them here, since there are way less candidates now
  4102. // Calculate a total "utf" length of a token string representation
  4103. size_t utf8_str_len = 0;
  4104. for (unsigned i = 0; i < token.length();) {
  4105. utf8_str_len++;
  4106. i += utf8_len(token.at(i));
  4107. }
  4108. // And skip the ones which are one character
  4109. if (utf8_str_len > 1) {
  4110. // At this point what we have left are special tokens only
  4111. vocab.special_tokens_cache[token] = id;
  4112. // Count manually found special tokens
  4113. special_tokens_count_from_verification++;
  4114. // If this manually found special token is not marked as such, flag a mismatch
  4115. if (vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_NORMAL) {
  4116. special_tokens_definition_mismatch = true;
  4117. }
  4118. }
  4119. }
  4120. }
  4121. }
  4122. if (special_tokens_definition_mismatch || special_tokens_count_from_verification != special_tokens_count_by_type) {
  4123. LLAMA_LOG_WARN("%s: mismatch in special tokens definition ( %u/%zu vs %u/%zu ).\n",
  4124. __func__,
  4125. special_tokens_count_from_verification, vocab.id_to_token.size(),
  4126. special_tokens_count_by_type, vocab.id_to_token.size()
  4127. );
  4128. } else {
  4129. LLAMA_LOG_INFO("%s: special tokens definition check successful ( %u/%zu ).\n",
  4130. __func__,
  4131. special_tokens_count_from_verification, vocab.id_to_token.size()
  4132. );
  4133. }
  4134. }
  4135. }
  4136. static void llm_load_print_meta(llama_model_loader & ml, llama_model & model) {
  4137. const auto & hparams = model.hparams;
  4138. const auto & vocab = model.vocab;
  4139. const char * rope_scaling_type = LLAMA_ROPE_SCALING_TYPES.at(hparams.rope_scaling_type_train);
  4140. // hparams
  4141. LLAMA_LOG_INFO("%s: format = %s\n", __func__, llama_file_version_name(ml.fver));
  4142. LLAMA_LOG_INFO("%s: arch = %s\n", __func__, LLM_ARCH_NAMES.at(model.arch));
  4143. LLAMA_LOG_INFO("%s: vocab type = %s\n", __func__, llama_model_vocab_type_name(vocab.type));
  4144. LLAMA_LOG_INFO("%s: n_vocab = %u\n", __func__, hparams.n_vocab);
  4145. LLAMA_LOG_INFO("%s: n_merges = %u\n", __func__, (int) vocab.bpe_ranks.size());
  4146. LLAMA_LOG_INFO("%s: n_ctx_train = %u\n", __func__, hparams.n_ctx_train);
  4147. LLAMA_LOG_INFO("%s: n_embd = %u\n", __func__, hparams.n_embd);
  4148. LLAMA_LOG_INFO("%s: n_head = %u\n", __func__, hparams.n_head);
  4149. LLAMA_LOG_INFO("%s: n_head_kv = %u\n", __func__, hparams.n_head_kv);
  4150. LLAMA_LOG_INFO("%s: n_layer = %u\n", __func__, hparams.n_layer);
  4151. LLAMA_LOG_INFO("%s: n_rot = %u\n", __func__, hparams.n_rot);
  4152. LLAMA_LOG_INFO("%s: n_embd_head_k = %u\n", __func__, hparams.n_embd_head_k);
  4153. LLAMA_LOG_INFO("%s: n_embd_head_v = %u\n", __func__, hparams.n_embd_head_v);
  4154. LLAMA_LOG_INFO("%s: n_gqa = %u\n", __func__, hparams.n_gqa());
  4155. LLAMA_LOG_INFO("%s: n_embd_k_gqa = %u\n", __func__, hparams.n_embd_k_gqa());
  4156. LLAMA_LOG_INFO("%s: n_embd_v_gqa = %u\n", __func__, hparams.n_embd_v_gqa());
  4157. LLAMA_LOG_INFO("%s: f_norm_eps = %.1e\n", __func__, hparams.f_norm_eps);
  4158. LLAMA_LOG_INFO("%s: f_norm_rms_eps = %.1e\n", __func__, hparams.f_norm_rms_eps);
  4159. LLAMA_LOG_INFO("%s: f_clamp_kqv = %.1e\n", __func__, hparams.f_clamp_kqv);
  4160. LLAMA_LOG_INFO("%s: f_max_alibi_bias = %.1e\n", __func__, hparams.f_max_alibi_bias);
  4161. LLAMA_LOG_INFO("%s: f_logit_scale = %.1e\n", __func__, hparams.f_logit_scale);
  4162. LLAMA_LOG_INFO("%s: n_ff = %u\n", __func__, hparams.n_ff);
  4163. LLAMA_LOG_INFO("%s: n_expert = %u\n", __func__, hparams.n_expert);
  4164. LLAMA_LOG_INFO("%s: n_expert_used = %u\n", __func__, hparams.n_expert_used);
  4165. LLAMA_LOG_INFO("%s: causal attn = %d\n", __func__, hparams.causal_attn);
  4166. LLAMA_LOG_INFO("%s: pooling type = %d\n", __func__, hparams.pooling_type);
  4167. LLAMA_LOG_INFO("%s: rope type = %d\n", __func__, hparams.rope_type);
  4168. LLAMA_LOG_INFO("%s: rope scaling = %s\n", __func__, rope_scaling_type);
  4169. LLAMA_LOG_INFO("%s: freq_base_train = %.1f\n", __func__, hparams.rope_freq_base_train);
  4170. LLAMA_LOG_INFO("%s: freq_scale_train = %g\n", __func__, hparams.rope_freq_scale_train);
  4171. LLAMA_LOG_INFO("%s: n_yarn_orig_ctx = %u\n", __func__, hparams.n_yarn_orig_ctx);
  4172. LLAMA_LOG_INFO("%s: rope_finetuned = %s\n", __func__, hparams.rope_finetuned ? "yes" : "unknown");
  4173. LLAMA_LOG_INFO("%s: ssm_d_conv = %u\n", __func__, hparams.ssm_d_conv);
  4174. LLAMA_LOG_INFO("%s: ssm_d_inner = %u\n", __func__, hparams.ssm_d_inner);
  4175. LLAMA_LOG_INFO("%s: ssm_d_state = %u\n", __func__, hparams.ssm_d_state);
  4176. LLAMA_LOG_INFO("%s: ssm_dt_rank = %u\n", __func__, hparams.ssm_dt_rank);
  4177. LLAMA_LOG_INFO("%s: model type = %s\n", __func__, llama_model_type_name(model.type));
  4178. LLAMA_LOG_INFO("%s: model ftype = %s\n", __func__, llama_model_ftype_name(model.ftype).c_str());
  4179. if (ml.n_elements >= 1e12) {
  4180. LLAMA_LOG_INFO("%s: model params = %.2f T\n", __func__, ml.n_elements*1e-12);
  4181. } else if (ml.n_elements >= 1e9) {
  4182. LLAMA_LOG_INFO("%s: model params = %.2f B\n", __func__, ml.n_elements*1e-9);
  4183. } else if (ml.n_elements >= 1e6) {
  4184. LLAMA_LOG_INFO("%s: model params = %.2f M\n", __func__, ml.n_elements*1e-6);
  4185. } else {
  4186. LLAMA_LOG_INFO("%s: model params = %.2f K\n", __func__, ml.n_elements*1e-3);
  4187. }
  4188. if (ml.n_bytes < GiB) {
  4189. LLAMA_LOG_INFO("%s: model size = %.2f MiB (%.2f BPW) \n", __func__, ml.n_bytes/1024.0/1024.0, ml.n_bytes*8.0/ml.n_elements);
  4190. } else {
  4191. LLAMA_LOG_INFO("%s: model size = %.2f GiB (%.2f BPW) \n", __func__, ml.n_bytes/1024.0/1024.0/1024.0, ml.n_bytes*8.0/ml.n_elements);
  4192. }
  4193. // general kv
  4194. LLAMA_LOG_INFO("%s: general.name = %s\n", __func__, model.name.c_str());
  4195. // special tokens
  4196. if (vocab.special_bos_id != -1) { LLAMA_LOG_INFO( "%s: BOS token = %d '%s'\n", __func__, vocab.special_bos_id, vocab.id_to_token[vocab.special_bos_id].text.c_str() ); }
  4197. if (vocab.special_eos_id != -1) { LLAMA_LOG_INFO( "%s: EOS token = %d '%s'\n", __func__, vocab.special_eos_id, vocab.id_to_token[vocab.special_eos_id].text.c_str() ); }
  4198. if (vocab.special_unk_id != -1) { LLAMA_LOG_INFO( "%s: UNK token = %d '%s'\n", __func__, vocab.special_unk_id, vocab.id_to_token[vocab.special_unk_id].text.c_str() ); }
  4199. if (vocab.special_sep_id != -1) { LLAMA_LOG_INFO( "%s: SEP token = %d '%s'\n", __func__, vocab.special_sep_id, vocab.id_to_token[vocab.special_sep_id].text.c_str() ); }
  4200. if (vocab.special_pad_id != -1) { LLAMA_LOG_INFO( "%s: PAD token = %d '%s'\n", __func__, vocab.special_pad_id, vocab.id_to_token[vocab.special_pad_id].text.c_str() ); }
  4201. if (vocab.special_cls_id != -1) { LLAMA_LOG_INFO( "%s: CLS token = %d '%s'\n", __func__, vocab.special_cls_id, vocab.id_to_token[vocab.special_cls_id].text.c_str() ); }
  4202. if (vocab.special_mask_id != -1) { LLAMA_LOG_INFO( "%s: MASK token = %d '%s'\n", __func__, vocab.special_mask_id, vocab.id_to_token[vocab.special_mask_id].text.c_str() ); }
  4203. if (vocab.linefeed_id != -1) { LLAMA_LOG_INFO( "%s: LF token = %d '%s'\n", __func__, vocab.linefeed_id, vocab.id_to_token[vocab.linefeed_id].text.c_str() ); }
  4204. if (vocab.special_prefix_id != -1) { LLAMA_LOG_INFO( "%s: PRE token = %d '%s'\n", __func__, vocab.special_prefix_id, vocab.id_to_token[vocab.special_prefix_id].text.c_str() ); }
  4205. if (vocab.special_suffix_id != -1) { LLAMA_LOG_INFO( "%s: SUF token = %d '%s'\n", __func__, vocab.special_suffix_id, vocab.id_to_token[vocab.special_suffix_id].text.c_str() ); }
  4206. if (vocab.special_middle_id != -1) { LLAMA_LOG_INFO( "%s: MID token = %d '%s'\n", __func__, vocab.special_middle_id, vocab.id_to_token[vocab.special_middle_id].text.c_str() ); }
  4207. if (vocab.special_eot_id != -1) { LLAMA_LOG_INFO( "%s: EOT token = %d '%s'\n", __func__, vocab.special_eot_id, vocab.id_to_token[vocab.special_eot_id].text.c_str() ); }
  4208. }
  4209. // Returns false if cancelled by progress_callback
  4210. static bool llm_load_tensors(
  4211. llama_model_loader & ml,
  4212. llama_model & model,
  4213. int n_gpu_layers,
  4214. enum llama_split_mode split_mode,
  4215. int main_gpu,
  4216. const float * tensor_split,
  4217. bool use_mlock,
  4218. llama_progress_callback progress_callback,
  4219. void * progress_callback_user_data) {
  4220. model.t_start_us = ggml_time_us();
  4221. auto & hparams = model.hparams;
  4222. #ifdef GGML_USE_SYCL
  4223. // disable MoE with SYCL until mul_mat_id is updated
  4224. if (hparams.n_expert > 0) {
  4225. n_gpu_layers = 0;
  4226. }
  4227. #endif
  4228. model.split_mode = split_mode;
  4229. model.main_gpu = main_gpu;
  4230. model.n_gpu_layers = n_gpu_layers;
  4231. const int64_t n_layer = hparams.n_layer;
  4232. const int64_t i_gpu_start = std::max((int64_t) hparams.n_layer - n_gpu_layers, (int64_t) 0);
  4233. bool use_mmap_buffer = true;
  4234. // there is very little benefit to offloading the input layer, so always keep it on the CPU
  4235. model.buft_input = llama_default_buffer_type_cpu(true);
  4236. //model.buft_input = llama_default_buffer_type_offload(main_gpu);
  4237. model.buft_layer.resize(n_layer);
  4238. // assign cpu layers
  4239. for (int64_t i = 0; i < i_gpu_start; ++i) {
  4240. model.buft_layer[i] = llama_default_buffer_type_cpu(true);
  4241. }
  4242. if (split_mode == LLAMA_SPLIT_MODE_LAYER) {
  4243. // calculate the split points
  4244. int device_count = llama_get_device_count(model);
  4245. bool all_zero = tensor_split == nullptr || std::all_of(tensor_split, tensor_split + device_count, [](float x) { return x == 0.0f; });
  4246. std::vector<float> splits(device_count);
  4247. if (all_zero) {
  4248. // default split, by free memory
  4249. for (int i = 0; i < device_count; ++i) {
  4250. splits[i] = llama_get_device_memory(model, i);
  4251. }
  4252. } else {
  4253. std::copy(tensor_split, tensor_split + device_count, splits.begin());
  4254. }
  4255. // sum and normalize the splits to get the split points
  4256. float split_sum = 0.0f;
  4257. for (int i = 0; i < device_count; ++i) {
  4258. split_sum += splits[i];
  4259. splits[i] = split_sum;
  4260. }
  4261. for (int i = 0; i < device_count; ++i) {
  4262. splits[i] /= split_sum;
  4263. }
  4264. // assign the repeating layers to the devices according to the splits
  4265. int act_gpu_layers = std::min(n_gpu_layers, (int)n_layer + 1);
  4266. for (int64_t i = i_gpu_start; i < n_layer; ++i) {
  4267. int layer_gpu = std::upper_bound(splits.begin(), splits.begin() + device_count, float(i - i_gpu_start)/act_gpu_layers) - splits.begin();
  4268. model.buft_layer[i] = llama_default_buffer_type_offload(model, layer_gpu);
  4269. }
  4270. // assign the output layer
  4271. if (n_gpu_layers > n_layer) {
  4272. int layer_gpu = std::upper_bound(splits.begin(), splits.begin() + device_count, float(act_gpu_layers - 1)/act_gpu_layers) - splits.begin();
  4273. model.buft_output = llama_default_buffer_type_offload(model, layer_gpu);
  4274. } else {
  4275. model.buft_output = llama_default_buffer_type_cpu(true);
  4276. }
  4277. } else {
  4278. ggml_backend_buffer_type_t split_buft;
  4279. if (split_mode == LLAMA_SPLIT_MODE_ROW) {
  4280. split_buft = llama_default_buffer_type_split(model, main_gpu, tensor_split);
  4281. } else {
  4282. // LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_LAYER in backends where it is not supported
  4283. split_buft = llama_default_buffer_type_offload(model, main_gpu);
  4284. }
  4285. // assign the repeating layers
  4286. for (int64_t i = i_gpu_start; i < n_layer; ++i) {
  4287. model.buft_layer[i] = {
  4288. split_buft,
  4289. llama_default_buffer_type_offload(model, main_gpu)
  4290. };
  4291. }
  4292. // assign the output layer
  4293. if (n_gpu_layers > n_layer) {
  4294. model.buft_output = {
  4295. split_buft,
  4296. llama_default_buffer_type_offload(model, main_gpu)
  4297. };
  4298. } else {
  4299. model.buft_output = llama_default_buffer_type_cpu(true);
  4300. }
  4301. }
  4302. // count used buffer types
  4303. std::map<ggml_backend_buffer_type_t, int> buft_layer_count;
  4304. buft_layer_count[model.buft_input.buft]++;
  4305. buft_layer_count[model.buft_input.buft_matrix]++;
  4306. buft_layer_count[model.buft_output.buft]++;
  4307. buft_layer_count[model.buft_output.buft_matrix]++;
  4308. for (int64_t i = 0; i < n_layer; ++i) {
  4309. buft_layer_count[model.buft_layer[i].buft]++;
  4310. buft_layer_count[model.buft_layer[i].buft_matrix]++;
  4311. }
  4312. // create one context per buffer type
  4313. size_t ctx_size = ggml_tensor_overhead()*(ml.n_tensors + 1); // +1 for models where tok_embd is duplicated as output
  4314. // for moe merged tensors
  4315. ctx_size += ggml_tensor_overhead()*n_layer*3;
  4316. std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
  4317. for (auto & it : buft_layer_count) {
  4318. struct ggml_init_params params = {
  4319. /*.mem_size =*/ ctx_size,
  4320. /*.mem_buffer =*/ NULL,
  4321. /*.no_alloc =*/ true,
  4322. };
  4323. ggml_context * ctx = ggml_init(params);
  4324. if (!ctx) {
  4325. throw std::runtime_error(format("failed to create context"));
  4326. }
  4327. ctx_map[it.first] = ctx;
  4328. model.ctxs.push_back(ctx);
  4329. }
  4330. LLAMA_LOG_INFO("%s: ggml ctx size = %7.2f MiB\n", __func__, model.ctxs.size()*ctx_size/1024.0/1024.0);
  4331. // create tensors for the weights
  4332. {
  4333. const int64_t n_embd = hparams.n_embd;
  4334. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  4335. const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
  4336. const int64_t n_embd_gqa = n_embd_v_gqa;
  4337. const int64_t n_vocab = hparams.n_vocab;
  4338. const int64_t n_vocab_type = hparams.n_vocab_type;
  4339. const int64_t n_ff = hparams.n_ff;
  4340. const int64_t n_expert = hparams.n_expert;
  4341. if (n_expert > 0 && hparams.n_expert_used == 0) {
  4342. throw std::runtime_error("model has expert layers but no expert layers are used");
  4343. }
  4344. GGML_ASSERT(n_embd_gqa == n_embd_k_gqa);
  4345. ggml_context * ctx_input = ctx_map.at(model.buft_input.buft);
  4346. ggml_context * ctx_output = ctx_map.at(model.buft_output.buft);
  4347. ggml_context * ctx_output_split = ctx_map.at(model.buft_output.buft_matrix);
  4348. auto ctx_for_layer = [&](int i) { return ctx_map.at(model.buft_layer[i].buft); };
  4349. auto ctx_for_layer_split = [&](int i) { return ctx_map.at(model.buft_layer[i].buft_matrix); };
  4350. model.layers.resize(n_layer);
  4351. const auto tn = LLM_TN(model.arch);
  4352. switch (model.arch) {
  4353. case LLM_ARCH_LLAMA:
  4354. case LLM_ARCH_REFACT:
  4355. case LLM_ARCH_MINICPM:
  4356. {
  4357. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4358. // output
  4359. {
  4360. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4361. if (model.arch != LLM_ARCH_MINICPM){
  4362. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false);
  4363. // if output is NULL, init from the input tok embed
  4364. if (model.output == NULL) {
  4365. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4366. ml.n_created--; // artificial tensor
  4367. ml.size_data += ggml_nbytes(model.output);
  4368. }
  4369. }
  4370. }
  4371. for (int i = 0; i < n_layer; ++i) {
  4372. ggml_context * ctx_layer = ctx_for_layer(i);
  4373. ggml_context * ctx_split = ctx_for_layer_split(i);
  4374. auto & layer = model.layers[i];
  4375. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4376. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4377. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4378. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4379. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4380. // optional bias tensors
  4381. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, false);
  4382. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, false);
  4383. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, false);
  4384. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, false);
  4385. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4386. if (n_expert == 0) {
  4387. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4388. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4389. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4390. } else {
  4391. layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
  4392. layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, false);
  4393. if (layer.ffn_gate_exps) {
  4394. layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert});
  4395. layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert});
  4396. } else {
  4397. // merge split expert into a single tensor for compatibility with older models
  4398. // requires disabling mmap
  4399. use_mmap_buffer = false;
  4400. ggml_type type_gate = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, 0).c_str())->type;
  4401. ggml_type type_down = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, 0).c_str())->type;
  4402. ggml_type type_up = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, 0).c_str())->type;
  4403. layer.ffn_gate_exps = ggml_new_tensor_3d(ctx_split, type_gate, n_embd, n_ff, n_expert);
  4404. layer.ffn_down_exps = ggml_new_tensor_3d(ctx_split, type_down, n_ff, n_embd, n_expert);
  4405. layer.ffn_up_exps = ggml_new_tensor_3d(ctx_split, type_up, n_embd, n_ff, n_expert);
  4406. ggml_set_name(layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i).c_str());
  4407. ggml_set_name(layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i).c_str());
  4408. ggml_set_name(layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i).c_str());
  4409. for (uint32_t x = 0; x < n_expert; ++x) {
  4410. // the individual experts are loaded into a view of the merged tensor
  4411. ml.create_tensor_as_view(ctx_split, layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_gate_exps->nb[2]*x);
  4412. ml.create_tensor_as_view(ctx_split, layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, x), { n_ff, n_embd }, layer.ffn_down_exps->nb[2]*x);
  4413. ml.create_tensor_as_view(ctx_split, layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_up_exps->nb[2]*x);
  4414. }
  4415. }
  4416. }
  4417. }
  4418. } break;
  4419. case LLM_ARCH_GROK:
  4420. {
  4421. if (n_expert == 0) {
  4422. throw std::runtime_error("Grok model cannot have zero experts");
  4423. }
  4424. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4425. // output
  4426. {
  4427. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4428. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false);
  4429. // if output is NULL, init from the input tok embed
  4430. if (model.output == NULL) {
  4431. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4432. ml.n_created--; // artificial tensor
  4433. ml.size_data += ggml_nbytes(model.output);
  4434. }
  4435. }
  4436. for (int i = 0; i < n_layer; ++i) {
  4437. ggml_context * ctx_layer = ctx_for_layer(i);
  4438. ggml_context * ctx_split = ctx_for_layer_split(i);
  4439. auto & layer = model.layers[i];
  4440. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4441. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4442. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4443. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4444. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4445. layer.attn_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd});
  4446. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4447. layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
  4448. layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, false);
  4449. if (layer.ffn_gate_exps) {
  4450. layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert});
  4451. layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert});
  4452. } else {
  4453. // merge split expert into a single tensor for compatibility with older models
  4454. // requires disabling mmap
  4455. use_mmap_buffer = false;
  4456. ggml_type type_gate = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, 0).c_str())->type;
  4457. ggml_type type_down = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, 0).c_str())->type;
  4458. ggml_type type_up = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, 0).c_str())->type;
  4459. layer.ffn_gate_exps = ggml_new_tensor_3d(ctx_split, type_gate, n_embd, n_ff, n_expert);
  4460. layer.ffn_down_exps = ggml_new_tensor_3d(ctx_split, type_down, n_ff, n_embd, n_expert);
  4461. layer.ffn_up_exps = ggml_new_tensor_3d(ctx_split, type_up, n_embd, n_ff, n_expert);
  4462. ggml_set_name(layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i).c_str());
  4463. ggml_set_name(layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i).c_str());
  4464. ggml_set_name(layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i).c_str());
  4465. for (uint32_t x = 0; x < n_expert; ++x) {
  4466. // the individual experts are loaded into a view of the merged tensor
  4467. ml.create_tensor_as_view(ctx_split, layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_gate_exps->nb[2]*x);
  4468. ml.create_tensor_as_view(ctx_split, layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, x), { n_ff, n_embd }, layer.ffn_down_exps->nb[2]*x);
  4469. ml.create_tensor_as_view(ctx_split, layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_up_exps->nb[2]*x);
  4470. }
  4471. }
  4472. layer.layer_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd});
  4473. }
  4474. } break;
  4475. case LLM_ARCH_DBRX:
  4476. {
  4477. if (n_expert == 0) {
  4478. throw std::runtime_error("DBRX model cannot have zero experts");
  4479. }
  4480. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4481. // output
  4482. {
  4483. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4484. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4485. }
  4486. for (int i = 0; i < n_layer; ++i) {
  4487. ggml_context * ctx_layer = ctx_for_layer(i);
  4488. ggml_context * ctx_split = ctx_for_layer_split(i);
  4489. auto & layer = model.layers[i];
  4490. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4491. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4492. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4493. layer.attn_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd});
  4494. layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
  4495. layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert});
  4496. layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff, n_embd, n_expert});
  4497. layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert});
  4498. }
  4499. } break;
  4500. case LLM_ARCH_BAICHUAN:
  4501. {
  4502. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4503. {
  4504. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4505. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4506. }
  4507. for (int i = 0; i < n_layer; ++i) {
  4508. ggml_context * ctx_layer = ctx_for_layer(i);
  4509. ggml_context * ctx_split = ctx_for_layer_split(i);
  4510. auto & layer = model.layers[i];
  4511. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4512. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4513. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4514. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4515. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4516. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4517. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4518. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4519. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4520. }
  4521. } break;
  4522. case LLM_ARCH_FALCON:
  4523. {
  4524. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4525. // output
  4526. {
  4527. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4528. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4529. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false);
  4530. if (!model.output) {
  4531. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); // needs to be on GPU
  4532. ml.n_created--; // artificial tensor
  4533. ml.size_data += ggml_nbytes(model.output);
  4534. }
  4535. }
  4536. for (int i = 0; i < n_layer; ++i) {
  4537. ggml_context * ctx_layer = ctx_for_layer(i);
  4538. ggml_context * ctx_split = ctx_for_layer_split(i);
  4539. auto & layer = model.layers[i];
  4540. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4541. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4542. layer.attn_norm_2 = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, false);
  4543. layer.attn_norm_2_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, false);
  4544. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4545. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4546. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4547. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4548. }
  4549. } break;
  4550. case LLM_ARCH_STARCODER:
  4551. {
  4552. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4553. model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train});
  4554. // output
  4555. {
  4556. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4557. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4558. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false);
  4559. if (!model.output) {
  4560. // needs to be on GPU
  4561. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4562. ml.n_created--; // artificial tensor
  4563. ml.size_data += ggml_nbytes(model.output);
  4564. }
  4565. }
  4566. for (int i = 0; i < n_layer; ++i) {
  4567. ggml_context * ctx_layer = ctx_for_layer(i);
  4568. ggml_context * ctx_split = ctx_for_layer_split(i);
  4569. auto & layer = model.layers[i];
  4570. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4571. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4572. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4573. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
  4574. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4575. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  4576. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4577. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  4578. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4579. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4580. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4581. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  4582. }
  4583. } break;
  4584. case LLM_ARCH_PERSIMMON:
  4585. {
  4586. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4587. {
  4588. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4589. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4590. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4591. }
  4592. for (int i = 0; i < n_layer; ++i) {
  4593. ggml_context * ctx_layer = ctx_for_layer(i);
  4594. ggml_context * ctx_split = ctx_for_layer_split(i);
  4595. auto & layer = model.layers[i];
  4596. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4597. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4598. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4599. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
  4600. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4601. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  4602. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4603. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4604. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4605. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  4606. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4607. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  4608. layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {64});
  4609. layer.attn_q_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {64});
  4610. layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {64});
  4611. layer.attn_k_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {64});
  4612. }
  4613. } break;
  4614. case LLM_ARCH_BERT:
  4615. case LLM_ARCH_NOMIC_BERT:
  4616. {
  4617. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4618. model.type_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_TYPES, "weight"), {n_embd, n_vocab_type});
  4619. if (model.arch == LLM_ARCH_BERT) {
  4620. model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train});
  4621. }
  4622. model.tok_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd});
  4623. model.tok_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd});
  4624. for (int i = 0; i < n_layer; ++i) {
  4625. ggml_context * ctx_layer = ctx_for_layer(i);
  4626. ggml_context * ctx_split = ctx_for_layer_split(i);
  4627. auto & layer = model.layers[i];
  4628. if (model.arch == LLM_ARCH_BERT) {
  4629. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4630. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  4631. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4632. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  4633. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4634. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  4635. } else {
  4636. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4637. }
  4638. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4639. layer.attn_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd});
  4640. layer.attn_out_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "bias", i), {n_embd});
  4641. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4642. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4643. if (model.arch == LLM_ARCH_BERT) {
  4644. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  4645. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  4646. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4647. } else {
  4648. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4649. }
  4650. layer.layer_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd});
  4651. layer.layer_out_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "bias", i), {n_embd});
  4652. }
  4653. } break;
  4654. case LLM_ARCH_JINA_BERT_V2:
  4655. {
  4656. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); // word_embeddings
  4657. model.type_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_TYPES, "weight"), {n_embd, n_vocab_type}); //token_type_embeddings
  4658. model.tok_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}); // LayerNorm
  4659. model.tok_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}); //LayerNorm bias
  4660. for (int i = 0; i < n_layer; ++i) {
  4661. ggml_context * ctx_layer = ctx_for_layer(i);
  4662. ggml_context * ctx_split = ctx_for_layer_split(i);
  4663. auto & layer = model.layers[i]; // JinaBertLayer
  4664. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4665. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  4666. layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, false);
  4667. layer.attn_q_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {n_embd}, false);
  4668. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4669. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  4670. layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, false);
  4671. layer.attn_k_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {n_embd}, false);
  4672. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4673. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  4674. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); //output_dens
  4675. layer.bo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}); //output_dens
  4676. layer.attn_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd}); //output_norm
  4677. layer.attn_out_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "bias", i), {n_embd});
  4678. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4679. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4680. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4681. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4682. layer.layer_out_norm = ml.create_tensor(ctx_split, tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd});
  4683. layer.layer_out_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "bias", i), {n_embd});
  4684. }
  4685. } break;
  4686. case LLM_ARCH_BLOOM:
  4687. {
  4688. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4689. model.tok_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd});
  4690. model.tok_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd});
  4691. // output
  4692. {
  4693. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4694. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4695. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4696. }
  4697. for (int i = 0; i < n_layer; ++i) {
  4698. ggml_context * ctx_layer = ctx_for_layer(i);
  4699. ggml_context * ctx_split = ctx_for_layer_split(i);
  4700. auto & layer = model.layers[i];
  4701. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4702. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4703. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4704. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
  4705. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4706. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  4707. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4708. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  4709. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4710. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4711. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4712. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  4713. }
  4714. } break;
  4715. case LLM_ARCH_MPT:
  4716. {
  4717. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4718. model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train}, false);
  4719. // output
  4720. {
  4721. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4722. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, false);
  4723. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false);
  4724. if (!model.output) {
  4725. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); // needs to be on GPU
  4726. ml.n_created--; // artificial tensor
  4727. ml.size_data += ggml_nbytes(model.output);
  4728. }
  4729. }
  4730. for (int i = 0; i < n_layer; ++i) {
  4731. ggml_context * ctx_layer = ctx_for_layer(i);
  4732. ggml_context * ctx_split = ctx_for_layer_split(i);
  4733. auto & layer = model.layers[i];
  4734. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4735. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, false);
  4736. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4737. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, false);
  4738. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4739. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, false);
  4740. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4741. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, false);
  4742. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4743. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, false);
  4744. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4745. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, false);
  4746. layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, false);
  4747. layer.attn_q_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {n_embd}, false);
  4748. layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, false);
  4749. layer.attn_k_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {n_embd}, false);
  4750. // AWQ ScaleActivation layer
  4751. layer.ffn_act = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_ACT, "scales", i), {n_ff}, false);
  4752. }
  4753. } break;
  4754. case LLM_ARCH_STABLELM:
  4755. {
  4756. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4757. // output
  4758. {
  4759. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4760. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4761. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4762. }
  4763. for (int i = 0; i < n_layer; ++i) {
  4764. ggml_context * ctx_layer = ctx_for_layer(i);
  4765. ggml_context * ctx_split = ctx_for_layer_split(i);
  4766. auto & layer = model.layers[i];
  4767. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4768. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4769. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4770. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4771. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4772. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4773. // optional bias tensors, present in Stable LM 2 1.6B
  4774. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, false);
  4775. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, false);
  4776. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, false);
  4777. // optional q and k layernorms, present in StableLM 2 12B
  4778. layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {hparams.n_embd_head_k, hparams.n_head}, false);
  4779. layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {hparams.n_embd_head_k, hparams.n_head_kv}, false);
  4780. // optional FFN norm, not present in StableLM 2 12B which uses parallel residual
  4781. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, false);
  4782. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, false);
  4783. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4784. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4785. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4786. }
  4787. } break;
  4788. case LLM_ARCH_QWEN:
  4789. {
  4790. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4791. // output
  4792. {
  4793. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4794. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4795. }
  4796. for (int i = 0; i < n_layer; ++i) {
  4797. ggml_context * ctx_layer = ctx_for_layer(i);
  4798. ggml_context * ctx_split = ctx_for_layer_split(i);
  4799. auto & layer = model.layers[i];
  4800. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4801. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd*3});
  4802. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd*3});
  4803. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4804. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4805. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff/2});
  4806. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff/2, n_embd});
  4807. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff/2});
  4808. }
  4809. } break;
  4810. case LLM_ARCH_QWEN2:
  4811. {
  4812. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4813. // output
  4814. {
  4815. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4816. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false);
  4817. // if output is NULL, init from the input tok embed
  4818. if (model.output == NULL) {
  4819. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4820. ml.n_created--; // artificial tensor
  4821. ml.size_data += ggml_nbytes(model.output);
  4822. }
  4823. }
  4824. for (int i = 0; i < n_layer; ++i) {
  4825. ggml_context * ctx_layer = ctx_for_layer(i);
  4826. ggml_context * ctx_split = ctx_for_layer_split(i);
  4827. auto & layer = model.layers[i];
  4828. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4829. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4830. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4831. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4832. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4833. // optional bias tensors
  4834. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  4835. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  4836. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  4837. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4838. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4839. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4840. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4841. }
  4842. } break;
  4843. case LLM_ARCH_QWEN2MOE:
  4844. {
  4845. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4846. // output
  4847. {
  4848. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4849. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4850. }
  4851. for (int i = 0; i < n_layer; ++i) {
  4852. ggml_context * ctx_layer = ctx_for_layer(i);
  4853. ggml_context * ctx_split = ctx_for_layer_split(i);
  4854. auto & layer = model.layers[i];
  4855. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4856. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4857. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4858. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4859. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4860. // optional bias tensors
  4861. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  4862. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  4863. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  4864. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4865. layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
  4866. GGML_ASSERT(hparams.n_expert > 0);
  4867. GGML_ASSERT(hparams.n_expert_used > 0);
  4868. // MoE branch
  4869. auto n_ff_exp = n_ff / hparams.n_expert_used;
  4870. layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert});
  4871. layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert});
  4872. layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert});
  4873. // Shared expert branch
  4874. layer.ffn_gate_inp_shexp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP_SHEXP, "weight", i), {n_embd});
  4875. layer.ffn_gate_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff});
  4876. layer.ffn_down_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), { n_ff, n_embd});
  4877. layer.ffn_up_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff});
  4878. }
  4879. } break;
  4880. case LLM_ARCH_PHI2:
  4881. {
  4882. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4883. // output
  4884. {
  4885. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4886. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4887. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4888. model.output_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT, "bias"), {n_vocab});
  4889. }
  4890. for (int i = 0; i < n_layer; ++i) {
  4891. ggml_context * ctx_layer = ctx_for_layer(i);
  4892. ggml_context * ctx_split = ctx_for_layer_split(i);
  4893. auto & layer = model.layers[i];
  4894. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4895. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4896. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, false);
  4897. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, false);
  4898. if (layer.wqkv == nullptr) {
  4899. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4900. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  4901. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4902. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  4903. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4904. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  4905. }
  4906. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4907. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  4908. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4909. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4910. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4911. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  4912. }
  4913. } break;
  4914. case LLM_ARCH_PHI3:
  4915. {
  4916. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab });
  4917. // output
  4918. {
  4919. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd });
  4920. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), { n_embd, n_vocab });
  4921. }
  4922. for (int i = 0; i < n_layer; ++i) {
  4923. ggml_context* ctx_layer = ctx_for_layer(i);
  4924. ggml_context* ctx_split = ctx_for_layer_split(i);
  4925. auto& layer = model.layers[i];
  4926. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd });
  4927. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), { n_embd, n_embd + 2 * n_embd_gqa }, false);
  4928. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd, n_embd });
  4929. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), { n_embd });
  4930. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd });
  4931. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), { n_embd, 2 * n_ff });
  4932. }
  4933. } break;
  4934. case LLM_ARCH_PLAMO:
  4935. {
  4936. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4937. // output
  4938. {
  4939. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4940. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4941. }
  4942. for (int i = 0; i < n_layer; ++i) {
  4943. ggml_context * ctx_layer = ctx_for_layer(i);
  4944. ggml_context * ctx_split = ctx_for_layer_split(i);
  4945. auto & layer = model.layers[i];
  4946. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4947. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4948. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4949. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4950. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4951. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4952. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4953. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4954. }
  4955. } break;
  4956. case LLM_ARCH_GPT2:
  4957. {
  4958. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4959. model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train});
  4960. // output
  4961. {
  4962. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4963. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4964. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4965. }
  4966. for (int i = 0; i < n_layer; ++i) {
  4967. ggml_context * ctx_layer = ctx_for_layer(i);
  4968. ggml_context * ctx_split = ctx_for_layer_split(i);
  4969. auto & layer = model.layers[i];
  4970. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4971. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4972. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4973. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
  4974. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4975. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  4976. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4977. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  4978. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4979. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4980. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4981. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  4982. }
  4983. } break;
  4984. case LLM_ARCH_CODESHELL:
  4985. {
  4986. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4987. // output
  4988. {
  4989. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4990. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4991. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4992. }
  4993. for (int i = 0; i < n_layer; ++i) {
  4994. ggml_context * ctx_layer = ctx_for_layer(i);
  4995. ggml_context * ctx_split = ctx_for_layer_split(i);
  4996. auto & layer = model.layers[i];
  4997. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4998. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4999. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  5000. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
  5001. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5002. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  5003. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5004. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  5005. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  5006. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  5007. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5008. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  5009. }
  5010. } break;
  5011. case LLM_ARCH_ORION:
  5012. {
  5013. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5014. {
  5015. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5016. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  5017. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  5018. }
  5019. for (int i = 0; i < n_layer; ++i) {
  5020. ggml_context * ctx_layer = ctx_for_layer(i);
  5021. ggml_context * ctx_split = ctx_for_layer_split(i);
  5022. auto & layer = model.layers[i];
  5023. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5024. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  5025. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5026. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5027. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5028. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5029. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5030. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  5031. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  5032. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5033. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5034. }
  5035. } break;
  5036. case LLM_ARCH_INTERNLM2:
  5037. {
  5038. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5039. // output
  5040. {
  5041. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5042. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  5043. }
  5044. for (int i = 0; i < n_layer; ++i) {
  5045. ggml_context * ctx_layer = ctx_for_layer(i);
  5046. ggml_context * ctx_split = ctx_for_layer_split(i);
  5047. auto & layer = model.layers[i];
  5048. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5049. // layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  5050. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5051. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5052. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5053. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5054. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5055. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  5056. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5057. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5058. }
  5059. } break;
  5060. case LLM_ARCH_GEMMA:
  5061. {
  5062. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5063. // output
  5064. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5065. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); // same as tok_embd, duplicated to allow offloading
  5066. ml.n_created--; // artificial tensor
  5067. ml.size_data += ggml_nbytes(model.output);
  5068. const int64_t n_ff = hparams.n_ff;
  5069. const int64_t n_embd_head_k = hparams.n_embd_head_k;
  5070. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  5071. const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
  5072. for (uint32_t i = 0; i < n_layer; ++i) {
  5073. ggml_context * ctx_layer = ctx_for_layer(i);
  5074. ggml_context * ctx_split = ctx_for_layer_split(i);
  5075. auto & layer = model.layers[i];
  5076. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5077. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * hparams.n_head});
  5078. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa});
  5079. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa});
  5080. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * hparams.n_head, n_embd});
  5081. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5082. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  5083. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5084. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5085. }
  5086. } break;
  5087. case LLM_ARCH_STARCODER2:
  5088. {
  5089. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5090. // output
  5091. {
  5092. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5093. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  5094. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false);
  5095. // if output is NULL, init from the input tok embed
  5096. if (model.output == NULL) {
  5097. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5098. ml.n_created--; // artificial tensor
  5099. ml.size_data += ggml_nbytes(model.output);
  5100. }
  5101. }
  5102. for (int i = 0; i < n_layer; ++i) {
  5103. ggml_context * ctx_layer = ctx_for_layer(i);
  5104. ggml_context * ctx_split = ctx_for_layer_split(i);
  5105. auto & layer = model.layers[i];
  5106. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5107. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  5108. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5109. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5110. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5111. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5112. // optional bias tensors
  5113. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  5114. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  5115. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  5116. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  5117. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5118. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  5119. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5120. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5121. // optional bias tensors
  5122. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  5123. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP , "bias", i), { n_ff});
  5124. }
  5125. } break;
  5126. case LLM_ARCH_MAMBA:
  5127. {
  5128. const int64_t d_conv = hparams.ssm_d_conv;
  5129. const int64_t d_inner = hparams.ssm_d_inner;
  5130. const int64_t d_state = hparams.ssm_d_state;
  5131. const int64_t dt_rank = hparams.ssm_dt_rank;
  5132. // only an expansion factor of 2 is supported for now
  5133. GGML_ASSERT(2 * n_embd == d_inner);
  5134. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5135. // output
  5136. {
  5137. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5138. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false);
  5139. // if output is NULL, init from the input tok embed, duplicated to allow offloading
  5140. if (model.output == NULL) {
  5141. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5142. ml.n_created--; // artificial tensor
  5143. ml.size_data += ggml_nbytes(model.output);
  5144. }
  5145. }
  5146. for (int i = 0; i < n_layer; ++i) {
  5147. ggml_context * ctx_layer = ctx_for_layer(i);
  5148. ggml_context * ctx_split = ctx_for_layer_split(i);
  5149. auto & layer = model.layers[i];
  5150. // norm
  5151. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5152. layer.ssm_in = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_IN, "weight", i), {n_embd, 2*d_inner});
  5153. layer.ssm_conv1d = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_CONV1D, "weight", i), {d_conv, d_inner});
  5154. layer.ssm_conv1d_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_SSM_CONV1D, "bias", i), {d_inner});
  5155. layer.ssm_x = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_X, "weight", i), {d_inner, dt_rank + 2*d_state});
  5156. layer.ssm_dt = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_DT, "weight", i), {dt_rank, d_inner});
  5157. layer.ssm_dt_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_SSM_DT, "bias", i), {d_inner});
  5158. // no "weight" suffix for these
  5159. layer.ssm_a = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_A, i), {d_state, d_inner});
  5160. layer.ssm_d = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_SSM_D, i), {d_inner});
  5161. // out_proj
  5162. layer.ssm_out = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_OUT, "weight", i), {d_inner, n_embd});
  5163. }
  5164. } break;
  5165. case LLM_ARCH_XVERSE:
  5166. {
  5167. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5168. {
  5169. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5170. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  5171. }
  5172. for (int i = 0; i < n_layer; ++i) {
  5173. ggml_context * ctx_layer = ctx_for_layer(i);
  5174. ggml_context * ctx_split = ctx_for_layer_split(i);
  5175. auto & layer = model.layers[i];
  5176. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5177. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5178. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5179. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5180. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5181. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5182. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  5183. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5184. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5185. }
  5186. } break;
  5187. case LLM_ARCH_COMMAND_R:
  5188. {
  5189. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5190. // output
  5191. {
  5192. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5193. // init output from the input tok embed
  5194. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5195. ml.n_created--; // artificial tensor
  5196. ml.size_data += ggml_nbytes(model.output);
  5197. }
  5198. for (int i = 0; i < n_layer; ++i) {
  5199. ggml_context * ctx_layer = ctx_for_layer(i);
  5200. ggml_context * ctx_split = ctx_for_layer_split(i);
  5201. auto & layer = model.layers[i];
  5202. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5203. if (n_layer >= 64){
  5204. layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {hparams.n_embd_head_k, hparams.n_head});
  5205. layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {hparams.n_embd_head_k, hparams.n_head_kv});
  5206. }
  5207. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5208. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5209. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5210. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5211. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  5212. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5213. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5214. }
  5215. } break;
  5216. case LLM_ARCH_OLMO: // adapted from LLM_ARCH_LLAMA with norm params removed
  5217. {
  5218. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5219. // output
  5220. {
  5221. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false);
  5222. // if output is NULL, init from the input tok embed
  5223. if (model.output == NULL) {
  5224. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5225. ml.n_created--; // artificial tensor
  5226. ml.size_data += ggml_nbytes(model.output);
  5227. }
  5228. }
  5229. for (int i = 0; i < n_layer; ++i) {
  5230. ggml_context * ctx_split = ctx_for_layer_split(i);
  5231. auto & layer = model.layers[i];
  5232. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5233. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5234. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5235. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5236. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  5237. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5238. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5239. }
  5240. } break;
  5241. default:
  5242. throw std::runtime_error("unknown architecture");
  5243. }
  5244. }
  5245. ml.done_getting_tensors();
  5246. ml.init_mappings(true, use_mlock ? &model.mlock_mmaps : nullptr);
  5247. model.mappings.reserve(ml.mappings.size());
  5248. // create the backend buffers
  5249. std::vector<std::pair<ggml_context *, llama_buf_map>> ctx_bufs;
  5250. ctx_bufs.reserve(ctx_map.size());
  5251. // Ensure we have enough capacity for the maximum backend buffer we will potentially create
  5252. size_t n_max_backend_buffer = ctx_map.size() * ml.files.size();
  5253. model.bufs.reserve(n_max_backend_buffer);
  5254. for (auto & it : ctx_map) {
  5255. ggml_backend_buffer_type_t buft = it.first;
  5256. ggml_context * ctx = it.second;
  5257. llama_buf_map bufs;
  5258. bufs.reserve(n_max_backend_buffer);
  5259. // only the mmap region containing the tensors in the model is mapped to the backend buffer
  5260. // this is important for metal with apple silicon: if the entire model could be mapped to a metal buffer, then we could just use metal for all layers
  5261. // this allows using partial offloading when the model size exceeds the metal buffer size, but not the RAM size
  5262. if (ml.use_mmap && use_mmap_buffer && buft == llama_default_buffer_type_cpu(true)) {
  5263. for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
  5264. void * addr = nullptr;
  5265. size_t first, last;
  5266. ml.get_mapping_range(&first, &last, &addr, idx, ctx);
  5267. if (first >= last) {
  5268. continue;
  5269. }
  5270. ggml_backend_buffer_t buf = ggml_backend_cpu_buffer_from_ptr((char *) addr + first, last - first);
  5271. if (buf == nullptr) {
  5272. throw std::runtime_error("unable to allocate backend CPU buffer");
  5273. }
  5274. model.bufs.push_back(buf);
  5275. bufs.emplace(idx, buf);
  5276. #ifdef GGML_USE_CUDA
  5277. if (n_layer >= n_gpu_layers) {
  5278. ggml_backend_cuda_register_host_buffer(
  5279. ggml_backend_buffer_get_base(buf),
  5280. ggml_backend_buffer_get_size(buf));
  5281. }
  5282. #endif
  5283. }
  5284. }
  5285. #ifdef GGML_USE_METAL
  5286. else if (ml.use_mmap && use_mmap_buffer && buft == ggml_backend_metal_buffer_type()) {
  5287. for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
  5288. const size_t max_size = ggml_get_max_tensor_size(ctx);
  5289. void * addr = nullptr;
  5290. size_t first, last;
  5291. ml.get_mapping_range(&first, &last, &addr, idx, ctx);
  5292. if (first >= last) {
  5293. continue;
  5294. }
  5295. ggml_backend_buffer_t buf = ggml_backend_metal_buffer_from_ptr((char *) addr + first, last - first, max_size);
  5296. if (buf == nullptr) {
  5297. throw std::runtime_error("unable to allocate backend metal buffer");
  5298. }
  5299. model.bufs.push_back(buf);
  5300. bufs.emplace(idx, buf);
  5301. }
  5302. }
  5303. #endif
  5304. else {
  5305. ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
  5306. if (buf == nullptr) {
  5307. throw std::runtime_error("unable to allocate backend buffer");
  5308. }
  5309. model.bufs.push_back(buf);
  5310. if (use_mlock && ggml_backend_buffer_is_host(buf)) {
  5311. model.mlock_bufs.emplace_back(new llama_mlock);
  5312. auto & mlock_buf = model.mlock_bufs.back();
  5313. mlock_buf->init (ggml_backend_buffer_get_base(buf));
  5314. mlock_buf->grow_to(ggml_backend_buffer_get_size(buf));
  5315. }
  5316. for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
  5317. bufs.emplace(idx, buf);
  5318. }
  5319. }
  5320. if (bufs.empty()) {
  5321. throw std::runtime_error("failed to allocate buffer");
  5322. }
  5323. for (auto & buf : bufs) {
  5324. // indicate that this buffer contains weights
  5325. // this is used by ggml_backend_sched to improve op scheduling -> ops that use a weight are preferably scheduled to the backend that contains the weight
  5326. ggml_backend_buffer_set_usage(buf.second, GGML_BACKEND_BUFFER_USAGE_WEIGHTS);
  5327. }
  5328. ctx_bufs.emplace_back(ctx, bufs);
  5329. }
  5330. if (llama_supports_gpu_offload()) {
  5331. const int n_gpu = std::min(n_gpu_layers, int(hparams.n_layer));
  5332. LLAMA_LOG_INFO("%s: offloading %d repeating layers to GPU\n", __func__, n_gpu);
  5333. if (n_gpu_layers > (int) hparams.n_layer) {
  5334. LLAMA_LOG_INFO("%s: offloading non-repeating layers to GPU\n", __func__);
  5335. }
  5336. const int max_backend_supported_layers = hparams.n_layer + 1;
  5337. const int max_offloadable_layers = hparams.n_layer + 1;
  5338. LLAMA_LOG_INFO("%s: offloaded %d/%d layers to GPU\n", __func__, std::min(n_gpu_layers, max_offloadable_layers), max_backend_supported_layers);
  5339. }
  5340. // print memory requirements
  5341. for (ggml_backend_buffer_t buf : model.bufs) {
  5342. LLAMA_LOG_INFO("%s: %10s buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf), ggml_backend_buffer_get_size(buf) / 1024.0 / 1024.0);
  5343. }
  5344. // populate tensors_by_name
  5345. for (ggml_context * ctx : model.ctxs) {
  5346. for (auto * cur = ggml_get_first_tensor(ctx); cur != NULL; cur = ggml_get_next_tensor(ctx, cur)) {
  5347. model.tensors_by_name.emplace_back(ggml_get_name(cur), cur);
  5348. }
  5349. }
  5350. // load tensor data
  5351. for (auto & it : ctx_bufs) {
  5352. ggml_context * ctx = it.first;
  5353. auto & bufs = it.second;
  5354. if (!ml.load_all_data(ctx, bufs, use_mlock ? &model.mlock_mmaps : NULL, progress_callback, progress_callback_user_data)) {
  5355. return false;
  5356. }
  5357. }
  5358. if (use_mmap_buffer) {
  5359. for (auto & mapping : ml.mappings) {
  5360. model.mappings.emplace_back(std::move(mapping));
  5361. }
  5362. }
  5363. // loading time will be recalculate after the first eval, so
  5364. // we take page faults deferred by mmap() into consideration
  5365. model.t_load_us = ggml_time_us() - model.t_start_us;
  5366. return true;
  5367. }
  5368. // Returns 0 on success, -1 on error, and -2 on cancellation via llama_progress_callback
  5369. static int llama_model_load(const std::string & fname, llama_model & model, llama_model_params & params) {
  5370. try {
  5371. llama_model_loader ml(fname, params.use_mmap, params.check_tensors, params.kv_overrides);
  5372. model.hparams.vocab_only = params.vocab_only;
  5373. try {
  5374. llm_load_arch(ml, model);
  5375. } catch(const std::exception & e) {
  5376. throw std::runtime_error("error loading model architecture: " + std::string(e.what()));
  5377. }
  5378. try {
  5379. llm_load_hparams(ml, model);
  5380. } catch(const std::exception & e) {
  5381. throw std::runtime_error("error loading model hyperparameters: " + std::string(e.what()));
  5382. }
  5383. try {
  5384. llm_load_vocab(ml, model);
  5385. } catch(const std::exception & e) {
  5386. throw std::runtime_error("error loading model vocabulary: " + std::string(e.what()));
  5387. }
  5388. llm_load_print_meta(ml, model);
  5389. if (model.vocab.type != LLAMA_VOCAB_TYPE_NONE &&
  5390. model.hparams.n_vocab != model.vocab.id_to_token.size()) {
  5391. throw std::runtime_error("vocab size mismatch");
  5392. }
  5393. if (params.vocab_only) {
  5394. LLAMA_LOG_INFO("%s: vocab only - skipping tensors\n", __func__);
  5395. return 0;
  5396. }
  5397. #ifdef GGML_USE_KOMPUTE
  5398. if (params.n_gpu_layers > 0 && (
  5399. !(model.arch == LLM_ARCH_LLAMA || model.arch == LLM_ARCH_FALCON)
  5400. || !(
  5401. model.ftype == LLAMA_FTYPE_ALL_F32 ||
  5402. model.ftype == LLAMA_FTYPE_MOSTLY_F16 ||
  5403. model.ftype == LLAMA_FTYPE_MOSTLY_BF16 ||
  5404. model.ftype == LLAMA_FTYPE_MOSTLY_Q4_0 ||
  5405. model.ftype == LLAMA_FTYPE_MOSTLY_Q4_1
  5406. )
  5407. )) {
  5408. // TODO(cebtenzzre): propagate this error outside of llama_load_model_from_file
  5409. LLAMA_LOG_WARN("%s: disabling Kompute due to unsupported model arch or quantization\n", __func__);
  5410. params.n_gpu_layers = 0;
  5411. }
  5412. #endif
  5413. #ifdef GGML_USE_SYCL
  5414. if (params.split_mode == LLAMA_SPLIT_MODE_NONE) {
  5415. ggml_backend_sycl_set_single_device_mode(params.main_gpu);
  5416. //SYCL use device index (0, 1, 2) directly, uer input device id, then convert to device index.
  5417. params.main_gpu = ggml_backend_sycl_get_device_index(params.main_gpu);
  5418. } else {
  5419. ggml_backend_sycl_set_mul_device_mode();
  5420. }
  5421. #endif
  5422. if (!llm_load_tensors(
  5423. ml, model, params.n_gpu_layers, params.split_mode, params.main_gpu, params.tensor_split, params.use_mlock,
  5424. params.progress_callback, params.progress_callback_user_data
  5425. )) {
  5426. return -2;
  5427. }
  5428. } catch (const std::exception & err) {
  5429. LLAMA_LOG_ERROR("%s: error loading model: %s\n", __func__, err.what());
  5430. return -1;
  5431. }
  5432. return 0;
  5433. }
  5434. //
  5435. // llm_build
  5436. //
  5437. using llm_build_cb = std::function<void(struct ggml_tensor * cur, const char * name, int nl)>;
  5438. enum llm_ffn_op_type {
  5439. LLM_FFN_SILU,
  5440. LLM_FFN_GELU,
  5441. LLM_FFN_RELU,
  5442. LLM_FFN_RELU_SQR,
  5443. };
  5444. enum llm_ffn_gate_type {
  5445. LLM_FFN_SEQ,
  5446. LLM_FFN_PAR, // ffn_gate is parallel to ffn_up
  5447. };
  5448. enum llm_norm_type {
  5449. LLM_NORM,
  5450. LLM_NORM_RMS,
  5451. };
  5452. static struct ggml_tensor * llm_build_inp_embd(
  5453. struct ggml_context * ctx,
  5454. struct llama_context & lctx,
  5455. const llama_hparams & hparams,
  5456. const llama_batch & batch,
  5457. struct ggml_tensor * tok_embd,
  5458. const llm_build_cb & cb) {
  5459. const int64_t n_embd = hparams.n_embd;
  5460. struct ggml_tensor * inpL;
  5461. if (batch.token) {
  5462. lctx.inp_tokens = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, batch.n_tokens);
  5463. cb(lctx.inp_tokens, "inp_tokens", -1);
  5464. ggml_set_input(lctx.inp_tokens);
  5465. inpL = ggml_get_rows(ctx, tok_embd, lctx.inp_tokens);
  5466. } else {
  5467. #ifdef GGML_USE_MPI
  5468. GGML_ASSERT(false && "not implemented");
  5469. #endif
  5470. lctx.inp_embd = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, batch.n_tokens);
  5471. inpL = lctx.inp_embd;
  5472. ggml_set_input(lctx.inp_embd);
  5473. }
  5474. cb(inpL, "inp_embd", -1);
  5475. return inpL;
  5476. }
  5477. static void llm_build_kv_store(
  5478. struct ggml_context * ctx,
  5479. const llama_hparams & hparams,
  5480. const llama_cparams & cparams,
  5481. const llama_kv_cache & kv,
  5482. struct ggml_cgraph * graph,
  5483. struct ggml_tensor * k_cur,
  5484. struct ggml_tensor * v_cur,
  5485. int32_t n_tokens,
  5486. int32_t kv_head,
  5487. const llm_build_cb & cb,
  5488. int64_t il) {
  5489. const int64_t n_ctx = cparams.n_ctx;
  5490. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  5491. const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
  5492. GGML_ASSERT(kv.size == n_ctx);
  5493. struct ggml_tensor * k_cache_view = ggml_view_1d(ctx, kv.k_l[il], n_tokens*n_embd_k_gqa,
  5494. (ggml_row_size(kv.k_l[il]->type, n_embd_k_gqa))*kv_head);
  5495. cb(k_cache_view, "k_cache_view", il);
  5496. // note: storing RoPE-ed version of K in the KV cache
  5497. ggml_build_forward_expand(graph, ggml_cpy(ctx, k_cur, k_cache_view));
  5498. assert(v_cur->ne[0] == n_embd_v_gqa && v_cur->ne[1] == n_tokens);
  5499. struct ggml_tensor * v_cache_view = nullptr;
  5500. if (cparams.flash_attn) {
  5501. v_cache_view = ggml_view_1d(ctx, kv.v_l[il], n_tokens*n_embd_v_gqa,
  5502. (kv_head)*ggml_row_size(kv.v_l[il]->type, n_embd_v_gqa));
  5503. } else {
  5504. // note: the V cache is transposed when not using flash attention
  5505. v_cache_view = ggml_view_2d(ctx, kv.v_l[il], n_tokens, n_embd_v_gqa,
  5506. ( n_ctx)*ggml_element_size(kv.v_l[il]),
  5507. (kv_head)*ggml_element_size(kv.v_l[il]));
  5508. v_cur = ggml_transpose(ctx, v_cur);
  5509. }
  5510. cb(v_cache_view, "v_cache_view", il);
  5511. ggml_build_forward_expand(graph, ggml_cpy(ctx, v_cur, v_cache_view));
  5512. }
  5513. static struct ggml_tensor * llm_build_norm(
  5514. struct ggml_context * ctx,
  5515. struct ggml_tensor * cur,
  5516. const llama_hparams & hparams,
  5517. struct ggml_tensor * mw,
  5518. struct ggml_tensor * mb,
  5519. llm_norm_type type,
  5520. const llm_build_cb & cb,
  5521. int il) {
  5522. switch (type) {
  5523. case LLM_NORM: cur = ggml_norm (ctx, cur, hparams.f_norm_eps); break;
  5524. case LLM_NORM_RMS: cur = ggml_rms_norm(ctx, cur, hparams.f_norm_rms_eps); break;
  5525. }
  5526. if (mw || mb) {
  5527. cb(cur, "norm", il);
  5528. }
  5529. if (mw) {
  5530. cur = ggml_mul(ctx, cur, mw);
  5531. if (mb) {
  5532. cb(cur, "norm_w", il);
  5533. }
  5534. }
  5535. if (mb) {
  5536. cur = ggml_add(ctx, cur, mb);
  5537. }
  5538. return cur;
  5539. }
  5540. static struct ggml_tensor * llm_build_ffn(
  5541. struct ggml_context * ctx,
  5542. struct ggml_tensor * cur,
  5543. struct ggml_tensor * up,
  5544. struct ggml_tensor * up_b,
  5545. struct ggml_tensor * gate,
  5546. struct ggml_tensor * gate_b,
  5547. struct ggml_tensor * down,
  5548. struct ggml_tensor * down_b,
  5549. struct ggml_tensor * act_scales,
  5550. llm_ffn_op_type type_op,
  5551. llm_ffn_gate_type type_gate,
  5552. const llm_build_cb & cb,
  5553. int il) {
  5554. struct ggml_tensor * tmp = up ? ggml_mul_mat(ctx, up, cur) : cur;
  5555. cb(tmp, "ffn_up", il);
  5556. if (up_b) {
  5557. tmp = ggml_add(ctx, tmp, up_b);
  5558. cb(tmp, "ffn_up_b", il);
  5559. }
  5560. if (gate) {
  5561. switch (type_gate) {
  5562. case LLM_FFN_SEQ:
  5563. {
  5564. cur = ggml_mul_mat(ctx, gate, tmp);
  5565. cb(cur, "ffn_gate", il);
  5566. } break;
  5567. case LLM_FFN_PAR:
  5568. {
  5569. cur = ggml_mul_mat(ctx, gate, cur);
  5570. cb(cur, "ffn_gate", il);
  5571. } break;
  5572. }
  5573. if (gate_b) {
  5574. cur = ggml_add(ctx, cur, gate_b);
  5575. cb(cur, "ffn_gate_b", il);
  5576. }
  5577. } else {
  5578. cur = tmp;
  5579. }
  5580. switch (type_op) {
  5581. case LLM_FFN_SILU:
  5582. {
  5583. cur = ggml_silu(ctx, cur);
  5584. cb(cur, "ffn_silu", il);
  5585. } break;
  5586. case LLM_FFN_GELU:
  5587. {
  5588. cur = ggml_gelu(ctx, cur);
  5589. cb(cur, "ffn_gelu", il);
  5590. if (act_scales != NULL) {
  5591. cur = ggml_div(ctx, cur, act_scales);
  5592. cb(cur, "ffn_act", il);
  5593. }
  5594. } break;
  5595. case LLM_FFN_RELU:
  5596. {
  5597. cur = ggml_relu(ctx, cur);
  5598. cb(cur, "ffn_relu", il);
  5599. } break;
  5600. case LLM_FFN_RELU_SQR:
  5601. {
  5602. cur = ggml_relu(ctx, cur);
  5603. cb(cur, "ffn_relu", il);
  5604. cur = ggml_sqr(ctx, cur);
  5605. cb(cur, "ffn_sqr(relu)", il);
  5606. } break;
  5607. }
  5608. if (type_gate == LLM_FFN_PAR) {
  5609. cur = ggml_mul(ctx, cur, tmp);
  5610. cb(cur, "ffn_gate_par", il);
  5611. }
  5612. cur = ggml_mul_mat(ctx, down, cur);
  5613. if (down_b) {
  5614. cb(cur, "ffn_down", il);
  5615. }
  5616. if (down_b) {
  5617. cur = ggml_add(ctx, cur, down_b);
  5618. }
  5619. return cur;
  5620. }
  5621. static struct ggml_tensor * llm_build_moe_ffn(
  5622. struct ggml_context * ctx,
  5623. struct ggml_tensor * cur,
  5624. struct ggml_tensor * gate_inp,
  5625. struct ggml_tensor * up_exps,
  5626. struct ggml_tensor * gate_exps,
  5627. struct ggml_tensor * down_exps,
  5628. int64_t n_expert,
  5629. int64_t n_expert_used,
  5630. llm_ffn_op_type type_op,
  5631. bool norm_w,
  5632. const llm_build_cb & cb,
  5633. int il) {
  5634. int64_t n_embd = cur->ne[0];
  5635. int64_t n_tokens = cur->ne[1];
  5636. ggml_tensor * logits = ggml_mul_mat(ctx, gate_inp, cur); // [n_expert, n_tokens]
  5637. cb(logits, "ffn_moe_logits", il);
  5638. ggml_tensor * probs = ggml_soft_max(ctx, logits); // [n_expert, n_tokens]
  5639. cb(probs, "ffn_moe_probs", il);
  5640. // select experts
  5641. ggml_tensor * selected_experts = ggml_top_k(ctx, probs, n_expert_used); // [n_expert_used, n_tokens]
  5642. cb(selected_experts->src[0], "ffn_moe_argsort", il);
  5643. cb(selected_experts, "ffn_moe_topk", il);
  5644. ggml_tensor * weights = ggml_get_rows(ctx,
  5645. ggml_reshape_3d(ctx, probs, 1, n_expert, n_tokens), selected_experts); // [1, n_expert_used, n_tokens]
  5646. cb(weights, "ffn_moe_weights", il);
  5647. if (norm_w) {
  5648. weights = ggml_reshape_2d(ctx, weights, n_expert_used, n_tokens);
  5649. ggml_tensor * weights_sum = ggml_sum_rows(ctx, weights); // [1, n_tokens]
  5650. cb(weights_sum, "ffn_moe_weights_sum", il);
  5651. weights = ggml_div(ctx, weights, weights_sum); // [n_expert_used, n_tokens]
  5652. cb(weights, "ffn_moe_weights_norm", il);
  5653. weights = ggml_reshape_3d(ctx, weights, 1, n_expert_used, n_tokens);
  5654. }
  5655. cur = ggml_reshape_3d(ctx, cur, n_embd, 1, n_tokens);
  5656. ggml_tensor * up = ggml_mul_mat_id(ctx, up_exps, cur, selected_experts); // [n_ff, n_expert_used, n_tokens]
  5657. cb(up, "ffn_moe_up", il);
  5658. ggml_tensor * gate = ggml_mul_mat_id(ctx, gate_exps, cur, selected_experts); // [n_ff, n_expert_used, n_tokens]
  5659. cb(gate, "ffn_moe_gate", il);
  5660. switch (type_op) {
  5661. case LLM_FFN_SILU:
  5662. {
  5663. gate = ggml_silu(ctx, gate);
  5664. cb(gate, "ffn_moe_silu", il);
  5665. } break;
  5666. case LLM_FFN_GELU:
  5667. {
  5668. gate = ggml_gelu(ctx, gate);
  5669. cb(gate, "ffn_moe_gelu", il);
  5670. } break;
  5671. default:
  5672. GGML_ASSERT(false);
  5673. }
  5674. ggml_tensor * par = ggml_mul(ctx, up, gate); // [n_ff, n_expert_used, n_tokens]
  5675. cb(par, "ffn_moe_gate_par", il);
  5676. ggml_tensor * experts = ggml_mul_mat_id(ctx, down_exps, par, selected_experts); // [n_embd, n_expert_used, n_tokens]
  5677. cb(experts, "ffn_moe_down", il);
  5678. experts = ggml_mul(ctx, experts, weights);
  5679. // aggregate experts
  5680. ggml_tensor * moe_out = nullptr;
  5681. for (int i = 0; i < n_expert_used; ++i) {
  5682. ggml_tensor * cur_expert = ggml_view_2d(ctx, experts, n_embd, n_tokens,
  5683. experts->nb[2], i*experts->nb[1]);
  5684. if (i == 0) {
  5685. moe_out = cur_expert;
  5686. } else {
  5687. moe_out = ggml_add(ctx, moe_out, cur_expert);
  5688. }
  5689. }
  5690. if (n_expert_used == 1) {
  5691. // avoid returning a non-contiguous tensor
  5692. moe_out = ggml_cont(ctx, moe_out);
  5693. }
  5694. return moe_out;
  5695. }
  5696. static struct ggml_tensor * llm_build_kqv(
  5697. struct ggml_context * ctx,
  5698. const llama_model & model,
  5699. const llama_hparams & hparams,
  5700. const llama_cparams & cparams,
  5701. const llama_kv_cache & kv,
  5702. struct ggml_cgraph * graph,
  5703. struct ggml_tensor * wo,
  5704. struct ggml_tensor * wo_b,
  5705. struct ggml_tensor * q_cur,
  5706. struct ggml_tensor * kq_mask,
  5707. int32_t n_tokens,
  5708. int32_t n_kv,
  5709. float kq_scale,
  5710. const llm_build_cb & cb,
  5711. int il) {
  5712. const int64_t n_ctx = cparams.n_ctx;
  5713. const int64_t n_head = hparams.n_head;
  5714. const int64_t n_head_kv = hparams.n_head_kv;
  5715. const int64_t n_embd_head_k = hparams.n_embd_head_k;
  5716. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  5717. const int64_t n_embd_head_v = hparams.n_embd_head_v;
  5718. const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
  5719. struct ggml_tensor * q = ggml_permute(ctx, q_cur, 0, 2, 1, 3);
  5720. cb(q, "q", il);
  5721. struct ggml_tensor * k =
  5722. ggml_view_3d(ctx, kv.k_l[il],
  5723. n_embd_head_k, n_kv, n_head_kv,
  5724. ggml_row_size(kv.k_l[il]->type, n_embd_k_gqa),
  5725. ggml_row_size(kv.k_l[il]->type, n_embd_head_k),
  5726. 0);
  5727. cb(k, "k", il);
  5728. struct ggml_tensor * cur;
  5729. if (cparams.flash_attn) {
  5730. GGML_UNUSED(model);
  5731. GGML_UNUSED(n_ctx);
  5732. // split cached v into n_head heads (not transposed)
  5733. struct ggml_tensor * v =
  5734. ggml_view_3d(ctx, kv.v_l[il],
  5735. n_embd_head_v, n_kv, n_head_kv,
  5736. ggml_row_size(kv.v_l[il]->type, n_embd_v_gqa),
  5737. ggml_row_size(kv.v_l[il]->type, n_embd_head_v),
  5738. 0);
  5739. cb(v, "v", il);
  5740. cur = ggml_flash_attn_ext(ctx, q, k, v, kq_mask, kq_scale, hparams.f_max_alibi_bias);
  5741. if (model.arch == LLM_ARCH_PHI2 || model.arch == LLM_ARCH_PHI3) {
  5742. ggml_flash_attn_ext_set_prec(cur, GGML_PREC_F32);
  5743. }
  5744. cur = ggml_reshape_2d(ctx, cur, n_embd_head_v*n_head, n_tokens);
  5745. } else {
  5746. struct ggml_tensor * kq = ggml_mul_mat(ctx, k, q);
  5747. cb(kq, "kq", il);
  5748. if (model.arch == LLM_ARCH_PHI2 || model.arch == LLM_ARCH_PHI3) {
  5749. // for this arch, we need to perform the KQ multiplication with F32 precision, otherwise we get NaNs
  5750. // ref: https://github.com/ggerganov/llama.cpp/pull/4490#issuecomment-1859055847
  5751. ggml_mul_mat_set_prec(kq, GGML_PREC_F32);
  5752. }
  5753. if (model.arch == LLM_ARCH_GROK) {
  5754. // need to do the following:
  5755. // multiply by attn_output_multiplyer of 0.08838834764831845
  5756. // and then :
  5757. // kq = 30 * tanh(kq / 30)
  5758. // before the softmax below
  5759. //try from phi2
  5760. //ggml_mul_mat_set_prec(kq, GGML_PREC_F32);
  5761. kq = ggml_tanh(ctx, ggml_scale(ctx, kq, 0.08838834764831845f/30.0f));
  5762. kq = ggml_scale(ctx, kq, 30);
  5763. }
  5764. kq = ggml_soft_max_ext(ctx, kq, kq_mask, kq_scale, hparams.f_max_alibi_bias);
  5765. cb(kq, "kq_soft_max_ext", il);
  5766. GGML_ASSERT(kv.size == n_ctx);
  5767. // split cached v into n_head heads
  5768. struct ggml_tensor * v =
  5769. ggml_view_3d(ctx, kv.v_l[il],
  5770. n_kv, n_embd_head_v, n_head_kv,
  5771. ggml_element_size(kv.v_l[il])*n_ctx,
  5772. ggml_element_size(kv.v_l[il])*n_ctx*n_embd_head_v,
  5773. 0);
  5774. cb(v, "v", il);
  5775. struct ggml_tensor * kqv = ggml_mul_mat(ctx, v, kq);
  5776. cb(kqv, "kqv", il);
  5777. struct ggml_tensor * kqv_merged = ggml_permute(ctx, kqv, 0, 2, 1, 3);
  5778. cb(kqv_merged, "kqv_merged", il);
  5779. cur = ggml_cont_2d(ctx, kqv_merged, n_embd_head_v*n_head, n_tokens);
  5780. cb(cur, "kqv_merged_cont", il);
  5781. }
  5782. ggml_build_forward_expand(graph, cur);
  5783. cur = ggml_mul_mat(ctx, wo, cur);
  5784. if (wo_b) {
  5785. cb(cur, "kqv_wo", il);
  5786. }
  5787. if (wo_b) {
  5788. cur = ggml_add(ctx, cur, wo_b);
  5789. }
  5790. return cur;
  5791. }
  5792. static struct ggml_tensor * llm_build_kv(
  5793. struct ggml_context * ctx,
  5794. const llama_model & model,
  5795. const llama_hparams & hparams,
  5796. const llama_cparams & cparams,
  5797. const llama_kv_cache & kv,
  5798. struct ggml_cgraph * graph,
  5799. struct ggml_tensor * wo,
  5800. struct ggml_tensor * wo_b,
  5801. struct ggml_tensor * k_cur,
  5802. struct ggml_tensor * v_cur,
  5803. struct ggml_tensor * q_cur,
  5804. struct ggml_tensor * kq_mask,
  5805. int32_t n_tokens,
  5806. int32_t kv_head,
  5807. int32_t n_kv,
  5808. float kq_scale,
  5809. const llm_build_cb & cb,
  5810. int il) {
  5811. // these nodes are added to the graph together so that they are not reordered
  5812. // by doing so, the number of splits in the graph is reduced
  5813. ggml_build_forward_expand(graph, q_cur);
  5814. ggml_build_forward_expand(graph, k_cur);
  5815. ggml_build_forward_expand(graph, v_cur);
  5816. llm_build_kv_store(ctx, hparams, cparams, kv, graph, k_cur, v_cur, n_tokens, kv_head, cb, il);
  5817. struct ggml_tensor * cur;
  5818. cur = llm_build_kqv(ctx, model, hparams, cparams, kv, graph, wo, wo_b,
  5819. q_cur, kq_mask, n_tokens, n_kv, kq_scale, cb, il);
  5820. cb(cur, "kqv_out", il);
  5821. return cur;
  5822. }
  5823. struct llm_build_context {
  5824. const llama_model & model;
  5825. llama_context & lctx;
  5826. const llama_hparams & hparams;
  5827. const llama_cparams & cparams;
  5828. const llama_batch & batch;
  5829. const llama_kv_cache & kv_self;
  5830. const int64_t n_embd;
  5831. const int64_t n_layer;
  5832. const int64_t n_rot;
  5833. const int64_t n_ctx; // user-specified context size (can be different from n_ctx_train)
  5834. const int64_t n_head;
  5835. const int64_t n_head_kv;
  5836. const int64_t n_embd_head_k;
  5837. const int64_t n_embd_k_gqa;
  5838. const int64_t n_embd_head_v;
  5839. const int64_t n_embd_v_gqa;
  5840. const int64_t n_expert;
  5841. const int64_t n_expert_used;
  5842. const float freq_base;
  5843. const float freq_scale;
  5844. const float ext_factor;
  5845. const float attn_factor;
  5846. const float beta_fast;
  5847. const float beta_slow;
  5848. const float norm_eps;
  5849. const float norm_rms_eps;
  5850. const int32_t n_tokens;
  5851. const int32_t n_kv; // size of KV cache to consider (n_kv <= kv_self.size)
  5852. const int32_t n_outputs;
  5853. const int32_t kv_head; // index of where we store new KV data in the cache
  5854. const int32_t n_orig_ctx;
  5855. const bool flash_attn;
  5856. const enum llama_pooling_type pooling_type;
  5857. const enum llama_rope_type rope_type;
  5858. const llm_build_cb & cb;
  5859. std::vector<uint8_t> & buf_compute_meta;
  5860. struct ggml_context * ctx0 = nullptr;
  5861. // TODO: consider making the entire interface noexcept
  5862. llm_build_context(
  5863. llama_context & lctx,
  5864. const llama_batch & batch,
  5865. const llm_build_cb & cb,
  5866. bool worst_case) :
  5867. model (lctx.model),
  5868. lctx (lctx),
  5869. hparams (model.hparams),
  5870. cparams (lctx.cparams),
  5871. batch (batch),
  5872. kv_self (lctx.kv_self),
  5873. n_embd (hparams.n_embd),
  5874. n_layer (hparams.n_layer),
  5875. n_rot (hparams.n_rot),
  5876. n_ctx (cparams.n_ctx),
  5877. n_head (hparams.n_head),
  5878. n_head_kv (hparams.n_head_kv),
  5879. n_embd_head_k (hparams.n_embd_head_k),
  5880. n_embd_k_gqa (hparams.n_embd_k_gqa()),
  5881. n_embd_head_v (hparams.n_embd_head_v),
  5882. n_embd_v_gqa (hparams.n_embd_v_gqa()),
  5883. n_expert (hparams.n_expert),
  5884. n_expert_used (hparams.n_expert_used),
  5885. freq_base (cparams.rope_freq_base),
  5886. freq_scale (cparams.rope_freq_scale),
  5887. ext_factor (cparams.yarn_ext_factor),
  5888. attn_factor (cparams.yarn_attn_factor),
  5889. beta_fast (cparams.yarn_beta_fast),
  5890. beta_slow (cparams.yarn_beta_slow),
  5891. norm_eps (hparams.f_norm_eps),
  5892. norm_rms_eps (hparams.f_norm_rms_eps),
  5893. n_tokens (batch.n_tokens),
  5894. n_kv (worst_case ? kv_self.size : kv_self.n),
  5895. n_outputs (worst_case ? n_tokens : lctx.n_outputs),
  5896. kv_head (worst_case ? (kv_self.recurrent ? 0 : kv_self.size - n_tokens) : kv_self.head),
  5897. n_orig_ctx (cparams.n_yarn_orig_ctx),
  5898. flash_attn (cparams.flash_attn),
  5899. pooling_type (cparams.pooling_type),
  5900. rope_type (hparams.rope_type),
  5901. cb (cb),
  5902. buf_compute_meta (lctx.buf_compute_meta) {
  5903. // all initializations should be done in init()
  5904. }
  5905. void init() {
  5906. struct ggml_init_params params = {
  5907. /*.mem_size =*/ buf_compute_meta.size(),
  5908. /*.mem_buffer =*/ buf_compute_meta.data(),
  5909. /*.no_alloc =*/ true,
  5910. };
  5911. ctx0 = ggml_init(params);
  5912. lctx.inp_tokens = nullptr;
  5913. lctx.inp_embd = nullptr;
  5914. lctx.inp_pos = nullptr;
  5915. lctx.inp_out_ids = nullptr;
  5916. lctx.inp_KQ_mask = nullptr;
  5917. lctx.inp_K_shift = nullptr;
  5918. lctx.inp_mean = nullptr;
  5919. lctx.inp_cls = nullptr;
  5920. lctx.inp_s_copy = nullptr;
  5921. lctx.inp_s_mask = nullptr;
  5922. lctx.inp_s_seq = nullptr;
  5923. }
  5924. void free() {
  5925. if (ctx0) {
  5926. ggml_free(ctx0);
  5927. ctx0 = nullptr;
  5928. }
  5929. }
  5930. struct ggml_cgraph * build_k_shift() {
  5931. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  5932. GGML_ASSERT(kv_self.size == n_ctx);
  5933. lctx.inp_K_shift = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_ctx);
  5934. cb(lctx.inp_K_shift, "K_shift", -1);
  5935. ggml_set_input(lctx.inp_K_shift);
  5936. for (int il = 0; il < n_layer; ++il) {
  5937. struct ggml_tensor * tmp =
  5938. // we rotate only the first n_rot dimensions
  5939. ggml_rope_custom_inplace(ctx0,
  5940. ggml_view_3d(ctx0, kv_self.k_l[il],
  5941. n_embd_head_k, n_head_kv, n_ctx,
  5942. ggml_row_size(kv_self.k_l[il]->type, n_embd_head_k),
  5943. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa),
  5944. 0),
  5945. lctx.inp_K_shift, n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  5946. ext_factor, attn_factor, beta_fast, beta_slow);
  5947. cb(tmp, "K_shifted", il);
  5948. ggml_build_forward_expand(gf, tmp);
  5949. }
  5950. return gf;
  5951. }
  5952. struct ggml_cgraph * build_s_copy() {
  5953. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  5954. GGML_ASSERT(kv_self.recurrent);
  5955. struct ggml_tensor * state_copy = build_inp_s_copy();
  5956. for (int il = 0; il < n_layer; ++il) {
  5957. struct ggml_tensor * conv_states = ggml_reshape_2d(ctx0, kv_self.k_l[il], hparams.n_embd_k_s(), kv_self.size);
  5958. struct ggml_tensor * ssm_states = ggml_reshape_2d(ctx0, kv_self.v_l[il], hparams.n_embd_v_s(), kv_self.size);
  5959. conv_states = ggml_get_rows(ctx0, conv_states, state_copy);
  5960. ssm_states = ggml_get_rows(ctx0, ssm_states, state_copy);
  5961. // TODO: name the intermediate tensors with cb()
  5962. ggml_build_forward_expand(gf, ggml_cpy(ctx0, conv_states, kv_self.k_l[il]));
  5963. ggml_build_forward_expand(gf, ggml_cpy(ctx0, ssm_states, kv_self.v_l[il]));
  5964. }
  5965. return gf;
  5966. }
  5967. struct ggml_cgraph * build_defrag(const std::vector<uint32_t> & ids) {
  5968. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  5969. for (uint32_t i = 0; i < ids.size(); ++i) {
  5970. const uint32_t id = ids[i];
  5971. if (i == id || id == ids.size()) {
  5972. continue;
  5973. }
  5974. uint32_t nm = 1;
  5975. while (i + nm < ids.size() && ids[i + nm] == id + nm) {
  5976. nm++;
  5977. }
  5978. for (int il = 0; il < n_layer; ++il) {
  5979. ggml_tensor * view_k_src = ggml_view_2d(ctx0, kv_self.k_l[il],
  5980. n_embd_k_gqa, nm,
  5981. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa),
  5982. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*i));
  5983. ggml_tensor * view_k_dst = ggml_view_2d(ctx0, kv_self.k_l[il],
  5984. n_embd_k_gqa, nm,
  5985. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa),
  5986. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*id));
  5987. ggml_tensor * view_v_src;
  5988. ggml_tensor * view_v_dst;
  5989. if (flash_attn) {
  5990. // NOTE: the V cache is not transposed when using flash attention
  5991. view_v_src = ggml_view_2d(ctx0, kv_self.v_l[il],
  5992. n_embd_v_gqa, nm,
  5993. ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa),
  5994. ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa*i));
  5995. view_v_dst = ggml_view_2d(ctx0, kv_self.v_l[il],
  5996. n_embd_v_gqa, nm,
  5997. ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa),
  5998. ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa*id));
  5999. } else {
  6000. view_v_src = ggml_view_2d(ctx0, kv_self.v_l[il],
  6001. nm, n_embd_v_gqa,
  6002. ggml_row_size(kv_self.v_l[il]->type, kv_self.size),
  6003. ggml_row_size(kv_self.v_l[il]->type, i));
  6004. view_v_dst = ggml_view_2d(ctx0, kv_self.v_l[il],
  6005. nm, n_embd_v_gqa,
  6006. ggml_row_size(kv_self.v_l[il]->type, kv_self.size),
  6007. ggml_row_size(kv_self.v_l[il]->type, id));
  6008. }
  6009. ggml_build_forward_expand(gf, ggml_cpy(ctx0, view_k_src, view_k_dst));
  6010. ggml_build_forward_expand(gf, ggml_cpy(ctx0, view_v_src, view_v_dst));
  6011. }
  6012. i += nm - 1;
  6013. }
  6014. //LLAMA_LOG_INFO("gf->n_nodes = %d\n", gf->n_nodes);
  6015. return gf;
  6016. }
  6017. struct ggml_tensor * build_inp_pos() {
  6018. lctx.inp_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
  6019. cb(lctx.inp_pos, "inp_pos", -1);
  6020. ggml_set_input(lctx.inp_pos);
  6021. return lctx.inp_pos;
  6022. }
  6023. struct ggml_tensor * build_inp_out_ids() {
  6024. lctx.inp_out_ids = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_outputs);
  6025. cb(lctx.inp_out_ids, "inp_out_ids", -1);
  6026. ggml_set_input(lctx.inp_out_ids);
  6027. return lctx.inp_out_ids;
  6028. }
  6029. struct ggml_tensor * build_inp_KQ_mask(bool causal = true) {
  6030. if (causal) {
  6031. lctx.inp_KQ_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_kv, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD));
  6032. } else {
  6033. lctx.inp_KQ_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD));
  6034. }
  6035. cb(lctx.inp_KQ_mask, "KQ_mask", -1);
  6036. ggml_set_input(lctx.inp_KQ_mask);
  6037. return flash_attn ? ggml_cast(ctx0, lctx.inp_KQ_mask, GGML_TYPE_F16) : lctx.inp_KQ_mask;
  6038. }
  6039. struct ggml_tensor * build_inp_mean() {
  6040. lctx.inp_mean = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, n_tokens);
  6041. cb(lctx.inp_mean, "inp_mean", -1);
  6042. ggml_set_input(lctx.inp_mean);
  6043. return lctx.inp_mean;
  6044. }
  6045. struct ggml_tensor * build_inp_cls() {
  6046. lctx.inp_cls = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
  6047. cb(lctx.inp_cls, "inp_cls", -1);
  6048. ggml_set_input(lctx.inp_cls);
  6049. return lctx.inp_cls;
  6050. }
  6051. struct ggml_tensor * build_inp_s_copy() {
  6052. lctx.inp_s_copy = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, kv_self.size);
  6053. cb(lctx.inp_s_copy, "inp_s_copy", -1);
  6054. ggml_set_input(lctx.inp_s_copy);
  6055. return lctx.inp_s_copy;
  6056. }
  6057. struct ggml_tensor * build_inp_s_mask() {
  6058. lctx.inp_s_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, 1, n_kv);
  6059. cb(lctx.inp_s_mask, "inp_s_mask", -1);
  6060. ggml_set_input(lctx.inp_s_mask);
  6061. return lctx.inp_s_mask;
  6062. }
  6063. struct ggml_tensor * build_inp_s_seq() {
  6064. lctx.inp_s_seq = ggml_new_tensor_2d(ctx0, GGML_TYPE_I32, n_kv, n_tokens);
  6065. cb(lctx.inp_s_seq, "inp_s_seq", -1);
  6066. ggml_set_input(lctx.inp_s_seq);
  6067. return lctx.inp_s_seq;
  6068. }
  6069. struct ggml_cgraph * build_llama() {
  6070. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6071. // mutable variable, needed during the last layer of the computation to skip unused tokens
  6072. int32_t n_tokens = this->n_tokens;
  6073. const int64_t n_embd_head = hparams.n_embd_head_v;
  6074. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6075. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6076. struct ggml_tensor * cur;
  6077. struct ggml_tensor * inpL;
  6078. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6079. // inp_pos - contains the positions
  6080. struct ggml_tensor * inp_pos = build_inp_pos();
  6081. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6082. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6083. for (int il = 0; il < n_layer; ++il) {
  6084. struct ggml_tensor * inpSA = inpL;
  6085. // norm
  6086. cur = llm_build_norm(ctx0, inpL, hparams,
  6087. model.layers[il].attn_norm, NULL,
  6088. LLM_NORM_RMS, cb, il);
  6089. cb(cur, "attn_norm", il);
  6090. // self-attention
  6091. {
  6092. // compute Q and K and RoPE them
  6093. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  6094. cb(Qcur, "Qcur", il);
  6095. if (model.layers[il].bq) {
  6096. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  6097. cb(Qcur, "Qcur", il);
  6098. }
  6099. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  6100. cb(Kcur, "Kcur", il);
  6101. if (model.layers[il].bk) {
  6102. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  6103. cb(Kcur, "Kcur", il);
  6104. }
  6105. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  6106. cb(Vcur, "Vcur", il);
  6107. if (model.layers[il].bv) {
  6108. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  6109. cb(Vcur, "Vcur", il);
  6110. }
  6111. Qcur = ggml_rope_custom(
  6112. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  6113. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6114. ext_factor, attn_factor, beta_fast, beta_slow
  6115. );
  6116. cb(Qcur, "Qcur", il);
  6117. Kcur = ggml_rope_custom(
  6118. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  6119. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6120. ext_factor, attn_factor, beta_fast, beta_slow
  6121. );
  6122. cb(Kcur, "Kcur", il);
  6123. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  6124. model.layers[il].wo, model.layers[il].bo,
  6125. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6126. }
  6127. if (il == n_layer - 1) {
  6128. // skip computing output for unused tokens
  6129. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6130. n_tokens = n_outputs;
  6131. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6132. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6133. }
  6134. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6135. cb(ffn_inp, "ffn_inp", il);
  6136. // feed-forward network
  6137. if (model.layers[il].ffn_gate_inp == nullptr) {
  6138. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6139. model.layers[il].ffn_norm, NULL,
  6140. LLM_NORM_RMS, cb, il);
  6141. cb(cur, "ffn_norm", il);
  6142. cur = llm_build_ffn(ctx0, cur,
  6143. model.layers[il].ffn_up, NULL,
  6144. model.layers[il].ffn_gate, NULL,
  6145. model.layers[il].ffn_down, NULL,
  6146. NULL,
  6147. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  6148. cb(cur, "ffn_out", il);
  6149. } else {
  6150. // MoE branch
  6151. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6152. model.layers[il].ffn_norm, NULL,
  6153. LLM_NORM_RMS, cb, il);
  6154. cb(cur, "ffn_norm", il);
  6155. cur = llm_build_moe_ffn(ctx0, cur,
  6156. model.layers[il].ffn_gate_inp,
  6157. model.layers[il].ffn_up_exps,
  6158. model.layers[il].ffn_gate_exps,
  6159. model.layers[il].ffn_down_exps,
  6160. n_expert, n_expert_used,
  6161. LLM_FFN_SILU, true,
  6162. cb, il);
  6163. cb(cur, "ffn_moe_out", il);
  6164. }
  6165. cur = ggml_add(ctx0, cur, ffn_inp);
  6166. cb(cur, "ffn_out", il);
  6167. ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
  6168. if (layer_dir != nullptr) {
  6169. cur = ggml_add(ctx0, cur, layer_dir);
  6170. }
  6171. cb(cur, "l_out", il);
  6172. // input for next layer
  6173. inpL = cur;
  6174. }
  6175. cur = inpL;
  6176. cur = llm_build_norm(ctx0, cur, hparams,
  6177. model.output_norm, NULL,
  6178. LLM_NORM_RMS, cb, -1);
  6179. cb(cur, "result_norm", -1);
  6180. // lm_head
  6181. cur = ggml_mul_mat(ctx0, model.output, cur);
  6182. cb(cur, "result_output", -1);
  6183. ggml_build_forward_expand(gf, cur);
  6184. return gf;
  6185. }
  6186. struct ggml_cgraph * build_baichuan() {
  6187. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6188. const int64_t n_embd_head = hparams.n_embd_head_v;
  6189. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6190. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6191. struct ggml_tensor * cur;
  6192. struct ggml_tensor * inpL;
  6193. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6194. // inp_pos - contains the positions
  6195. struct ggml_tensor * inp_pos = model.type == MODEL_7B ? build_inp_pos() : nullptr;
  6196. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6197. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6198. for (int il = 0; il < n_layer; ++il) {
  6199. struct ggml_tensor * inpSA = inpL;
  6200. cur = llm_build_norm(ctx0, inpL, hparams,
  6201. model.layers[il].attn_norm, NULL,
  6202. LLM_NORM_RMS, cb, il);
  6203. cb(cur, "attn_norm", il);
  6204. // self-attention
  6205. {
  6206. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  6207. cb(Qcur, "Qcur", il);
  6208. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  6209. cb(Kcur, "Kcur", il);
  6210. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  6211. cb(Vcur, "Vcur", il);
  6212. switch (model.type) {
  6213. case MODEL_7B:
  6214. Qcur = ggml_rope_custom(
  6215. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  6216. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6217. ext_factor, attn_factor, beta_fast, beta_slow
  6218. );
  6219. Kcur = ggml_rope_custom(
  6220. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  6221. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6222. ext_factor, attn_factor, beta_fast, beta_slow
  6223. );
  6224. break;
  6225. case MODEL_13B:
  6226. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd/n_head, n_head, n_tokens);
  6227. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd/n_head, n_head, n_tokens);
  6228. break;
  6229. default:
  6230. GGML_ASSERT(false);
  6231. }
  6232. cb(Qcur, "Qcur", il);
  6233. cb(Kcur, "Kcur", il);
  6234. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  6235. model.layers[il].wo, NULL,
  6236. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6237. }
  6238. if (il == n_layer - 1) {
  6239. // skip computing output for unused tokens
  6240. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6241. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6242. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6243. }
  6244. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6245. cb(ffn_inp, "ffn_inp", il);
  6246. // feed-forward network
  6247. {
  6248. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6249. model.layers[il].ffn_norm, NULL,
  6250. LLM_NORM_RMS, cb, il);
  6251. cb(cur, "ffn_norm", il);
  6252. cur = llm_build_ffn(ctx0, cur,
  6253. model.layers[il].ffn_up, NULL,
  6254. model.layers[il].ffn_gate, NULL,
  6255. model.layers[il].ffn_down, NULL,
  6256. NULL,
  6257. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  6258. cb(cur, "ffn_out", il);
  6259. }
  6260. cur = ggml_add(ctx0, cur, ffn_inp);
  6261. cb(cur, "l_out", il);
  6262. // input for next layer
  6263. inpL = cur;
  6264. }
  6265. cur = inpL;
  6266. cur = llm_build_norm(ctx0, cur, hparams,
  6267. model.output_norm, NULL,
  6268. LLM_NORM_RMS, cb, -1);
  6269. cb(cur, "result_norm", -1);
  6270. // lm_head
  6271. cur = ggml_mul_mat(ctx0, model.output, cur);
  6272. cb(cur, "result_output", -1);
  6273. ggml_build_forward_expand(gf, cur);
  6274. return gf;
  6275. }
  6276. struct ggml_cgraph * build_xverse() {
  6277. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6278. const int64_t n_embd_head = hparams.n_embd_head_v;
  6279. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6280. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6281. struct ggml_tensor * cur;
  6282. struct ggml_tensor * inpL;
  6283. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6284. // inp_pos - contains the positions
  6285. struct ggml_tensor * inp_pos = build_inp_pos();
  6286. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6287. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6288. for (int il = 0; il < n_layer; ++il) {
  6289. struct ggml_tensor * inpSA = inpL;
  6290. cur = llm_build_norm(ctx0, inpL, hparams,
  6291. model.layers[il].attn_norm, NULL,
  6292. LLM_NORM_RMS, cb, il);
  6293. cb(cur, "attn_norm", il);
  6294. // self-attention
  6295. {
  6296. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  6297. cb(Qcur, "Qcur", il);
  6298. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  6299. cb(Kcur, "Kcur", il);
  6300. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  6301. cb(Vcur, "Vcur", il);
  6302. Qcur = ggml_rope_custom(
  6303. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  6304. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6305. ext_factor, attn_factor, beta_fast, beta_slow
  6306. );
  6307. cb(Qcur, "Qcur", il);
  6308. Kcur = ggml_rope_custom(
  6309. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  6310. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6311. ext_factor, attn_factor, beta_fast, beta_slow
  6312. );
  6313. cb(Kcur, "Kcur", il);
  6314. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  6315. model.layers[il].wo, NULL,
  6316. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6317. }
  6318. if (il == n_layer - 1) {
  6319. // skip computing output for unused tokens
  6320. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6321. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6322. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6323. }
  6324. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6325. cb(ffn_inp, "ffn_inp", il);
  6326. // feed-forward network
  6327. {
  6328. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6329. model.layers[il].ffn_norm, NULL,
  6330. LLM_NORM_RMS, cb, il);
  6331. cb(cur, "ffn_norm", il);
  6332. cur = llm_build_ffn(ctx0, cur,
  6333. model.layers[il].ffn_up, NULL,
  6334. model.layers[il].ffn_gate, NULL,
  6335. model.layers[il].ffn_down, NULL,
  6336. NULL,
  6337. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  6338. cb(cur, "ffn_out", il);
  6339. }
  6340. cur = ggml_add(ctx0, cur, ffn_inp);
  6341. cb(cur, "l_out", il);
  6342. // input for next layer
  6343. inpL = cur;
  6344. }
  6345. cur = inpL;
  6346. cur = llm_build_norm(ctx0, cur, hparams, model.output_norm, NULL, LLM_NORM_RMS, cb, -1);
  6347. cb(cur, "result_norm", -1);
  6348. // lm_head
  6349. cur = ggml_mul_mat(ctx0, model.output, cur);
  6350. cb(cur, "result_output", -1);
  6351. ggml_build_forward_expand(gf, cur);
  6352. return gf;
  6353. }
  6354. struct ggml_cgraph * build_falcon() {
  6355. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6356. const int64_t n_embd_head = hparams.n_embd_head_v;
  6357. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  6358. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6359. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6360. struct ggml_tensor * cur;
  6361. struct ggml_tensor * inpL;
  6362. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6363. // inp_pos - contains the positions
  6364. struct ggml_tensor * inp_pos = build_inp_pos();
  6365. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6366. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6367. for (int il = 0; il < n_layer; ++il) {
  6368. struct ggml_tensor * attn_norm;
  6369. attn_norm = llm_build_norm(ctx0, inpL, hparams,
  6370. model.layers[il].attn_norm,
  6371. model.layers[il].attn_norm_b,
  6372. LLM_NORM, cb, il);
  6373. cb(attn_norm, "attn_norm", il);
  6374. // self-attention
  6375. {
  6376. if (model.layers[il].attn_norm_2) {
  6377. // Falcon-40B
  6378. cur = llm_build_norm(ctx0, inpL, hparams,
  6379. model.layers[il].attn_norm_2,
  6380. model.layers[il].attn_norm_2_b,
  6381. LLM_NORM, cb, il);
  6382. cb(cur, "attn_norm_2", il);
  6383. } else {
  6384. cur = attn_norm;
  6385. }
  6386. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  6387. cb(cur, "wqkv", il);
  6388. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  6389. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  6390. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  6391. cb(Qcur, "Qcur", il);
  6392. cb(Kcur, "Kcur", il);
  6393. cb(Vcur, "Vcur", il);
  6394. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6395. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6396. // using mode = 2 for neox mode
  6397. Qcur = ggml_rope_custom(
  6398. ctx0, Qcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
  6399. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  6400. );
  6401. cb(Qcur, "Qcur", il);
  6402. Kcur = ggml_rope_custom(
  6403. ctx0, Kcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
  6404. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  6405. );
  6406. cb(Kcur, "Kcur", il);
  6407. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  6408. model.layers[il].wo, NULL,
  6409. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6410. }
  6411. if (il == n_layer - 1) {
  6412. // skip computing output for unused tokens
  6413. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6414. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6415. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  6416. attn_norm = ggml_get_rows(ctx0, attn_norm, inp_out_ids);
  6417. }
  6418. struct ggml_tensor * ffn_inp = cur;
  6419. // feed forward
  6420. {
  6421. cur = llm_build_ffn(ctx0, attn_norm, // !! use the attn norm, not the result
  6422. model.layers[il].ffn_up, NULL,
  6423. NULL, NULL,
  6424. model.layers[il].ffn_down, NULL,
  6425. NULL,
  6426. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  6427. cb(cur, "ffn_out", il);
  6428. }
  6429. cur = ggml_add(ctx0, cur, ffn_inp);
  6430. cb(cur, "l_out", il);
  6431. cur = ggml_add(ctx0, cur, inpL);
  6432. cb(cur, "l_out", il);
  6433. // input for next layer
  6434. inpL = cur;
  6435. }
  6436. cur = inpL;
  6437. // norm
  6438. cur = llm_build_norm(ctx0, cur, hparams,
  6439. model.output_norm,
  6440. model.output_norm_b,
  6441. LLM_NORM, cb, -1);
  6442. cb(cur, "result_norm", -1);
  6443. cur = ggml_mul_mat(ctx0, model.output, cur);
  6444. cb(cur, "result_output", -1);
  6445. ggml_build_forward_expand(gf, cur);
  6446. return gf;
  6447. }
  6448. struct ggml_cgraph * build_grok() {
  6449. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6450. // mutable variable, needed during the last layer of the computation to skip unused tokens
  6451. int32_t n_tokens = this->n_tokens;
  6452. const int64_t n_embd_head = hparams.n_embd_head_v;
  6453. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6454. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6455. struct ggml_tensor * cur;
  6456. struct ggml_tensor * inpL;
  6457. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6458. // multiply by embedding_multiplier_scale of 78.38367176906169
  6459. inpL = ggml_scale(ctx0, inpL, 78.38367176906169f);
  6460. // inp_pos - contains the positions
  6461. struct ggml_tensor * inp_pos = build_inp_pos();
  6462. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6463. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6464. for (int il = 0; il < n_layer; ++il) {
  6465. struct ggml_tensor * inpSA = inpL;
  6466. // norm
  6467. cur = llm_build_norm(ctx0, inpL, hparams,
  6468. model.layers[il].attn_norm, NULL,
  6469. LLM_NORM_RMS, cb, il);
  6470. cb(cur, "attn_norm", il);
  6471. // self-attention
  6472. {
  6473. // compute Q and K and RoPE them
  6474. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  6475. cb(Qcur, "Qcur", il);
  6476. if (model.layers[il].bq) {
  6477. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  6478. cb(Qcur, "Qcur", il);
  6479. }
  6480. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  6481. cb(Kcur, "Kcur", il);
  6482. if (model.layers[il].bk) {
  6483. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  6484. cb(Kcur, "Kcur", il);
  6485. }
  6486. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  6487. cb(Vcur, "Vcur", il);
  6488. if (model.layers[il].bv) {
  6489. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  6490. cb(Vcur, "Vcur", il);
  6491. }
  6492. Qcur = ggml_rope_custom(
  6493. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  6494. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6495. ext_factor, attn_factor, beta_fast, beta_slow
  6496. );
  6497. cb(Qcur, "Qcur", il);
  6498. Kcur = ggml_rope_custom(
  6499. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  6500. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6501. ext_factor, attn_factor, beta_fast, beta_slow
  6502. );
  6503. cb(Kcur, "Kcur", il);
  6504. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  6505. model.layers[il].wo, model.layers[il].bo,
  6506. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f, cb, il);
  6507. }
  6508. if (il == n_layer - 1) {
  6509. // skip computing output for unused tokens
  6510. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6511. n_tokens = n_outputs;
  6512. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6513. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6514. }
  6515. // Grok
  6516. // if attn_out_norm is present then apply it before adding the input
  6517. if (model.layers[il].attn_out_norm) {
  6518. cur = llm_build_norm(ctx0, cur, hparams,
  6519. model.layers[il].attn_out_norm, NULL,
  6520. LLM_NORM_RMS, cb, il);
  6521. cb(cur, "attn_out_norm", il);
  6522. }
  6523. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6524. cb(ffn_inp, "ffn_inp", il);
  6525. // feed-forward network
  6526. // MoE branch
  6527. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6528. model.layers[il].ffn_norm, NULL,
  6529. LLM_NORM_RMS, cb, il);
  6530. cb(cur, "ffn_norm", il);
  6531. cur = llm_build_moe_ffn(ctx0, cur,
  6532. model.layers[il].ffn_gate_inp,
  6533. model.layers[il].ffn_up_exps,
  6534. model.layers[il].ffn_gate_exps,
  6535. model.layers[il].ffn_down_exps,
  6536. n_expert, n_expert_used,
  6537. LLM_FFN_GELU, true,
  6538. cb, il);
  6539. cb(cur, "ffn_moe_out", il);
  6540. // Grok
  6541. // if layer_out_norm is present then apply it before adding the input
  6542. // Idea: maybe ffn_out_norm is a better name
  6543. if (model.layers[il].layer_out_norm) {
  6544. cur = llm_build_norm(ctx0, cur, hparams,
  6545. model.layers[il].layer_out_norm, NULL,
  6546. LLM_NORM_RMS, cb, il);
  6547. cb(cur, "layer_out_norm", il);
  6548. }
  6549. cur = ggml_add(ctx0, cur, ffn_inp);
  6550. cb(cur, "ffn_out", il);
  6551. ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
  6552. if (layer_dir != nullptr) {
  6553. cur = ggml_add(ctx0, cur, layer_dir);
  6554. }
  6555. cb(cur, "l_out", il);
  6556. // input for next layer
  6557. inpL = cur;
  6558. }
  6559. cur = inpL;
  6560. cur = llm_build_norm(ctx0, cur, hparams,
  6561. model.output_norm, NULL,
  6562. LLM_NORM_RMS, cb, -1);
  6563. cb(cur, "result_norm", -1);
  6564. // lm_head
  6565. cur = ggml_mul_mat(ctx0, model.output, cur);
  6566. // Grok
  6567. // multiply logits by output_multiplier_scale of 0.5773502691896257
  6568. cur = ggml_scale(ctx0, cur, 0.5773502691896257f);
  6569. cb(cur, "result_output", -1);
  6570. ggml_build_forward_expand(gf, cur);
  6571. return gf;
  6572. }
  6573. struct ggml_cgraph * build_dbrx() {
  6574. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6575. // mutable variable, needed during the last layer of the computation to skip unused tokens
  6576. int32_t n_tokens = this->n_tokens;
  6577. const int64_t n_embd_head = hparams.n_embd_head_v;
  6578. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  6579. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6580. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6581. struct ggml_tensor * cur;
  6582. struct ggml_tensor * inpL;
  6583. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6584. // inp_pos - contains the positions
  6585. struct ggml_tensor * inp_pos = build_inp_pos();
  6586. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6587. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6588. for (int il = 0; il < n_layer; ++il) {
  6589. struct ggml_tensor * inpSA = inpL;
  6590. // norm
  6591. cur = llm_build_norm(ctx0, inpL, hparams,
  6592. model.layers[il].attn_norm, NULL,
  6593. LLM_NORM, cb, il);
  6594. cb(cur, "attn_norm", il);
  6595. // self-attention
  6596. {
  6597. struct ggml_tensor * Qcur = nullptr;
  6598. struct ggml_tensor * Kcur = nullptr;
  6599. struct ggml_tensor * Vcur = nullptr;
  6600. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  6601. cb(cur, "wqkv", il);
  6602. cur = ggml_clamp(ctx0, cur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  6603. cb(cur, "wqkv_clamped", il);
  6604. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  6605. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  6606. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  6607. cb(Qcur, "Qcur", il);
  6608. cb(Kcur, "Kcur", il);
  6609. cb(Vcur, "Vcur", il);
  6610. Qcur = ggml_rope_custom(
  6611. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  6612. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6613. ext_factor, attn_factor, beta_fast, beta_slow
  6614. );
  6615. cb(Qcur, "Qcur", il);
  6616. Kcur = ggml_rope_custom(
  6617. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  6618. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6619. ext_factor, attn_factor, beta_fast, beta_slow
  6620. );
  6621. cb(Kcur, "Kcur", il);
  6622. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  6623. model.layers[il].wo, NULL,
  6624. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6625. }
  6626. if (il == n_layer - 1) {
  6627. // skip computing output for unused tokens
  6628. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6629. n_tokens = n_outputs;
  6630. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6631. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6632. }
  6633. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6634. cb(ffn_inp, "ffn_inp", il);
  6635. // feed-forward network
  6636. // MoE branch
  6637. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6638. model.layers[il].attn_out_norm, NULL,
  6639. LLM_NORM, cb, il);
  6640. cb(cur, "attn_out_norm", il);
  6641. cur = llm_build_moe_ffn(ctx0, cur,
  6642. model.layers[il].ffn_gate_inp,
  6643. model.layers[il].ffn_up_exps,
  6644. model.layers[il].ffn_gate_exps,
  6645. model.layers[il].ffn_down_exps,
  6646. n_expert, n_expert_used,
  6647. LLM_FFN_SILU, true,
  6648. cb, il);
  6649. cb(cur, "ffn_moe_out", il);
  6650. cur = ggml_add(ctx0, cur, ffn_inp);
  6651. cb(cur, "ffn_out", il);
  6652. ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
  6653. if (layer_dir != nullptr) {
  6654. cur = ggml_add(ctx0, cur, layer_dir);
  6655. }
  6656. cb(cur, "l_out", il);
  6657. // input for next layer
  6658. inpL = cur;
  6659. }
  6660. cur = inpL;
  6661. cur = llm_build_norm(ctx0, cur, hparams,
  6662. model.output_norm, NULL,
  6663. LLM_NORM, cb, -1);
  6664. cb(cur, "result_norm", -1);
  6665. // lm_head
  6666. cur = ggml_mul_mat(ctx0, model.output, cur);
  6667. cb(cur, "result_output", -1);
  6668. ggml_build_forward_expand(gf, cur);
  6669. return gf;
  6670. }
  6671. struct ggml_cgraph * build_starcoder() {
  6672. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6673. const int64_t n_embd_head = hparams.n_embd_head_v;
  6674. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  6675. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6676. struct ggml_tensor * cur;
  6677. struct ggml_tensor * inpL;
  6678. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6679. // inp_pos - contains the positions
  6680. struct ggml_tensor * inp_pos = build_inp_pos();
  6681. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6682. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6683. struct ggml_tensor * pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
  6684. cb(pos, "pos_embd", -1);
  6685. inpL = ggml_add(ctx0, inpL, pos);
  6686. cb(inpL, "inpL", -1);
  6687. for (int il = 0; il < n_layer; ++il) {
  6688. cur = llm_build_norm(ctx0, inpL, hparams,
  6689. model.layers[il].attn_norm,
  6690. model.layers[il].attn_norm_b,
  6691. LLM_NORM, cb, il);
  6692. cb(cur, "attn_norm", il);
  6693. // self-attention
  6694. {
  6695. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  6696. cb(cur, "wqkv", il);
  6697. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  6698. cb(cur, "bqkv", il);
  6699. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  6700. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  6701. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  6702. cb(Qcur, "Qcur", il);
  6703. cb(Kcur, "Kcur", il);
  6704. cb(Vcur, "Vcur", il);
  6705. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6706. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  6707. model.layers[il].wo, model.layers[il].bo,
  6708. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6709. }
  6710. if (il == n_layer - 1) {
  6711. // skip computing output for unused tokens
  6712. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6713. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6714. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  6715. }
  6716. // add the input
  6717. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  6718. cb(ffn_inp, "ffn_inp", il);
  6719. // FF
  6720. {
  6721. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6722. model.layers[il].ffn_norm,
  6723. model.layers[il].ffn_norm_b,
  6724. LLM_NORM, cb, il);
  6725. cb(cur, "ffn_norm", il);
  6726. cur = llm_build_ffn(ctx0, cur,
  6727. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  6728. NULL, NULL,
  6729. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  6730. NULL,
  6731. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  6732. cb(cur, "ffn_out", il);
  6733. }
  6734. inpL = ggml_add(ctx0, cur, ffn_inp);
  6735. cb(inpL, "l_out", il);
  6736. }
  6737. cur = llm_build_norm(ctx0, inpL, hparams,
  6738. model.output_norm,
  6739. model.output_norm_b,
  6740. LLM_NORM, cb, -1);
  6741. cb(cur, "result_norm", -1);
  6742. cur = ggml_mul_mat(ctx0, model.output, cur);
  6743. cb(cur, "result_output", -1);
  6744. ggml_build_forward_expand(gf, cur);
  6745. return gf;
  6746. }
  6747. struct ggml_cgraph * build_persimmon() {
  6748. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6749. const int64_t n_embd_head = hparams.n_embd_head_v;
  6750. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6751. GGML_ASSERT(n_embd_head/2 == hparams.n_rot);
  6752. struct ggml_tensor * cur;
  6753. struct ggml_tensor * inpL;
  6754. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6755. // inp_pos - contains the positions
  6756. struct ggml_tensor * inp_pos = build_inp_pos();
  6757. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6758. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6759. for (int il = 0; il < n_layer; ++il) {
  6760. struct ggml_tensor * residual = inpL;
  6761. cur = llm_build_norm(ctx0, inpL, hparams,
  6762. model.layers[il].attn_norm,
  6763. model.layers[il].attn_norm_b,
  6764. LLM_NORM, cb, il);
  6765. cb(cur, "attn_norm", il);
  6766. // self attention
  6767. {
  6768. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  6769. cb(cur, "wqkv", il);
  6770. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  6771. cb(cur, "bqkv", il);
  6772. // split qkv
  6773. GGML_ASSERT(n_head_kv == n_head);
  6774. struct ggml_tensor * tmpqkv = ggml_reshape_4d(ctx0, cur, n_embd_head, 3, n_head, n_tokens);
  6775. cb(tmpqkv, "tmpqkv", il);
  6776. struct ggml_tensor * tmpqkv_perm = ggml_cont(ctx0, ggml_permute(ctx0, tmpqkv, 0, 3, 1, 2));
  6777. cb(tmpqkv_perm, "tmpqkv", il);
  6778. struct ggml_tensor * tmpq = ggml_view_3d(
  6779. ctx0, tmpqkv_perm, n_embd_head, n_head, n_tokens,
  6780. ggml_element_size(tmpqkv_perm) * n_embd_head,
  6781. ggml_element_size(tmpqkv_perm) * n_embd_head * n_head,
  6782. 0
  6783. );
  6784. cb(tmpq, "tmpq", il);
  6785. struct ggml_tensor * tmpk = ggml_view_3d(
  6786. ctx0, tmpqkv_perm, n_embd_head, n_head, n_tokens,
  6787. ggml_element_size(tmpqkv_perm) * n_embd_head,
  6788. ggml_element_size(tmpqkv_perm) * n_embd_head * n_head,
  6789. ggml_element_size(tmpqkv_perm) * n_embd_head * n_head * n_tokens
  6790. );
  6791. cb(tmpk, "tmpk", il);
  6792. // Q/K Layernorm
  6793. tmpq = llm_build_norm(ctx0, tmpq, hparams,
  6794. model.layers[il].attn_q_norm,
  6795. model.layers[il].attn_q_norm_b,
  6796. LLM_NORM, cb, il);
  6797. cb(tmpq, "tmpq", il);
  6798. tmpk = llm_build_norm(ctx0, tmpk, hparams,
  6799. model.layers[il].attn_k_norm,
  6800. model.layers[il].attn_k_norm_b,
  6801. LLM_NORM, cb, il);
  6802. cb(tmpk, "tmpk", il);
  6803. // RoPE the first n_rot of q/k, pass the other half, and concat.
  6804. struct ggml_tensor * qrot = ggml_view_3d(
  6805. ctx0, tmpq, n_rot, n_head, n_tokens,
  6806. ggml_element_size(tmpq) * n_embd_head,
  6807. ggml_element_size(tmpq) * n_embd_head * n_head,
  6808. 0
  6809. );
  6810. cb(qrot, "qrot", il);
  6811. struct ggml_tensor * krot = ggml_view_3d(
  6812. ctx0, tmpk, n_rot, n_head, n_tokens,
  6813. ggml_element_size(tmpk) * n_embd_head,
  6814. ggml_element_size(tmpk) * n_embd_head * n_head,
  6815. 0
  6816. );
  6817. cb(krot, "krot", il);
  6818. // get the second half of tmpq, e.g tmpq[n_rot:, :, :]
  6819. struct ggml_tensor * qpass = ggml_view_3d(
  6820. ctx0, tmpq, n_rot, n_head, n_tokens,
  6821. ggml_element_size(tmpq) * n_embd_head,
  6822. ggml_element_size(tmpq) * n_embd_head * n_head,
  6823. ggml_element_size(tmpq) * n_rot
  6824. );
  6825. cb(qpass, "qpass", il);
  6826. struct ggml_tensor * kpass = ggml_view_3d(
  6827. ctx0, tmpk, n_rot, n_head, n_tokens,
  6828. ggml_element_size(tmpk) * n_embd_head,
  6829. ggml_element_size(tmpk) * n_embd_head * n_head,
  6830. ggml_element_size(tmpk) * n_rot
  6831. );
  6832. cb(kpass, "kpass", il);
  6833. struct ggml_tensor * qrotated = ggml_rope_custom(
  6834. ctx0, qrot, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
  6835. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  6836. );
  6837. cb(qrotated, "qrotated", il);
  6838. struct ggml_tensor * krotated = ggml_rope_custom(
  6839. ctx0, krot, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
  6840. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  6841. );
  6842. cb(krotated, "krotated", il);
  6843. // ggml currently only supports concatenation on dim=2
  6844. // so we need to permute qrot, qpass, concat, then permute back.
  6845. qrotated = ggml_cont(ctx0, ggml_permute(ctx0, qrotated, 2, 1, 0, 3));
  6846. cb(qrotated, "qrotated", il);
  6847. krotated = ggml_cont(ctx0, ggml_permute(ctx0, krotated, 2, 1, 0, 3));
  6848. cb(krotated, "krotated", il);
  6849. qpass = ggml_cont(ctx0, ggml_permute(ctx0, qpass, 2, 1, 0, 3));
  6850. cb(qpass, "qpass", il);
  6851. kpass = ggml_cont(ctx0, ggml_permute(ctx0, kpass, 2, 1, 0, 3));
  6852. cb(kpass, "kpass", il);
  6853. struct ggml_tensor * Qcur = ggml_concat(ctx0, qrotated, qpass);
  6854. cb(Qcur, "Qcur", il);
  6855. struct ggml_tensor * Kcur = ggml_concat(ctx0, krotated, kpass);
  6856. cb(Kcur, "Kcur", il);
  6857. struct ggml_tensor * Q = ggml_cont(ctx0, ggml_permute(ctx0, Qcur, 2, 1, 0, 3));
  6858. cb(Q, "Q", il);
  6859. Kcur = ggml_cont(ctx0, ggml_permute(ctx0, Kcur, 2, 1, 0, 3));
  6860. cb(Kcur, "Kcur", il);
  6861. struct ggml_tensor * Vcur = ggml_view_3d(
  6862. ctx0, tmpqkv_perm, n_embd_head, n_head, n_tokens,
  6863. ggml_element_size(tmpqkv_perm) * n_embd_head,
  6864. ggml_element_size(tmpqkv_perm) * n_embd_head * n_head,
  6865. ggml_element_size(tmpqkv_perm) * n_embd_head * n_head * n_tokens * 2
  6866. );
  6867. cb(Vcur, "Vcur", il);
  6868. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  6869. model.layers[il].wo, model.layers[il].bo,
  6870. Kcur, Vcur, Q, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6871. }
  6872. if (il == n_layer - 1) {
  6873. // skip computing output for unused tokens
  6874. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6875. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6876. residual = ggml_get_rows(ctx0, residual, inp_out_ids);
  6877. }
  6878. struct ggml_tensor * ffn_inp = ggml_add(ctx0, residual, cur);
  6879. cb(ffn_inp, "ffn_inp", il);
  6880. // feed-forward network
  6881. {
  6882. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6883. model.layers[il].ffn_norm,
  6884. model.layers[il].ffn_norm_b,
  6885. LLM_NORM, cb, il);
  6886. cb(cur, "ffn_norm", il);
  6887. cur = llm_build_ffn(ctx0, cur,
  6888. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  6889. NULL, NULL,
  6890. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  6891. NULL,
  6892. LLM_FFN_RELU_SQR, LLM_FFN_SEQ, cb, il);
  6893. cb(cur, "ffn_out", il);
  6894. }
  6895. cur = ggml_add(ctx0, cur, ffn_inp);
  6896. cb(cur, "l_out", il);
  6897. inpL = cur;
  6898. }
  6899. cur = inpL;
  6900. cur = llm_build_norm(ctx0, cur, hparams,
  6901. model.output_norm,
  6902. model.output_norm_b,
  6903. LLM_NORM, cb, -1);
  6904. cb(cur, "result_norm", -1);
  6905. cur = ggml_mul_mat(ctx0, model.output, cur);
  6906. cb(cur, "result_output", -1);
  6907. ggml_build_forward_expand(gf, cur);
  6908. return gf;
  6909. }
  6910. struct ggml_cgraph * build_refact() {
  6911. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6912. const int64_t n_embd_head = hparams.n_embd_head_v;
  6913. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6914. struct ggml_tensor * cur;
  6915. struct ggml_tensor * inpL;
  6916. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6917. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6918. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6919. for (int il = 0; il < n_layer; ++il) {
  6920. struct ggml_tensor * inpSA = inpL;
  6921. cur = llm_build_norm(ctx0, inpL, hparams,
  6922. model.layers[il].attn_norm, NULL,
  6923. LLM_NORM_RMS, cb, il);
  6924. cb(cur, "attn_norm", il);
  6925. // self-attention
  6926. {
  6927. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  6928. cb(Qcur, "Qcur", il);
  6929. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  6930. cb(Kcur, "Kcur", il);
  6931. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  6932. cb(Vcur, "Vcur", il);
  6933. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6934. cb(Kcur, "Kcur", il);
  6935. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6936. cb(Qcur, "Qcur", il);
  6937. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  6938. model.layers[il].wo, NULL,
  6939. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6940. }
  6941. if (il == n_layer - 1) {
  6942. // skip computing output for unused tokens
  6943. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6944. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6945. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6946. }
  6947. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6948. cb(ffn_inp, "ffn_inp", il);
  6949. // feed-forward network
  6950. {
  6951. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6952. model.layers[il].ffn_norm, NULL,
  6953. LLM_NORM_RMS, cb, il);
  6954. cb(cur, "ffn_norm", il);
  6955. cur = llm_build_ffn(ctx0, cur,
  6956. model.layers[il].ffn_up, NULL,
  6957. model.layers[il].ffn_gate, NULL,
  6958. model.layers[il].ffn_down, NULL,
  6959. NULL,
  6960. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  6961. cb(cur, "ffn_out", il);
  6962. }
  6963. cur = ggml_add(ctx0, cur, ffn_inp);
  6964. cb(cur, "l_out", il);
  6965. // input for next layer
  6966. inpL = cur;
  6967. }
  6968. cur = inpL;
  6969. cur = llm_build_norm(ctx0, cur, hparams,
  6970. model.output_norm, NULL,
  6971. LLM_NORM_RMS, cb, -1);
  6972. cb(cur, "result_norm", -1);
  6973. // lm_head
  6974. cur = ggml_mul_mat(ctx0, model.output, cur);
  6975. cb(cur, "result_output", -1);
  6976. ggml_build_forward_expand(gf, cur);
  6977. return gf;
  6978. }
  6979. struct ggml_cgraph * build_bert() {
  6980. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6981. const int64_t n_embd_head = hparams.n_embd_head_v;
  6982. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  6983. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6984. struct ggml_tensor * cur;
  6985. struct ggml_tensor * inpL;
  6986. struct ggml_tensor * inp_pos = nullptr;
  6987. if (model.arch != LLM_ARCH_JINA_BERT_V2) {
  6988. inp_pos = build_inp_pos();
  6989. }
  6990. struct ggml_tensor * inp_mean = build_inp_mean();
  6991. struct ggml_tensor * inp_cls = build_inp_cls();
  6992. // construct input embeddings (token, type, position)
  6993. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6994. // token types are hardcoded to zero ("Sentence A")
  6995. struct ggml_tensor * type_row0 = ggml_view_1d(ctx0, model.type_embd, n_embd, 0);
  6996. inpL = ggml_add(ctx0, inpL, type_row0);
  6997. if (model.arch == LLM_ARCH_BERT) {
  6998. inpL = ggml_add(ctx0, ggml_get_rows(ctx0, model.pos_embd, inp_pos), inpL);
  6999. }
  7000. cb(inpL, "inp_embd", -1);
  7001. // embed layer norm
  7002. inpL = llm_build_norm(ctx0, inpL, hparams, model.tok_norm, model.tok_norm_b, LLM_NORM, cb, -1);
  7003. cb(inpL, "inp_norm", -1);
  7004. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7005. struct ggml_tensor * KQ_mask = build_inp_KQ_mask(false);
  7006. // iterate layers
  7007. for (int il = 0; il < n_layer; ++il) {
  7008. struct ggml_tensor * cur = inpL;
  7009. struct ggml_tensor * Qcur;
  7010. struct ggml_tensor * Kcur;
  7011. struct ggml_tensor * Vcur;
  7012. // self-attention
  7013. if (model.arch == LLM_ARCH_BERT || model.arch == LLM_ARCH_JINA_BERT_V2) {
  7014. Qcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wq, cur), model.layers[il].bq);
  7015. cb(Qcur, "Qcur", il);
  7016. if (model.layers[il].attn_q_norm) {
  7017. Qcur = llm_build_norm(ctx0, Qcur, hparams,
  7018. model.layers[il].attn_q_norm,
  7019. model.layers[il].attn_q_norm_b,
  7020. LLM_NORM, cb, il);
  7021. }
  7022. Kcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wk, cur), model.layers[il].bk);
  7023. cb(Kcur, "Kcur", il);
  7024. if (model.layers[il].attn_k_norm) {
  7025. Kcur = llm_build_norm(ctx0, Kcur, hparams,
  7026. model.layers[il].attn_k_norm,
  7027. model.layers[il].attn_k_norm_b,
  7028. LLM_NORM, cb, il);
  7029. }
  7030. Vcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wv, cur), model.layers[il].bv);
  7031. cb(Vcur, "Vcur", il);
  7032. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7033. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7034. } else {
  7035. // compute Q and K and RoPE them
  7036. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  7037. cb(cur, "wqkv", il);
  7038. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  7039. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  7040. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  7041. cb(Qcur, "Qcur", il);
  7042. cb(Kcur, "Kcur", il);
  7043. cb(Vcur, "Vcur", il);
  7044. Qcur = ggml_rope_custom(
  7045. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  7046. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7047. ext_factor, attn_factor, beta_fast, beta_slow
  7048. );
  7049. cb(Qcur, "Qcur", il);
  7050. Kcur = ggml_rope_custom(
  7051. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  7052. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7053. ext_factor, attn_factor, beta_fast, beta_slow
  7054. );
  7055. cb(Kcur, "Kcur", il);
  7056. }
  7057. struct ggml_tensor * q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
  7058. struct ggml_tensor * k = ggml_cont(ctx0, ggml_permute(ctx0, Kcur, 0, 2, 1, 3));
  7059. struct ggml_tensor * kq = ggml_mul_mat(ctx0, k, q);
  7060. cb(kq, "kq", il);
  7061. kq = ggml_soft_max_ext(ctx0, kq, KQ_mask, 1.0f/sqrtf(float(n_embd_head)), hparams.f_max_alibi_bias);
  7062. cb(kq, "kq_soft_max_ext", il);
  7063. struct ggml_tensor * v = ggml_cont(ctx0, ggml_transpose(ctx0, ggml_reshape_2d(ctx0, Vcur, n_embd_gqa, n_tokens)));
  7064. cb(v, "v", il);
  7065. struct ggml_tensor * kqv = ggml_mul_mat(ctx0, ggml_reshape_3d(ctx0, v, n_tokens, n_embd_head, n_head_kv), kq);
  7066. cb(kqv, "kqv", il);
  7067. struct ggml_tensor * kqv_merged = ggml_permute(ctx0, kqv, 0, 2, 1, 3);
  7068. cb(kqv_merged, "kqv_merged", il);
  7069. cur = ggml_cont_2d(ctx0, kqv_merged, n_embd_gqa, n_tokens);
  7070. cb(cur, "kqv_merged_cont", il);
  7071. ggml_build_forward_expand(gf, cur);
  7072. cur = ggml_mul_mat(ctx0, model.layers[il].wo, cur);
  7073. if (model.layers[il].bo) {
  7074. cb(cur, "kqv_wo", il);
  7075. }
  7076. if (model.layers[il].bo) {
  7077. cur = ggml_add(ctx0, cur, model.layers[il].bo);
  7078. }
  7079. cb(cur, "kqv_out", il);
  7080. if (il == n_layer - 1 && pooling_type == LLAMA_POOLING_TYPE_NONE) {
  7081. // skip computing output for unused tokens
  7082. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7083. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7084. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7085. }
  7086. // re-add the layer input
  7087. cur = ggml_add(ctx0, cur, inpL);
  7088. // attention layer norm
  7089. cur = llm_build_norm(ctx0, cur, hparams, model.layers[il].attn_out_norm, model.layers[il].attn_out_norm_b, LLM_NORM, cb, il);
  7090. struct ggml_tensor * ffn_inp = cur;
  7091. cb(ffn_inp, "ffn_inp", il);
  7092. // feed-forward network
  7093. if (model.arch == LLM_ARCH_BERT) {
  7094. cur = llm_build_ffn(ctx0, cur,
  7095. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  7096. NULL, NULL,
  7097. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  7098. NULL,
  7099. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  7100. } else if (model.arch == LLM_ARCH_JINA_BERT_V2) {
  7101. cur = llm_build_ffn(ctx0, cur,
  7102. model.layers[il].ffn_up, NULL,
  7103. model.layers[il].ffn_gate, NULL,
  7104. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  7105. NULL,
  7106. LLM_FFN_GELU, LLM_FFN_PAR, cb, il);
  7107. } else {
  7108. cur = llm_build_ffn(ctx0, cur,
  7109. model.layers[il].ffn_up, NULL,
  7110. model.layers[il].ffn_gate, NULL,
  7111. model.layers[il].ffn_down, NULL,
  7112. NULL,
  7113. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  7114. }
  7115. cb(cur, "ffn_out", il);
  7116. // attentions bypass the intermediate layer
  7117. cur = ggml_add(ctx0, cur, ffn_inp);
  7118. // output layer norm
  7119. cur = llm_build_norm(ctx0, cur, hparams, model.layers[il].layer_out_norm, model.layers[il].layer_out_norm_b, LLM_NORM, cb, il);
  7120. // input for next layer
  7121. inpL = cur;
  7122. }
  7123. // final output
  7124. cur = inpL;
  7125. cb(cur, "result_embd", -1);
  7126. // pooling layer
  7127. switch (pooling_type) {
  7128. case LLAMA_POOLING_TYPE_NONE:
  7129. {
  7130. // nop
  7131. } break;
  7132. case LLAMA_POOLING_TYPE_MEAN:
  7133. {
  7134. cur = ggml_mul_mat(ctx0, ggml_cont(ctx0, ggml_transpose(ctx0, cur)), inp_mean);
  7135. cb(cur, "result_embd_pooled", -1);
  7136. } break;
  7137. case LLAMA_POOLING_TYPE_CLS:
  7138. {
  7139. cur = ggml_get_rows(ctx0, cur, inp_cls);
  7140. cb(cur, "result_embd_pooled", -1);
  7141. } break;
  7142. case LLAMA_POOLING_TYPE_UNSPECIFIED:
  7143. {
  7144. GGML_ASSERT(false && "Invalid pooling type");
  7145. } break;
  7146. }
  7147. ggml_build_forward_expand(gf, cur);
  7148. return gf;
  7149. }
  7150. struct ggml_cgraph * build_bloom() {
  7151. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7152. const int64_t n_embd_head = hparams.n_embd_head_v;
  7153. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  7154. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7155. struct ggml_tensor * cur;
  7156. struct ggml_tensor * inpL;
  7157. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7158. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7159. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7160. inpL = llm_build_norm(ctx0, inpL, hparams,
  7161. model.tok_norm,
  7162. model.tok_norm_b,
  7163. LLM_NORM, cb, -1);
  7164. cb(inpL, "inp_norm", -1);
  7165. for (int il = 0; il < n_layer; ++il) {
  7166. cur = llm_build_norm(ctx0, inpL, hparams,
  7167. model.layers[il].attn_norm,
  7168. model.layers[il].attn_norm_b,
  7169. LLM_NORM, cb, il);
  7170. cb(cur, "attn_norm", il);
  7171. // self-attention
  7172. {
  7173. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  7174. cb(cur, "wqkv", il);
  7175. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  7176. cb(cur, "bqkv", il);
  7177. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  7178. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  7179. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  7180. cb(Qcur, "Qcur", il);
  7181. cb(Kcur, "Kcur", il);
  7182. cb(Vcur, "Vcur", il);
  7183. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7184. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7185. model.layers[il].wo, model.layers[il].bo,
  7186. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7187. }
  7188. if (il == n_layer - 1) {
  7189. // skip computing output for unused tokens
  7190. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7191. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7192. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7193. }
  7194. // Add the input
  7195. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  7196. cb(ffn_inp, "ffn_inp", il);
  7197. // FF
  7198. {
  7199. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7200. model.layers[il].ffn_norm,
  7201. model.layers[il].ffn_norm_b,
  7202. LLM_NORM, cb, il);
  7203. cb(cur, "ffn_norm", il);
  7204. cur = llm_build_ffn(ctx0, cur,
  7205. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  7206. NULL, NULL,
  7207. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  7208. NULL,
  7209. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  7210. cb(cur, "ffn_out", il);
  7211. }
  7212. inpL = ggml_add(ctx0, cur, ffn_inp);
  7213. cb(inpL, "l_out", il);
  7214. }
  7215. cur = llm_build_norm(ctx0, inpL, hparams,
  7216. model.output_norm,
  7217. model.output_norm_b,
  7218. LLM_NORM, cb, -1);
  7219. cb(cur, "result_norm", -1);
  7220. cur = ggml_mul_mat(ctx0, model.output, cur);
  7221. cb(cur, "result_output", -1);
  7222. ggml_build_forward_expand(gf, cur);
  7223. return gf;
  7224. }
  7225. struct ggml_cgraph * build_mpt() {
  7226. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7227. const int64_t n_embd_head = hparams.n_embd_head_v;
  7228. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  7229. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7230. struct ggml_tensor * cur;
  7231. struct ggml_tensor * pos;
  7232. struct ggml_tensor * inpL;
  7233. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7234. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7235. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7236. if (model.pos_embd) {
  7237. // inp_pos - contains the positions
  7238. struct ggml_tensor * inp_pos = build_inp_pos();
  7239. pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
  7240. cb(pos, "pos_embd", -1);
  7241. inpL = ggml_add(ctx0, inpL, pos);
  7242. cb(inpL, "inpL", -1);
  7243. }
  7244. for (int il = 0; il < n_layer; ++il) {
  7245. struct ggml_tensor * attn_norm;
  7246. attn_norm = llm_build_norm(ctx0, inpL, hparams,
  7247. model.layers[il].attn_norm,
  7248. model.layers[il].attn_norm_b,
  7249. LLM_NORM, cb, il);
  7250. cb(attn_norm, "attn_norm", il);
  7251. // self-attention
  7252. {
  7253. cur = attn_norm;
  7254. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  7255. cb(cur, "wqkv", il);
  7256. if (model.layers[il].bqkv){
  7257. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  7258. cb(cur, "bqkv", il);
  7259. }
  7260. if (hparams.f_clamp_kqv > 0.0f) {
  7261. cur = ggml_clamp(ctx0, cur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  7262. cb(cur, "wqkv_clamped", il);
  7263. }
  7264. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  7265. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  7266. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  7267. cb(Qcur, "Qcur", il);
  7268. cb(Kcur, "Kcur", il);
  7269. cb(Vcur, "Vcur", il);
  7270. // Q/K Layernorm
  7271. if (model.layers[il].attn_q_norm) {
  7272. Qcur = llm_build_norm(ctx0, Qcur, hparams,
  7273. model.layers[il].attn_q_norm,
  7274. model.layers[il].attn_q_norm_b,
  7275. LLM_NORM, cb, il);
  7276. cb(Qcur, "Qcur", il);
  7277. Kcur = llm_build_norm(ctx0, Kcur, hparams,
  7278. model.layers[il].attn_k_norm,
  7279. model.layers[il].attn_k_norm_b,
  7280. LLM_NORM, cb, il);
  7281. cb(Kcur, "Kcur", il);
  7282. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7283. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7284. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7285. model.layers[il].wo, model.layers[il].bo,
  7286. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7287. } else {
  7288. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7289. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7290. model.layers[il].wo, model.layers[il].bo,
  7291. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7292. }
  7293. }
  7294. if (il == n_layer - 1) {
  7295. // skip computing output for unused tokens
  7296. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7297. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7298. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7299. }
  7300. // Add the input
  7301. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  7302. cb(ffn_inp, "ffn_inp", il);
  7303. // feed forward
  7304. {
  7305. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7306. model.layers[il].ffn_norm,
  7307. model.layers[il].ffn_norm_b,
  7308. LLM_NORM, cb, il);
  7309. cb(cur, "ffn_norm", il);
  7310. cur = llm_build_ffn(ctx0, cur,
  7311. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  7312. NULL, NULL,
  7313. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  7314. model.layers[il].ffn_act,
  7315. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  7316. cb(cur, "ffn_out", il);
  7317. }
  7318. cur = ggml_add(ctx0, cur, ffn_inp);
  7319. cb(cur, "l_out", il);
  7320. // input for next layer
  7321. inpL = cur;
  7322. }
  7323. cur = inpL;
  7324. cur = llm_build_norm(ctx0, cur, hparams,
  7325. model.output_norm,
  7326. model.output_norm_b,
  7327. LLM_NORM, cb, -1);
  7328. cb(cur, "result_norm", -1);
  7329. cur = ggml_mul_mat(ctx0, model.output, cur);
  7330. cb(cur, "result_output", -1);
  7331. ggml_build_forward_expand(gf, cur);
  7332. return gf;
  7333. }
  7334. struct ggml_cgraph * build_stablelm() {
  7335. struct ggml_cgraph * gf = ggml_new_graph(ctx0);
  7336. const int64_t n_embd_head = hparams.n_embd_head_v;
  7337. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7338. struct ggml_tensor * cur;
  7339. struct ggml_tensor * inpL;
  7340. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7341. // inp_pos - contains the positions
  7342. struct ggml_tensor * inp_pos = build_inp_pos();
  7343. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7344. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7345. for (int il = 0; il < n_layer; ++il) {
  7346. // norm
  7347. cur = llm_build_norm(ctx0, inpL, hparams,
  7348. model.layers[il].attn_norm,
  7349. model.layers[il].attn_norm_b,
  7350. LLM_NORM, cb, il);
  7351. cb(cur, "attn_norm", il);
  7352. struct ggml_tensor * inpSA = cur;
  7353. // self-attention
  7354. {
  7355. // compute Q and K and RoPE them
  7356. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  7357. cb(Qcur, "Qcur", il);
  7358. if (model.layers[il].bq) {
  7359. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  7360. cb(Qcur, "Qcur", il);
  7361. }
  7362. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  7363. cb(Kcur, "Kcur", il);
  7364. if (model.layers[il].bk) {
  7365. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  7366. cb(Kcur, "Kcur", il);
  7367. }
  7368. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  7369. cb(Vcur, "Vcur", il);
  7370. if (model.layers[il].bv) {
  7371. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  7372. cb(Vcur, "Vcur", il);
  7373. }
  7374. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7375. cb(Qcur, "Qcur", il);
  7376. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7377. cb(Kcur, "Kcur", il);
  7378. if (model.layers[il].attn_q_norm) {
  7379. Qcur = llm_build_norm(ctx0, Qcur, hparams,
  7380. model.layers[il].attn_q_norm,
  7381. NULL,
  7382. LLM_NORM, cb, il);
  7383. cb(Qcur, "Qcur", il);
  7384. }
  7385. if (model.layers[il].attn_k_norm) {
  7386. Kcur = llm_build_norm(ctx0, Kcur, hparams,
  7387. model.layers[il].attn_k_norm,
  7388. NULL,
  7389. LLM_NORM, cb, il);
  7390. cb(Kcur, "Kcur", il);
  7391. }
  7392. Qcur = ggml_rope_custom(
  7393. ctx0, Qcur, inp_pos,
  7394. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7395. ext_factor, attn_factor, beta_fast, beta_slow
  7396. );
  7397. cb(Qcur, "Qcur", il);
  7398. Kcur = ggml_rope_custom(
  7399. ctx0, Kcur, inp_pos,
  7400. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7401. ext_factor, attn_factor, beta_fast, beta_slow
  7402. );
  7403. cb(Kcur, "Kcur", il);
  7404. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7405. model.layers[il].wo, NULL,
  7406. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7407. }
  7408. if (il == n_layer - 1) {
  7409. // skip computing output for unused tokens
  7410. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7411. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7412. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7413. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7414. }
  7415. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  7416. cb(ffn_inp, "ffn_inp", il);
  7417. // feed-forward network
  7418. {
  7419. if (model.layers[il].ffn_norm) {
  7420. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7421. model.layers[il].ffn_norm,
  7422. model.layers[il].ffn_norm_b,
  7423. LLM_NORM, cb, il);
  7424. cb(cur, "ffn_norm", il);
  7425. } else {
  7426. // parallel residual
  7427. cur = inpSA;
  7428. }
  7429. cur = llm_build_ffn(ctx0, cur,
  7430. model.layers[il].ffn_up, NULL,
  7431. model.layers[il].ffn_gate, NULL,
  7432. model.layers[il].ffn_down, NULL,
  7433. NULL,
  7434. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  7435. cb(cur, "ffn_out", il);
  7436. }
  7437. cur = ggml_add(ctx0, cur, ffn_inp);
  7438. cb(cur, "l_out", il);
  7439. // input for next layer
  7440. inpL = cur;
  7441. }
  7442. cur = inpL;
  7443. cur = llm_build_norm(ctx0, cur, hparams,
  7444. model.output_norm,
  7445. model.output_norm_b,
  7446. LLM_NORM, cb, -1);
  7447. cb(cur, "result_norm", -1);
  7448. // lm_head
  7449. cur = ggml_mul_mat(ctx0, model.output, cur);
  7450. cb(cur, "result_output", -1);
  7451. ggml_build_forward_expand(gf, cur);
  7452. return gf;
  7453. }
  7454. struct ggml_cgraph * build_qwen() {
  7455. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7456. const int64_t n_embd_head = hparams.n_embd_head_v;
  7457. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7458. struct ggml_tensor * cur;
  7459. struct ggml_tensor * inpL;
  7460. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7461. // inp_pos - contains the positions
  7462. struct ggml_tensor * inp_pos = build_inp_pos();
  7463. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7464. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7465. for (int il = 0; il < n_layer; ++il) {
  7466. struct ggml_tensor * inpSA = inpL;
  7467. cur = llm_build_norm(ctx0, inpL, hparams,
  7468. model.layers[il].attn_norm, NULL,
  7469. LLM_NORM_RMS, cb, il);
  7470. cb(cur, "attn_norm", il);
  7471. // self-attention
  7472. {
  7473. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  7474. cb(cur, "wqkv", il);
  7475. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  7476. cb(cur, "bqkv", il);
  7477. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  7478. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  7479. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 2*sizeof(float)*(n_embd)));
  7480. cb(Qcur, "Qcur", il);
  7481. cb(Kcur, "Kcur", il);
  7482. cb(Vcur, "Vcur", il);
  7483. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7484. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7485. // using mode = 2 for neox mode
  7486. Qcur = ggml_rope_custom(
  7487. ctx0, Qcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
  7488. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  7489. );
  7490. cb(Qcur, "Qcur", il);
  7491. Kcur = ggml_rope_custom(
  7492. ctx0, Kcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
  7493. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  7494. );
  7495. cb(Kcur, "Kcur", il);
  7496. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7497. model.layers[il].wo, NULL,
  7498. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7499. }
  7500. if (il == n_layer - 1) {
  7501. // skip computing output for unused tokens
  7502. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7503. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7504. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7505. }
  7506. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7507. cb(ffn_inp, "ffn_inp", il);
  7508. // feed-forward forward
  7509. {
  7510. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7511. model.layers[il].ffn_norm, NULL,
  7512. LLM_NORM_RMS, cb, il);
  7513. cb(cur, "ffn_norm", il);
  7514. cur = llm_build_ffn(ctx0, cur,
  7515. model.layers[il].ffn_up, NULL,
  7516. model.layers[il].ffn_gate, NULL,
  7517. model.layers[il].ffn_down, NULL,
  7518. NULL,
  7519. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  7520. cb(cur, "ffn_out", il);
  7521. }
  7522. cur = ggml_add(ctx0, cur, ffn_inp);
  7523. cb(cur, "l_out", il);
  7524. // input for next layer
  7525. inpL = cur;
  7526. }
  7527. cur = inpL;
  7528. cur = llm_build_norm(ctx0, cur, hparams,
  7529. model.output_norm, NULL,
  7530. LLM_NORM_RMS, cb, -1);
  7531. cb(cur, "result_norm", -1);
  7532. // lm_head
  7533. cur = ggml_mul_mat(ctx0, model.output, cur);
  7534. cb(cur, "result_output", -1);
  7535. ggml_build_forward_expand(gf, cur);
  7536. return gf;
  7537. }
  7538. struct ggml_cgraph * build_qwen2() {
  7539. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7540. const int64_t n_embd_head = hparams.n_embd_head_v;
  7541. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7542. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7543. struct ggml_tensor * cur;
  7544. struct ggml_tensor * inpL;
  7545. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7546. // inp_pos - contains the positions
  7547. struct ggml_tensor * inp_pos = build_inp_pos();
  7548. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7549. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7550. for (int il = 0; il < n_layer; ++il) {
  7551. struct ggml_tensor * inpSA = inpL;
  7552. // norm
  7553. cur = llm_build_norm(ctx0, inpL, hparams,
  7554. model.layers[il].attn_norm, NULL,
  7555. LLM_NORM_RMS, cb, il);
  7556. cb(cur, "attn_norm", il);
  7557. // self-attention
  7558. {
  7559. // compute Q and K and RoPE them
  7560. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  7561. cb(Qcur, "Qcur", il);
  7562. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  7563. cb(Qcur, "Qcur", il);
  7564. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  7565. cb(Kcur, "Kcur", il);
  7566. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  7567. cb(Kcur, "Kcur", il);
  7568. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  7569. cb(Vcur, "Vcur", il);
  7570. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  7571. cb(Vcur, "Vcur", il);
  7572. Qcur = ggml_rope_custom(
  7573. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  7574. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7575. ext_factor, attn_factor, beta_fast, beta_slow
  7576. );
  7577. cb(Qcur, "Qcur", il);
  7578. Kcur = ggml_rope_custom(
  7579. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  7580. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7581. ext_factor, attn_factor, beta_fast, beta_slow
  7582. );
  7583. cb(Kcur, "Kcur", il);
  7584. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7585. model.layers[il].wo, model.layers[il].bo,
  7586. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7587. }
  7588. if (il == n_layer - 1) {
  7589. // skip computing output for unused tokens
  7590. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7591. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7592. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7593. }
  7594. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7595. cb(ffn_inp, "ffn_inp", il);
  7596. // feed-forward network
  7597. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7598. model.layers[il].ffn_norm, NULL,
  7599. LLM_NORM_RMS, cb, il);
  7600. cb(cur, "ffn_norm", il);
  7601. cur = llm_build_ffn(ctx0, cur,
  7602. model.layers[il].ffn_up, NULL,
  7603. model.layers[il].ffn_gate, NULL,
  7604. model.layers[il].ffn_down, NULL,
  7605. NULL,
  7606. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  7607. cb(cur, "ffn_out", il);
  7608. cur = ggml_add(ctx0, cur, ffn_inp);
  7609. cb(cur, "l_out", il);
  7610. // input for next layer
  7611. inpL = cur;
  7612. }
  7613. cur = inpL;
  7614. cur = llm_build_norm(ctx0, cur, hparams,
  7615. model.output_norm, NULL,
  7616. LLM_NORM_RMS, cb, -1);
  7617. cb(cur, "result_norm", -1);
  7618. // lm_head
  7619. cur = ggml_mul_mat(ctx0, model.output, cur);
  7620. cb(cur, "result_output", -1);
  7621. ggml_build_forward_expand(gf, cur);
  7622. return gf;
  7623. }
  7624. struct ggml_cgraph * build_qwen2moe() {
  7625. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7626. // mutable variable, needed during the last layer of the computation to skip unused tokens
  7627. int32_t n_tokens = this->n_tokens;
  7628. const int64_t n_embd_head = hparams.n_embd_head_v;
  7629. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7630. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7631. struct ggml_tensor * cur;
  7632. struct ggml_tensor * inpL;
  7633. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7634. // inp_pos - contains the positions
  7635. struct ggml_tensor * inp_pos = build_inp_pos();
  7636. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7637. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7638. for (int il = 0; il < n_layer; ++il) {
  7639. struct ggml_tensor * inpSA = inpL;
  7640. // norm
  7641. cur = llm_build_norm(ctx0, inpL, hparams,
  7642. model.layers[il].attn_norm, NULL,
  7643. LLM_NORM_RMS, cb, il);
  7644. cb(cur, "attn_norm", il);
  7645. // self_attention
  7646. {
  7647. // compute Q and K and RoPE them
  7648. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  7649. cb(Qcur, "Qcur", il);
  7650. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  7651. cb(Qcur, "Qcur", il);
  7652. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  7653. cb(Kcur, "Kcur", il);
  7654. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  7655. cb(Kcur, "Kcur", il);
  7656. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  7657. cb(Vcur, "Vcur", il);
  7658. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  7659. cb(Vcur, "Vcur", il);
  7660. Qcur = ggml_rope_custom(
  7661. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  7662. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7663. ext_factor, attn_factor, beta_fast, beta_slow
  7664. );
  7665. cb(Qcur, "Qcur", il);
  7666. Kcur = ggml_rope_custom(
  7667. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  7668. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7669. ext_factor, attn_factor, beta_fast, beta_slow
  7670. );
  7671. cb(Kcur, "Kcur", il);
  7672. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7673. model.layers[il].wo, model.layers[il].bo,
  7674. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7675. }
  7676. if (il == n_layer - 1) {
  7677. // skip computing output for unused tokens
  7678. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7679. n_tokens = n_outputs;
  7680. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7681. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7682. }
  7683. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7684. cb(ffn_inp, "ffn_inp", il);
  7685. // MoE branch
  7686. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7687. model.layers[il].ffn_norm, NULL,
  7688. LLM_NORM_RMS, cb, il);
  7689. cb(cur, "ffn_norm", il);
  7690. ggml_tensor * moe_out =
  7691. llm_build_moe_ffn(ctx0, cur,
  7692. model.layers[il].ffn_gate_inp,
  7693. model.layers[il].ffn_up_exps,
  7694. model.layers[il].ffn_gate_exps,
  7695. model.layers[il].ffn_down_exps,
  7696. n_expert, n_expert_used,
  7697. LLM_FFN_SILU, false,
  7698. cb, il);
  7699. cb(cur, "ffn_moe_out", il);
  7700. // FFN shared expert
  7701. {
  7702. ggml_tensor * cur_gate_inp = ggml_mul_mat(ctx0, model.layers[il].ffn_gate_inp_shexp, cur);
  7703. cb(cur_gate_inp, "ffn_shexp_gate_inp", il);
  7704. // sigmoid
  7705. ggml_tensor * cur_gate = ggml_div(ctx0, ggml_silu(ctx0, cur_gate_inp), cur_gate_inp);
  7706. cb(cur_gate, "ffn_shexp_gate", il);
  7707. ggml_tensor * cur_ffn = llm_build_ffn(ctx0, cur,
  7708. model.layers[il].ffn_up_shexp, NULL,
  7709. model.layers[il].ffn_gate_shexp, NULL,
  7710. model.layers[il].ffn_down_shexp, NULL,
  7711. NULL,
  7712. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  7713. cb(cur_ffn, "ffn_shexp", il);
  7714. ggml_tensor * ffn_shexp_out = ggml_mul(ctx0, cur_ffn, cur_gate);
  7715. cb(ffn_shexp_out, "ffn_shexp_out", il);
  7716. moe_out = ggml_add(ctx0, moe_out, ffn_shexp_out);
  7717. cb(moe_out, "ffn_out", il);
  7718. cur = moe_out;
  7719. }
  7720. cur = ggml_add(ctx0, cur, ffn_inp);
  7721. cb(cur, "l_out", il);
  7722. // input for next layer
  7723. inpL = cur;
  7724. }
  7725. cur = inpL;
  7726. cur = llm_build_norm(ctx0, cur, hparams,
  7727. model.output_norm, NULL,
  7728. LLM_NORM_RMS, cb, -1);
  7729. cb(cur, "result_norm", -1);
  7730. // lm_head
  7731. cur = ggml_mul_mat(ctx0, model.output, cur);
  7732. cb(cur, "result_output", -1);
  7733. ggml_build_forward_expand(gf, cur);
  7734. return gf;
  7735. }
  7736. struct ggml_cgraph * build_phi2() {
  7737. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7738. const int64_t n_embd_head = hparams.n_embd_head_v;
  7739. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  7740. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7741. struct ggml_tensor * cur;
  7742. struct ggml_tensor * attn_norm_output;
  7743. struct ggml_tensor * ffn_output;
  7744. struct ggml_tensor * inpL;
  7745. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7746. // inp_pos - contains the positions
  7747. struct ggml_tensor * inp_pos = build_inp_pos();
  7748. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7749. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7750. for (int il = 0; il < n_layer; ++il) {
  7751. attn_norm_output = llm_build_norm(ctx0, inpL, hparams,
  7752. model.layers[il].attn_norm,
  7753. model.layers[il].attn_norm_b,
  7754. LLM_NORM, cb, il);
  7755. cb(attn_norm_output, "attn_norm", il);
  7756. // self-attention
  7757. {
  7758. struct ggml_tensor * Qcur = nullptr;
  7759. struct ggml_tensor * Kcur = nullptr;
  7760. struct ggml_tensor * Vcur = nullptr;
  7761. if (model.layers[il].wqkv) {
  7762. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, attn_norm_output);
  7763. cb(cur, "wqkv", il);
  7764. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  7765. cb(cur, "bqkv", il);
  7766. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  7767. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  7768. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  7769. } else {
  7770. Qcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wq, attn_norm_output), model.layers[il].bq);
  7771. Kcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wk, attn_norm_output), model.layers[il].bk);
  7772. Vcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wv, attn_norm_output), model.layers[il].bv);
  7773. }
  7774. cb(Qcur, "Qcur", il);
  7775. cb(Kcur, "Kcur", il);
  7776. cb(Vcur, "Vcur", il);
  7777. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7778. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7779. Qcur = ggml_rope_custom(
  7780. ctx0, Qcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
  7781. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  7782. );
  7783. cb(Qcur, "Qcur", il);
  7784. // with phi2, we scale the Q to avoid precision issues
  7785. // ref: https://github.com/ml-explore/mlx-examples/blob/08e862336ade809bc37d1035f94b359e7d1a5152/phi2/phi2.py#L64-L66
  7786. Qcur = ggml_scale(ctx0, Qcur, 1.0f/sqrtf(float(n_embd_head)));
  7787. cb(Qcur, "Qcur", il);
  7788. Kcur = ggml_rope_custom(
  7789. ctx0, Kcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
  7790. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  7791. );
  7792. cb(Kcur, "Kcur", il);
  7793. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7794. model.layers[il].wo, model.layers[il].bo,
  7795. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f, cb, il);
  7796. }
  7797. if (il == n_layer - 1) {
  7798. // skip computing output for unused tokens
  7799. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7800. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7801. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7802. attn_norm_output = ggml_get_rows(ctx0, attn_norm_output, inp_out_ids);
  7803. }
  7804. // FF
  7805. {
  7806. ffn_output = llm_build_ffn(ctx0, attn_norm_output,
  7807. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  7808. NULL, NULL,
  7809. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  7810. NULL,
  7811. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  7812. cb(ffn_output, "ffn_out", il);
  7813. }
  7814. cur = ggml_add(ctx0, cur, ffn_output);
  7815. cb(cur, "l_out", il);
  7816. cur = ggml_add(ctx0, cur, inpL);
  7817. cb(cur, "l_out", il);
  7818. inpL = cur;
  7819. }
  7820. cur = llm_build_norm(ctx0, inpL, hparams,
  7821. model.output_norm,
  7822. model.output_norm_b,
  7823. LLM_NORM, cb, -1);
  7824. cb(cur, "result_norm", -1);
  7825. cur = ggml_mul_mat(ctx0, model.output, cur);
  7826. cb(cur, "result_output_no_bias", -1);
  7827. cur = ggml_add(ctx0, cur, model.output_b);
  7828. cb(cur, "result_output", -1);
  7829. ggml_build_forward_expand(gf, cur);
  7830. return gf;
  7831. }
  7832. struct ggml_cgraph * build_phi3() {
  7833. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7834. const int64_t n_embd_head = hparams.n_embd_head_v;
  7835. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  7836. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7837. struct ggml_tensor * cur;
  7838. struct ggml_tensor * inpL;
  7839. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7840. // inp_pos - contains the positions
  7841. struct ggml_tensor * inp_pos = build_inp_pos();
  7842. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7843. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7844. for (int il = 0; il < n_layer; ++il) {
  7845. auto residual = inpL;
  7846. // self-attention
  7847. {
  7848. struct ggml_tensor* attn_norm_output = llm_build_norm(ctx0, inpL, hparams,
  7849. model.layers[il].attn_norm,
  7850. NULL,
  7851. LLM_NORM_RMS, cb, il);
  7852. cb(attn_norm_output, "attn_norm", il);
  7853. struct ggml_tensor * Qcur = nullptr;
  7854. struct ggml_tensor * Kcur = nullptr;
  7855. struct ggml_tensor * Vcur = nullptr;
  7856. if (model.layers[il].wqkv) {
  7857. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, attn_norm_output);
  7858. cb(cur, "wqkv", il);
  7859. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0 * sizeof(float) * (n_embd)));
  7860. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1 * sizeof(float) * (n_embd)));
  7861. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1 * sizeof(float) * (n_embd + n_embd_gqa)));
  7862. }
  7863. else {
  7864. Qcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wq, attn_norm_output), model.layers[il].bq);
  7865. Kcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wk, attn_norm_output), model.layers[il].bk);
  7866. Vcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wv, attn_norm_output), model.layers[il].bv);
  7867. }
  7868. cb(Qcur, "Qcur", il);
  7869. cb(Kcur, "Kcur", il);
  7870. cb(Vcur, "Vcur", il);
  7871. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7872. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7873. Qcur = ggml_rope_custom(
  7874. ctx0, Qcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
  7875. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  7876. );
  7877. cb(Qcur, "Qcur", il);
  7878. Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head)));
  7879. cb(Qcur, "Qcur", il);
  7880. Kcur = ggml_rope_custom(
  7881. ctx0, Kcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
  7882. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  7883. );
  7884. cb(Kcur, "Kcur", il);
  7885. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7886. model.layers[il].wo, model.layers[il].bo,
  7887. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f, cb, il);
  7888. }
  7889. if (il == n_layer - 1) {
  7890. // skip computing output for unused tokens
  7891. struct ggml_tensor* inp_out_ids = build_inp_out_ids();
  7892. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7893. residual = ggml_get_rows(ctx0, residual, inp_out_ids);
  7894. }
  7895. cur = ggml_add(ctx0, cur, residual);
  7896. residual = cur;
  7897. cur = llm_build_norm(ctx0, cur, hparams,
  7898. model.layers[il].ffn_norm, NULL,
  7899. LLM_NORM_RMS, cb, il);
  7900. cb(cur, "ffn_norm", il);
  7901. // FF
  7902. // special-case: the up and gate tensors are merged into a single tensor
  7903. // TOOD: support into llm_build_ffn
  7904. {
  7905. struct ggml_tensor* up = ggml_mul_mat(ctx0, model.layers[il].ffn_up, cur);
  7906. cb(up, "ffn_up", il);
  7907. auto g = ggml_cont(ctx0, ggml_view_2d(ctx0, up, up->ne[0] / 2, up->ne[1], ggml_row_size(up->type, up->ne[0]), 0));
  7908. auto y = ggml_cont(ctx0, ggml_view_2d(ctx0, up, up->ne[0] / 2, up->ne[1], ggml_row_size(up->type, up->ne[0]), up->nb[1] / 2));
  7909. y = ggml_mul(ctx0, y, ggml_silu(ctx0, g));
  7910. cb(y, "ffn_gate", il);
  7911. auto down = ggml_mul_mat(ctx0, model.layers[il].ffn_down, y);
  7912. cb(down, "ffn_down", il);
  7913. cur = down;
  7914. cb(cur, "ffn_out", il);
  7915. }
  7916. cur = ggml_add(ctx0, residual, cur);
  7917. cb(cur, "l_out", il);
  7918. inpL = cur;
  7919. }
  7920. cur = llm_build_norm(ctx0, inpL, hparams,
  7921. model.output_norm,
  7922. NULL,
  7923. LLM_NORM_RMS, cb, -1);
  7924. cb(cur, "result_norm", -1);
  7925. cur = ggml_mul_mat(ctx0, model.output, cur);
  7926. cb(cur, "result_output", -1);
  7927. ggml_build_forward_expand(gf, cur);
  7928. return gf;
  7929. }
  7930. struct ggml_cgraph * build_plamo() {
  7931. struct ggml_cgraph * gf = ggml_new_graph(ctx0);
  7932. const int64_t n_embd_head = hparams.n_embd_head_v;
  7933. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7934. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7935. struct ggml_tensor * cur;
  7936. struct ggml_tensor * inpL;
  7937. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7938. // inp_pos - contains the positions
  7939. struct ggml_tensor * inp_pos = build_inp_pos();
  7940. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7941. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7942. for (int il = 0; il < n_layer; ++il) {
  7943. // norm
  7944. cur = llm_build_norm(ctx0, inpL, hparams,
  7945. model.layers[il].attn_norm, NULL,
  7946. LLM_NORM_RMS, cb, il);
  7947. cb(cur, "attn_norm", il);
  7948. struct ggml_tensor * attention_norm = cur;
  7949. // self-attention
  7950. {
  7951. // compute Q and K and RoPE them
  7952. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  7953. cb(Qcur, "Qcur", il);
  7954. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  7955. cb(Kcur, "Kcur", il);
  7956. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  7957. cb(Vcur, "Vcur", il);
  7958. Qcur = ggml_rope_custom(
  7959. ctx0, ggml_reshape_3d(ctx0, Qcur, n_rot, n_head, n_tokens), inp_pos,
  7960. n_embd_head, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7961. ext_factor, attn_factor, beta_fast, beta_slow);
  7962. cb(Qcur, "Qcur", il);
  7963. Kcur = ggml_rope_custom(
  7964. ctx0, ggml_reshape_3d(ctx0, Kcur, n_rot, n_head_kv, n_tokens), inp_pos,
  7965. n_embd_head, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7966. ext_factor, attn_factor, beta_fast, beta_slow);
  7967. cb(Kcur, "Kcur", il);
  7968. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7969. model.layers[il].wo, NULL,
  7970. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7971. }
  7972. struct ggml_tensor * sa_out = cur;
  7973. cur = attention_norm;
  7974. if (il == n_layer - 1) {
  7975. // skip computing output for unused tokens
  7976. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7977. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7978. sa_out = ggml_get_rows(ctx0, sa_out, inp_out_ids);
  7979. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7980. }
  7981. // feed-forward network
  7982. {
  7983. cur = llm_build_ffn(ctx0, cur,
  7984. model.layers[il].ffn_up, NULL,
  7985. model.layers[il].ffn_gate, NULL,
  7986. model.layers[il].ffn_down, NULL,
  7987. NULL,
  7988. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  7989. cb(cur, "ffn_out", il);
  7990. }
  7991. cur = ggml_add(ctx0, cur, sa_out);
  7992. cb(cur, "l_out", il);
  7993. cur = ggml_add(ctx0, cur, inpL);
  7994. cb(cur, "l_out", il);
  7995. // input for next layer
  7996. inpL = cur;
  7997. }
  7998. cur = inpL;
  7999. cur = llm_build_norm(ctx0, cur, hparams,
  8000. model.output_norm, NULL,
  8001. LLM_NORM_RMS, cb, -1);
  8002. cb(cur, "result_norm", -1);
  8003. // lm_head
  8004. cur = ggml_mul_mat(ctx0, model.output, cur);
  8005. cb(cur, "result_output", -1);
  8006. ggml_build_forward_expand(gf, cur);
  8007. return gf;
  8008. }
  8009. struct ggml_cgraph * build_gpt2() {
  8010. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8011. const int64_t n_embd_head = hparams.n_embd_head_v;
  8012. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  8013. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8014. struct ggml_tensor * cur;
  8015. struct ggml_tensor * pos;
  8016. struct ggml_tensor * inpL;
  8017. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8018. // inp_pos - contains the positions
  8019. struct ggml_tensor * inp_pos = build_inp_pos();
  8020. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8021. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8022. pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
  8023. cb(pos, "pos_embd", -1);
  8024. inpL = ggml_add(ctx0, inpL, pos);
  8025. cb(inpL, "inpL", -1);
  8026. for (int il = 0; il < n_layer; ++il) {
  8027. cur = llm_build_norm(ctx0, inpL, hparams,
  8028. model.layers[il].attn_norm,
  8029. model.layers[il].attn_norm_b,
  8030. LLM_NORM, cb, il);
  8031. cb(cur, "attn_norm", il);
  8032. // self-attention
  8033. {
  8034. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  8035. cb(cur, "wqkv", il);
  8036. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  8037. cb(cur, "bqkv", il);
  8038. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  8039. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  8040. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  8041. cb(Qcur, "Qcur", il);
  8042. cb(Kcur, "Kcur", il);
  8043. cb(Vcur, "Vcur", il);
  8044. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  8045. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8046. model.layers[il].wo, model.layers[il].bo,
  8047. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8048. }
  8049. if (il == n_layer - 1) {
  8050. // skip computing output for unused tokens
  8051. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8052. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8053. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  8054. }
  8055. // add the input
  8056. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  8057. cb(ffn_inp, "ffn_inp", il);
  8058. // FF
  8059. {
  8060. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  8061. model.layers[il].ffn_norm,
  8062. model.layers[il].ffn_norm_b,
  8063. LLM_NORM, cb, il);
  8064. cb(cur, "ffn_norm", il);
  8065. cur = llm_build_ffn(ctx0, cur,
  8066. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  8067. NULL, NULL,
  8068. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  8069. NULL,
  8070. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  8071. cb(cur, "ffn_out", il);
  8072. }
  8073. inpL = ggml_add(ctx0, cur, ffn_inp);
  8074. cb(inpL, "l_out", il);
  8075. }
  8076. cur = llm_build_norm(ctx0, inpL, hparams,
  8077. model.output_norm,
  8078. model.output_norm_b,
  8079. LLM_NORM, cb, -1);
  8080. cb(cur, "result_norm", -1);
  8081. cur = ggml_mul_mat(ctx0, model.output, cur);
  8082. cb(cur, "result_output", -1);
  8083. ggml_build_forward_expand(gf, cur);
  8084. return gf;
  8085. }
  8086. struct ggml_cgraph * build_codeshell() {
  8087. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8088. const int64_t n_embd_head = hparams.n_embd_head_v;
  8089. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  8090. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8091. GGML_ASSERT(n_embd_head == hparams.n_rot);
  8092. struct ggml_tensor * cur;
  8093. struct ggml_tensor * inpL;
  8094. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8095. // inp_pos - contains the positions
  8096. struct ggml_tensor * inp_pos = build_inp_pos();
  8097. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8098. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8099. for (int il = 0; il < n_layer; ++il) {
  8100. cur = llm_build_norm(ctx0, inpL, hparams,
  8101. model.layers[il].attn_norm,
  8102. model.layers[il].attn_norm_b,
  8103. LLM_NORM, cb, il);
  8104. cb(cur, "attn_norm", il);
  8105. // self-attention
  8106. {
  8107. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  8108. cb(cur, "wqkv", il);
  8109. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  8110. cb(cur, "bqkv", il);
  8111. struct ggml_tensor * tmpq = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  8112. struct ggml_tensor * tmpk = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  8113. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  8114. cb(tmpq, "tmpq", il);
  8115. cb(tmpk, "tmpk", il);
  8116. cb(Vcur, "Vcur", il);
  8117. struct ggml_tensor * Qcur = ggml_rope_custom(
  8118. ctx0, ggml_reshape_3d(ctx0, tmpq, n_embd_head, n_head, n_tokens), inp_pos,
  8119. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8120. ext_factor, attn_factor, beta_fast, beta_slow
  8121. );
  8122. cb(Qcur, "Qcur", il);
  8123. struct ggml_tensor * Kcur = ggml_rope_custom(
  8124. ctx0, ggml_reshape_3d(ctx0, tmpk, n_embd_head, n_head_kv, n_tokens), inp_pos,
  8125. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8126. ext_factor, attn_factor, beta_fast, beta_slow
  8127. );
  8128. cb(Kcur, "Kcur", il);
  8129. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8130. model.layers[il].wo, model.layers[il].bo,
  8131. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8132. }
  8133. if (il == n_layer - 1) {
  8134. // skip computing output for unused tokens
  8135. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8136. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8137. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  8138. }
  8139. // add the input
  8140. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  8141. cb(ffn_inp, "ffn_inp", il);
  8142. // FF
  8143. {
  8144. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  8145. model.layers[il].ffn_norm,
  8146. model.layers[il].ffn_norm_b,
  8147. LLM_NORM, cb, il);
  8148. cb(cur, "ffn_norm", il);
  8149. cur = llm_build_ffn(ctx0, cur,
  8150. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  8151. NULL, NULL,
  8152. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  8153. NULL,
  8154. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  8155. cb(cur, "ffn_out", il);
  8156. }
  8157. inpL = ggml_add(ctx0, cur, ffn_inp);
  8158. cb(inpL, "l_out", il);
  8159. }
  8160. cur = llm_build_norm(ctx0, inpL, hparams,
  8161. model.output_norm,
  8162. model.output_norm_b,
  8163. LLM_NORM, cb, -1);
  8164. cb(cur, "result_norm", -1);
  8165. cur = ggml_mul_mat(ctx0, model.output, cur);
  8166. cb(cur, "result_output", -1);
  8167. ggml_build_forward_expand(gf, cur);
  8168. return gf;
  8169. }
  8170. struct ggml_cgraph * build_orion() {
  8171. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8172. const int64_t n_embd_head = hparams.n_embd_head_v;
  8173. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8174. GGML_ASSERT(n_embd_head == hparams.n_rot);
  8175. struct ggml_tensor * cur;
  8176. struct ggml_tensor * inpL;
  8177. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8178. // inp_pos - contains the positions
  8179. struct ggml_tensor * inp_pos = build_inp_pos();
  8180. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8181. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8182. for (int il = 0; il < n_layer; ++il) {
  8183. struct ggml_tensor * inpSA = inpL;
  8184. // norm
  8185. cur = llm_build_norm(ctx0, inpL, hparams,
  8186. model.layers[il].attn_norm, model.layers[il].attn_norm_b,
  8187. LLM_NORM, cb, il);
  8188. cb(cur, "attn_norm", il);
  8189. // self-attention
  8190. {
  8191. // compute Q and K and RoPE them
  8192. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8193. cb(Qcur, "Qcur", il);
  8194. // if (model.layers[il].bq) {
  8195. // Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  8196. // cb(Qcur, "Qcur", il);
  8197. // }
  8198. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8199. cb(Kcur, "Kcur", il);
  8200. // if (model.layers[il].bk) {
  8201. // Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  8202. // cb(Kcur, "Kcur", il);
  8203. // }
  8204. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8205. cb(Vcur, "Vcur", il);
  8206. // if (model.layers[il].bv) {
  8207. // Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  8208. // cb(Vcur, "Vcur", il);
  8209. // }
  8210. Qcur = ggml_rope_custom(
  8211. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  8212. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8213. ext_factor, attn_factor, beta_fast, beta_slow
  8214. );
  8215. cb(Qcur, "Qcur", il);
  8216. Kcur = ggml_rope_custom(
  8217. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  8218. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8219. ext_factor, attn_factor, beta_fast, beta_slow
  8220. );
  8221. cb(Kcur, "Kcur", il);
  8222. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8223. model.layers[il].wo, NULL,
  8224. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8225. }
  8226. if (il == n_layer - 1) {
  8227. // skip computing output for unused tokens
  8228. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8229. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8230. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8231. }
  8232. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8233. cb(ffn_inp, "ffn_inp", il);
  8234. // feed-forward network
  8235. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  8236. model.layers[il].ffn_norm, model.layers[il].ffn_norm_b,
  8237. LLM_NORM, cb, il);
  8238. cb(cur, "ffn_norm", il);
  8239. cur = llm_build_ffn(ctx0, cur,
  8240. model.layers[il].ffn_up, NULL,
  8241. model.layers[il].ffn_gate, NULL,
  8242. model.layers[il].ffn_down, NULL,
  8243. NULL,
  8244. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  8245. cb(cur, "ffn_out", il);
  8246. cur = ggml_add(ctx0, cur, ffn_inp);
  8247. cb(cur, "l_out", il);
  8248. // input for next layer
  8249. inpL = cur;
  8250. }
  8251. cur = inpL;
  8252. cur = llm_build_norm(ctx0, cur, hparams,
  8253. model.output_norm, model.output_norm_b,
  8254. LLM_NORM, cb, -1);
  8255. cb(cur, "result_norm", -1);
  8256. // lm_head
  8257. cur = ggml_mul_mat(ctx0, model.output, cur);
  8258. cb(cur, "result_output", -1);
  8259. ggml_build_forward_expand(gf, cur);
  8260. return gf;
  8261. }
  8262. struct ggml_cgraph * build_internlm2() {
  8263. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8264. const int64_t n_embd_head = hparams.n_embd_head_v;
  8265. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8266. GGML_ASSERT(n_embd_head == hparams.n_rot);
  8267. struct ggml_tensor * cur;
  8268. struct ggml_tensor * inpL;
  8269. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8270. // inp_pos - contains the positions
  8271. struct ggml_tensor * inp_pos = build_inp_pos();
  8272. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8273. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8274. for (int il = 0; il < n_layer; ++il) {
  8275. struct ggml_tensor * inpSA = inpL;
  8276. // norm
  8277. cur = llm_build_norm(ctx0, inpL, hparams,
  8278. model.layers[il].attn_norm, NULL,
  8279. LLM_NORM_RMS, cb, il);
  8280. cb(cur, "attn_norm", il);
  8281. // self-attention
  8282. {
  8283. // compute Q and K and RoPE them
  8284. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8285. cb(Qcur, "Qcur", il);
  8286. if (model.layers[il].bq) {
  8287. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  8288. cb(Qcur, "Qcur", il);
  8289. }
  8290. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8291. cb(Kcur, "Kcur", il);
  8292. if (model.layers[il].bk) {
  8293. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  8294. cb(Kcur, "Kcur", il);
  8295. }
  8296. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8297. cb(Vcur, "Vcur", il);
  8298. if (model.layers[il].bv) {
  8299. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  8300. cb(Vcur, "Vcur", il);
  8301. }
  8302. Qcur = ggml_rope_custom(
  8303. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  8304. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8305. ext_factor, attn_factor, beta_fast, beta_slow
  8306. );
  8307. cb(Qcur, "Qcur", il);
  8308. Kcur = ggml_rope_custom(
  8309. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  8310. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8311. ext_factor, attn_factor, beta_fast, beta_slow
  8312. );
  8313. cb(Kcur, "Kcur", il);
  8314. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8315. model.layers[il].wo, model.layers[il].bo,
  8316. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8317. }
  8318. if (il == n_layer - 1) {
  8319. // skip computing output for unused tokens
  8320. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8321. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8322. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8323. }
  8324. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8325. cb(ffn_inp, "ffn_inp", il);
  8326. // feed-forward network
  8327. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  8328. model.layers[il].ffn_norm, NULL,
  8329. LLM_NORM_RMS, cb, il);
  8330. cb(cur, "ffn_norm", il);
  8331. cur = llm_build_ffn(ctx0, cur,
  8332. model.layers[il].ffn_up, NULL,
  8333. model.layers[il].ffn_gate, NULL,
  8334. model.layers[il].ffn_down, NULL,
  8335. NULL,
  8336. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  8337. cb(cur, "ffn_out", il);
  8338. cur = ggml_add(ctx0, cur, ffn_inp);
  8339. cb(cur, "l_out", il);
  8340. // input for next layer
  8341. inpL = cur;
  8342. }
  8343. cur = inpL;
  8344. cur = llm_build_norm(ctx0, cur, hparams,
  8345. model.output_norm, NULL,
  8346. LLM_NORM_RMS, cb, -1);
  8347. cb(cur, "result_norm", -1);
  8348. // lm_head
  8349. cur = ggml_mul_mat(ctx0, model.output, cur);
  8350. cb(cur, "result_output", -1);
  8351. ggml_build_forward_expand(gf, cur);
  8352. return gf;
  8353. }
  8354. // ref: https://arxiv.org/abs/2203.03466
  8355. // https://github.com/ggerganov/llama.cpp/issues/5276#issuecomment-1925774738
  8356. // based on the original build_llama() function
  8357. struct ggml_cgraph * build_minicpm() {
  8358. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8359. const int64_t n_embd_head = hparams.n_embd_head_v;
  8360. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8361. GGML_ASSERT(n_embd_head == hparams.n_rot);
  8362. const int64_t n_embd = hparams.n_embd;
  8363. //TODO: if the model varies, these parameters need to be read from the model
  8364. const int64_t n_embd_base = 256;
  8365. const float scale_embd = 12.0f;
  8366. const float scale_depth = 1.4f;
  8367. struct ggml_tensor * cur;
  8368. struct ggml_tensor * inpL;
  8369. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8370. // scale the input embeddings
  8371. inpL = ggml_scale(ctx0, inpL, scale_embd);
  8372. cb(inpL, "inp_scaled", -1);
  8373. // inp_pos - contains the positions
  8374. struct ggml_tensor * inp_pos = build_inp_pos();
  8375. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8376. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8377. for (int il = 0; il < n_layer; ++il) {
  8378. struct ggml_tensor * inpSA = inpL;
  8379. // norm
  8380. cur = llm_build_norm(ctx0, inpL, hparams,
  8381. model.layers[il].attn_norm, NULL,
  8382. LLM_NORM_RMS, cb, il);
  8383. cb(cur, "attn_norm", il);
  8384. // self-attention
  8385. {
  8386. // compute Q and K and RoPE them
  8387. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8388. cb(Qcur, "Qcur", il);
  8389. if (model.layers[il].bq) {
  8390. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  8391. cb(Qcur, "Qcur", il);
  8392. }
  8393. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8394. cb(Kcur, "Kcur", il);
  8395. if (model.layers[il].bk) {
  8396. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  8397. cb(Kcur, "Kcur", il);
  8398. }
  8399. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8400. cb(Vcur, "Vcur", il);
  8401. if (model.layers[il].bv) {
  8402. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  8403. cb(Vcur, "Vcur", il);
  8404. }
  8405. Qcur = ggml_rope_custom(
  8406. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  8407. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8408. ext_factor, attn_factor, beta_fast, beta_slow
  8409. );
  8410. cb(Qcur, "Qcur", il);
  8411. Kcur = ggml_rope_custom(
  8412. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  8413. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8414. ext_factor, attn_factor, beta_fast, beta_slow
  8415. );
  8416. cb(Kcur, "Kcur", il);
  8417. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8418. model.layers[il].wo, model.layers[il].bo,
  8419. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8420. }
  8421. if (il == n_layer - 1) {
  8422. // skip computing output for unused tokens
  8423. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8424. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8425. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8426. }
  8427. // scale_res - scale the hidden states for residual connection
  8428. const float scale_res = scale_depth/sqrtf(float(n_layer));
  8429. cur = ggml_scale(ctx0, cur, scale_res);
  8430. cb(cur, "hidden_scaled", -1);
  8431. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8432. cb(ffn_inp, "ffn_inp", il);
  8433. // feed-forward network
  8434. {
  8435. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  8436. model.layers[il].ffn_norm, NULL,
  8437. LLM_NORM_RMS, cb, il);
  8438. cb(cur, "ffn_norm", il);
  8439. cur = llm_build_ffn(ctx0, cur,
  8440. model.layers[il].ffn_up, NULL,
  8441. model.layers[il].ffn_gate, NULL,
  8442. model.layers[il].ffn_down, NULL,
  8443. NULL,
  8444. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  8445. cb(cur, "ffn_out", il);
  8446. }
  8447. // scale the hidden states for residual connection
  8448. cur = ggml_scale(ctx0, cur, scale_res);
  8449. cb(cur, "hidden_scaled_ffn", -1);
  8450. cur = ggml_add(ctx0, cur, ffn_inp);
  8451. cb(cur, "l_out", il);
  8452. // input for next layer
  8453. inpL = cur;
  8454. }
  8455. cur = inpL;
  8456. cur = llm_build_norm(ctx0, cur, hparams,
  8457. model.output_norm, NULL,
  8458. LLM_NORM_RMS, cb, -1);
  8459. cb(cur, "result_norm", -1);
  8460. // lm_head scaling
  8461. const float scale_lmhead = float(n_embd_base)/float(n_embd);
  8462. cur = ggml_scale(ctx0, cur, scale_lmhead);
  8463. cb(cur, "lmhead_scaling", -1);
  8464. // lm_head
  8465. cur = ggml_mul_mat(ctx0, model.tok_embd, cur);
  8466. cb(cur, "result_output", -1);
  8467. ggml_build_forward_expand(gf, cur);
  8468. return gf;
  8469. }
  8470. struct ggml_cgraph * build_gemma() {
  8471. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8472. const int64_t n_embd_head_k = hparams.n_embd_head_k;
  8473. struct ggml_tensor * cur;
  8474. struct ggml_tensor * inpL;
  8475. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8476. inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd));
  8477. cb(inpL, "inp_scaled", -1);
  8478. // inp_pos - contains the positions
  8479. struct ggml_tensor * inp_pos = build_inp_pos();
  8480. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8481. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8482. for (int il = 0; il < n_layer; ++il) {
  8483. // norm
  8484. cur = llm_build_norm(ctx0, inpL, hparams,
  8485. model.layers[il].attn_norm, NULL,
  8486. LLM_NORM_RMS, cb, il);
  8487. cb(cur, "attn_norm", il);
  8488. // self-attention
  8489. {
  8490. // compute Q and K and RoPE them
  8491. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8492. cb(Qcur, "Qcur", il);
  8493. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8494. cb(Kcur, "Kcur", il);
  8495. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8496. cb(Vcur, "Vcur", il);
  8497. Qcur = ggml_rope_custom(
  8498. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head_k, n_head, n_tokens), inp_pos,
  8499. n_embd_head_k, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8500. ext_factor, attn_factor, beta_fast, beta_slow);
  8501. cb(Qcur, "Qcur", il);
  8502. Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head_k)));
  8503. cb(Qcur, "Qcur_scaled", il);
  8504. Kcur = ggml_rope_custom(
  8505. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head_k, n_head_kv, n_tokens), inp_pos,
  8506. n_embd_head_k, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8507. ext_factor, attn_factor, beta_fast, beta_slow);
  8508. cb(Kcur, "Kcur", il);
  8509. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8510. model.layers[il].wo, NULL,
  8511. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f, cb, il);
  8512. }
  8513. if (il == n_layer - 1) {
  8514. // skip computing output for unused tokens
  8515. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8516. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8517. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  8518. }
  8519. struct ggml_tensor * sa_out = ggml_add(ctx0, cur, inpL);
  8520. cb(sa_out, "sa_out", il);
  8521. cur = llm_build_norm(ctx0, sa_out, hparams,
  8522. model.layers[il].ffn_norm, NULL,
  8523. LLM_NORM_RMS, cb, il);
  8524. cb(cur, "ffn_norm", il);
  8525. // feed-forward network
  8526. {
  8527. cur = llm_build_ffn(ctx0, cur,
  8528. model.layers[il].ffn_up, NULL,
  8529. model.layers[il].ffn_gate, NULL,
  8530. model.layers[il].ffn_down, NULL,
  8531. NULL,
  8532. LLM_FFN_GELU, LLM_FFN_PAR, cb, il);
  8533. cb(cur, "ffn_out", il);
  8534. }
  8535. cur = ggml_add(ctx0, cur, sa_out);
  8536. cb(cur, "l_out", il);
  8537. // input for next layer
  8538. inpL = cur;
  8539. }
  8540. cur = inpL;
  8541. cur = llm_build_norm(ctx0, cur, hparams,
  8542. model.output_norm, NULL,
  8543. LLM_NORM_RMS, cb, -1);
  8544. cb(cur, "result_norm", -1);
  8545. // lm_head
  8546. cur = ggml_mul_mat(ctx0, model.output, cur);
  8547. cb(cur, "result_output", -1);
  8548. ggml_build_forward_expand(gf, cur);
  8549. return gf;
  8550. }
  8551. struct ggml_cgraph * build_starcoder2() {
  8552. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8553. const int64_t n_embd_head = hparams.n_embd_head_v;
  8554. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8555. GGML_ASSERT(n_embd_head == hparams.n_rot);
  8556. struct ggml_tensor * cur;
  8557. struct ggml_tensor * inpL;
  8558. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8559. // inp_pos - contains the positions
  8560. struct ggml_tensor * inp_pos = build_inp_pos();
  8561. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8562. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8563. for (int il = 0; il < n_layer; ++il) {
  8564. struct ggml_tensor * inpSA = inpL;
  8565. // norm
  8566. cur = llm_build_norm(ctx0, inpL, hparams,
  8567. model.layers[il].attn_norm, model.layers[il].attn_norm_b,
  8568. LLM_NORM, cb, il);
  8569. cb(cur, "attn_norm", il);
  8570. // self-attention
  8571. {
  8572. // compute Q and K and RoPE them
  8573. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8574. cb(Qcur, "Qcur", il);
  8575. if (model.layers[il].bq) {
  8576. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  8577. cb(Qcur, "Qcur", il);
  8578. }
  8579. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8580. cb(Kcur, "Kcur", il);
  8581. if (model.layers[il].bk) {
  8582. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  8583. cb(Kcur, "Kcur", il);
  8584. }
  8585. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8586. cb(Vcur, "Vcur", il);
  8587. if (model.layers[il].bv) {
  8588. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  8589. cb(Vcur, "Vcur", il);
  8590. }
  8591. Qcur = ggml_rope_custom(
  8592. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  8593. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8594. ext_factor, attn_factor, beta_fast, beta_slow
  8595. );
  8596. cb(Qcur, "Qcur", il);
  8597. Kcur = ggml_rope_custom(
  8598. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  8599. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8600. ext_factor, attn_factor, beta_fast, beta_slow
  8601. );
  8602. cb(Kcur, "Kcur", il);
  8603. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8604. model.layers[il].wo, model.layers[il].bo,
  8605. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8606. }
  8607. if (il == n_layer - 1) {
  8608. // skip computing output for unused tokens
  8609. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8610. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8611. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8612. }
  8613. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8614. cb(ffn_inp, "ffn_inp", il);
  8615. // feed-forward network
  8616. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  8617. model.layers[il].ffn_norm, model.layers[il].ffn_norm_b,
  8618. LLM_NORM, cb, il);
  8619. cb(cur, "ffn_norm", il);
  8620. cur = llm_build_ffn(ctx0, cur,
  8621. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  8622. NULL, NULL,
  8623. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  8624. NULL,
  8625. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  8626. cb(cur, "ffn_out", il);
  8627. cur = ggml_add(ctx0, cur, ffn_inp);
  8628. cb(cur, "l_out", il);
  8629. // input for next layer
  8630. inpL = cur;
  8631. }
  8632. cur = inpL;
  8633. cur = llm_build_norm(ctx0, cur, hparams,
  8634. model.output_norm, model.output_norm_b,
  8635. LLM_NORM, cb, -1);
  8636. cb(cur, "result_norm", -1);
  8637. // lm_head
  8638. cur = ggml_mul_mat(ctx0, model.output, cur);
  8639. cb(cur, "result_output", -1);
  8640. ggml_build_forward_expand(gf, cur);
  8641. return gf;
  8642. }
  8643. struct ggml_cgraph * build_mamba() {
  8644. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8645. const int64_t d_model = n_embd;
  8646. const int64_t d_conv = hparams.ssm_d_conv;
  8647. const int64_t d_inner = hparams.ssm_d_inner;
  8648. GGML_ASSERT(2 * d_model == d_inner);
  8649. const int64_t d_state = hparams.ssm_d_state;
  8650. const int64_t dt_rank = hparams.ssm_dt_rank;
  8651. struct ggml_tensor * cur;
  8652. struct ggml_tensor * inpL;
  8653. // {n_embd, n_tokens}
  8654. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8655. struct ggml_tensor * state_mask = build_inp_s_mask();
  8656. struct ggml_tensor * state_seq = build_inp_s_seq();
  8657. for (int il = 0; il < n_layer; ++il) {
  8658. // (ab)using the KV cache to store the states
  8659. struct ggml_tensor * conv_states = ggml_reshape_2d(ctx0, kv_self.k_l[il], hparams.n_embd_k_s(), kv_self.size);
  8660. struct ggml_tensor * ssm_states = ggml_reshape_2d(ctx0, kv_self.v_l[il], hparams.n_embd_v_s(), kv_self.size);
  8661. // clear states of sequences which are starting at the beginning of this batch
  8662. {
  8663. conv_states = ggml_mul(ctx0,
  8664. ggml_view_2d(ctx0, conv_states, conv_states->ne[0], n_kv, conv_states->nb[1], kv_head*conv_states->nb[1]),
  8665. state_mask);
  8666. ssm_states = ggml_mul(ctx0,
  8667. ggml_view_2d(ctx0, ssm_states, ssm_states->ne[0], n_kv, ssm_states->nb[1], kv_head*ssm_states->nb[1]),
  8668. state_mask);
  8669. }
  8670. conv_states = ggml_reshape_3d(ctx0, conv_states, d_conv - 1, d_inner, n_kv);
  8671. ssm_states = ggml_reshape_3d(ctx0, ssm_states, d_state, d_inner, n_kv);
  8672. // norm
  8673. cur = llm_build_norm(ctx0, inpL, hparams,
  8674. model.layers[il].attn_norm, NULL,
  8675. LLM_NORM_RMS, cb, il);
  8676. cb(cur, "attn_norm", il);
  8677. // {n_embd, 2*d_inner} * {n_embd, n_tokens} => {2*d_inner, n_tokens}
  8678. struct ggml_tensor * xz = ggml_mul_mat(ctx0, model.layers[il].ssm_in, cur);
  8679. // split the above in two
  8680. // => {d_inner, n_tokens}
  8681. struct ggml_tensor * x = ggml_view_2d(ctx0, xz, d_inner, xz->ne[1], xz->nb[1], 0);
  8682. struct ggml_tensor * z = ggml_view_2d(ctx0, xz, d_inner, xz->ne[1], xz->nb[1], ggml_element_size(xz)*d_inner);
  8683. // conv
  8684. {
  8685. // Custom operator which is needed only to ease simultaneous sequence processing.
  8686. // For a single sequence, the equivalent is to concatenate the columns of conv_states and x,
  8687. // then make a self-overlapping view of that over d_conv columns at each stride in the 3rd dimension,
  8688. // then element-wise multiply that with the conv1d weigth,
  8689. // then sum the elements of each row,
  8690. // (the last two steps are a dot product over rows (also doable with mul_mat))
  8691. // then permute away the ne[0] dimension,
  8692. // and then you're left with the resulting x tensor.
  8693. // The new conv_states is the last (d_conv - 1) columns
  8694. // of the last 3rd dimensional "layer" of the self-overlapping view.
  8695. // For simultaneous sequences, it's more complicated.
  8696. struct ggml_tensor * x_conv = ggml_ssm_conv(ctx0, conv_states, x, model.layers[il].ssm_conv1d, state_seq);
  8697. // store last (d_conv - 1) columns of the conv_state part of x_conv back into the KV cache
  8698. ggml_build_forward_expand(gf,
  8699. ggml_cpy(ctx0,
  8700. ggml_view_2d(ctx0, x_conv, d_conv - 1, d_inner*n_kv, d_conv*ggml_element_size(x_conv), (1+d_inner*n_tokens)*ggml_element_size(x_conv)),
  8701. ggml_view_1d(ctx0, kv_self.k_l[il], (d_conv - 1)*(d_inner)*(n_kv), kv_head*(d_conv - 1)*(d_inner)*ggml_element_size(x_conv))));
  8702. // extract x from x_conv
  8703. x = ggml_view_2d(ctx0, x_conv, d_inner, n_tokens, d_inner*ggml_element_size(x_conv), 0);
  8704. // bias
  8705. x = ggml_add(ctx0, x, model.layers[il].ssm_conv1d_b);
  8706. x = ggml_silu(ctx0, x);
  8707. }
  8708. // ssm
  8709. {
  8710. // {d_inner, dt_rank + 2*d_state} * {d_inner, n_tokens} => {dt_rank + 2*d_state, n_tokens}
  8711. struct ggml_tensor * x_db = ggml_mul_mat(ctx0, model.layers[il].ssm_x, x);
  8712. // split
  8713. struct ggml_tensor * dt = ggml_view_2d(ctx0, x_db, dt_rank, n_tokens, x_db->nb[1], 0);
  8714. struct ggml_tensor * B = ggml_view_2d(ctx0, x_db, d_state, n_tokens, x_db->nb[1], ggml_element_size(x_db)*dt_rank);
  8715. struct ggml_tensor * C = ggml_view_2d(ctx0, x_db, d_state, n_tokens, x_db->nb[1], ggml_element_size(x_db)*(dt_rank+d_state));
  8716. // {dt_rank, d_inner} * {dt_rank, n_tokens} => {d_inner, n_tokens}
  8717. dt = ggml_mul_mat(ctx0, model.layers[il].ssm_dt, dt);
  8718. dt = ggml_add(ctx0, dt, model.layers[il].ssm_dt_b);
  8719. // Custom operator to optimize the parallel associative scan
  8720. // as described in the Annex D of the Mamba paper.
  8721. // => {d_inner, n_tokens} and {d_state, d_inner, n_kv} combined,
  8722. // because only a single tensor can be returned.
  8723. struct ggml_tensor * y_ssm_states = ggml_ssm_scan(ctx0, ssm_states, x, dt, model.layers[il].ssm_a, B, C, state_seq);
  8724. // store last states (the second part of y_ssm_states)
  8725. ggml_build_forward_expand(gf,
  8726. ggml_cpy(ctx0,
  8727. ggml_view_1d(ctx0, y_ssm_states, d_state*d_inner*n_kv, d_inner*n_tokens*ggml_element_size(y_ssm_states)),
  8728. ggml_view_1d(ctx0, kv_self.v_l[il], d_state*d_inner*n_kv, kv_head*d_state*d_inner*ggml_element_size(ssm_states))));
  8729. struct ggml_tensor * y = ggml_view_2d(ctx0, y_ssm_states, d_inner, n_tokens, d_inner*ggml_element_size(y_ssm_states), 0);
  8730. if (il == n_layer - 1) {
  8731. // skip computing output for unused tokens
  8732. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8733. x = ggml_get_rows(ctx0, x, inp_out_ids);
  8734. y = ggml_get_rows(ctx0, y, inp_out_ids);
  8735. z = ggml_get_rows(ctx0, z, inp_out_ids);
  8736. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  8737. }
  8738. // {d_inner, n_tokens} * {d_inner} => {d_inner, n_tokens}
  8739. y = ggml_add(ctx0, y, ggml_mul(ctx0, x, model.layers[il].ssm_d));
  8740. y = ggml_mul(ctx0, y, ggml_silu(ctx0, z));
  8741. // {d_inner, n_embd} * {d_inner, n_tokens} => {n_embd, n_tokens}
  8742. cur = ggml_mul_mat(ctx0, model.layers[il].ssm_out, y);
  8743. }
  8744. // residual
  8745. cur = ggml_add(ctx0, cur, inpL);
  8746. cb(cur, "l_out", il);
  8747. // input for next layer
  8748. inpL = cur;
  8749. }
  8750. // final rmsnorm
  8751. cur = llm_build_norm(ctx0, inpL, hparams,
  8752. model.output_norm, NULL,
  8753. LLM_NORM_RMS, cb, -1);
  8754. cb(cur, "result_norm", -1);
  8755. // lm_head
  8756. cur = ggml_mul_mat(ctx0, model.output, cur);
  8757. cb(cur, "result_output", -1);
  8758. ggml_build_forward_expand(gf, cur);
  8759. return gf;
  8760. }
  8761. struct ggml_cgraph * build_command_r() {
  8762. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8763. const int64_t n_embd_head = hparams.n_embd_head_v;
  8764. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8765. const float f_logit_scale = hparams.f_logit_scale;
  8766. struct ggml_tensor * cur;
  8767. struct ggml_tensor * inpL;
  8768. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8769. // inp_pos - contains the positions
  8770. struct ggml_tensor * inp_pos = build_inp_pos();
  8771. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8772. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8773. for (int il = 0; il < n_layer; ++il) {
  8774. // norm
  8775. cur = llm_build_norm(ctx0, inpL, hparams,
  8776. model.layers[il].attn_norm, NULL,
  8777. LLM_NORM, cb, il);
  8778. cb(cur, "attn_norm", il);
  8779. struct ggml_tensor * ffn_inp = cur;
  8780. // self-attention
  8781. {
  8782. // compute Q and K and RoPE them
  8783. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8784. cb(Qcur, "Qcur", il);
  8785. if (model.layers[il].bq) {
  8786. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  8787. cb(Qcur, "Qcur", il);
  8788. }
  8789. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8790. cb(Kcur, "Kcur", il);
  8791. if (model.layers[il].bk) {
  8792. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  8793. cb(Kcur, "Kcur", il);
  8794. }
  8795. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8796. cb(Vcur, "Vcur", il);
  8797. if (model.layers[il].bv) {
  8798. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  8799. cb(Vcur, "Vcur", il);
  8800. }
  8801. if (model.layers[il].attn_q_norm) {
  8802. Qcur = ggml_view_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens,
  8803. ggml_element_size(Qcur) * n_embd_head,
  8804. ggml_element_size(Qcur) * n_embd_head * n_head,
  8805. 0);
  8806. cb(Qcur, "Qcur", il);
  8807. Kcur = ggml_view_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens,
  8808. ggml_element_size(Kcur) * n_embd_head,
  8809. ggml_element_size(Kcur) * n_embd_head * n_head_kv,
  8810. 0);
  8811. cb(Kcur, "Kcur", il);
  8812. Qcur = llm_build_norm(ctx0, Qcur, hparams,
  8813. model.layers[il].attn_q_norm,
  8814. NULL,
  8815. LLM_NORM, cb, il);
  8816. cb(Qcur, "Qcur", il);
  8817. Kcur = llm_build_norm(ctx0, Kcur, hparams,
  8818. model.layers[il].attn_k_norm,
  8819. NULL,
  8820. LLM_NORM, cb, il);
  8821. cb(Kcur, "Kcur", il);
  8822. }
  8823. Qcur = ggml_rope_custom(
  8824. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  8825. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8826. ext_factor, attn_factor, beta_fast, beta_slow
  8827. );
  8828. cb(Qcur, "Qcur", il);
  8829. Kcur = ggml_rope_custom(
  8830. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  8831. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8832. ext_factor, attn_factor, beta_fast, beta_slow
  8833. );
  8834. cb(Kcur, "Kcur", il);
  8835. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8836. model.layers[il].wo, model.layers[il].bo,
  8837. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8838. }
  8839. if (il == n_layer - 1) {
  8840. // skip computing output for unused tokens
  8841. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8842. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8843. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  8844. ffn_inp = ggml_get_rows(ctx0, ffn_inp, inp_out_ids);
  8845. }
  8846. struct ggml_tensor * attn_out = cur;
  8847. // feed-forward network
  8848. {
  8849. cur = llm_build_ffn(ctx0, ffn_inp,
  8850. model.layers[il].ffn_up, NULL,
  8851. model.layers[il].ffn_gate, NULL,
  8852. model.layers[il].ffn_down, NULL,
  8853. NULL,
  8854. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  8855. cb(cur, "ffn_out", il);
  8856. }
  8857. // add together residual + FFN + self-attention
  8858. cur = ggml_add(ctx0, cur, inpL);
  8859. cur = ggml_add(ctx0, cur, attn_out);
  8860. cb(cur, "l_out", il);
  8861. // input for next layer
  8862. inpL = cur;
  8863. }
  8864. cur = inpL;
  8865. cur = llm_build_norm(ctx0, cur, hparams,
  8866. model.output_norm, NULL,
  8867. LLM_NORM, cb, -1);
  8868. cb(cur, "result_norm", -1);
  8869. // lm_head
  8870. cur = ggml_mul_mat(ctx0, model.output, cur);
  8871. if (f_logit_scale) {
  8872. cur = ggml_scale(ctx0, cur, f_logit_scale);
  8873. }
  8874. cb(cur, "result_output", -1);
  8875. ggml_build_forward_expand(gf, cur);
  8876. return gf;
  8877. }
  8878. // ref: https://allenai.org/olmo
  8879. // based on the original build_llama() function, changes:
  8880. // * non-parametric layer norm
  8881. // * clamp qkv
  8882. // * removed bias
  8883. // * removed MoE
  8884. struct ggml_cgraph * build_olmo() {
  8885. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8886. // mutable variable, needed during the last layer of the computation to skip unused tokens
  8887. int32_t n_tokens = this->n_tokens;
  8888. const int64_t n_embd_head = hparams.n_embd_head_v;
  8889. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8890. GGML_ASSERT(n_embd_head == hparams.n_rot);
  8891. struct ggml_tensor * cur;
  8892. struct ggml_tensor * inpL;
  8893. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8894. // inp_pos - contains the positions
  8895. struct ggml_tensor * inp_pos = build_inp_pos();
  8896. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8897. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8898. for (int il = 0; il < n_layer; ++il) {
  8899. struct ggml_tensor * inpSA = inpL;
  8900. // norm
  8901. cur = llm_build_norm(ctx0, inpL, hparams,
  8902. NULL, NULL,
  8903. LLM_NORM, cb, il);
  8904. cb(cur, "attn_norm", il);
  8905. // self-attention
  8906. {
  8907. // compute Q and K and RoPE them
  8908. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8909. cb(Qcur, "Qcur", il);
  8910. if (hparams.f_clamp_kqv > 0.0f) {
  8911. Qcur = ggml_clamp(ctx0, Qcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  8912. cb(Qcur, "Qcur", il);
  8913. }
  8914. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8915. cb(Kcur, "Kcur", il);
  8916. if (hparams.f_clamp_kqv > 0.0f) {
  8917. Kcur = ggml_clamp(ctx0, Kcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  8918. cb(Kcur, "Kcur", il);
  8919. }
  8920. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8921. cb(Vcur, "Vcur", il);
  8922. if (hparams.f_clamp_kqv > 0.0f) {
  8923. Vcur = ggml_clamp(ctx0, Vcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  8924. cb(Vcur, "Vcur", il);
  8925. }
  8926. Qcur = ggml_rope_custom(
  8927. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  8928. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8929. ext_factor, attn_factor, beta_fast, beta_slow
  8930. );
  8931. cb(Qcur, "Qcur", il);
  8932. Kcur = ggml_rope_custom(
  8933. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  8934. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8935. ext_factor, attn_factor, beta_fast, beta_slow
  8936. );
  8937. cb(Kcur, "Kcur", il);
  8938. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8939. model.layers[il].wo, nullptr,
  8940. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8941. }
  8942. if (il == n_layer - 1) {
  8943. // skip computing output for unused tokens
  8944. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8945. n_tokens = n_outputs;
  8946. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8947. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8948. }
  8949. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8950. cb(ffn_inp, "ffn_inp", il);
  8951. // feed-forward network
  8952. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  8953. NULL, NULL,
  8954. LLM_NORM, cb, il);
  8955. cb(cur, "ffn_norm", il);
  8956. cur = llm_build_ffn(ctx0, cur,
  8957. model.layers[il].ffn_up, NULL,
  8958. model.layers[il].ffn_gate, NULL,
  8959. model.layers[il].ffn_down, NULL,
  8960. NULL,
  8961. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  8962. cb(cur, "ffn_out", il);
  8963. cur = ggml_add(ctx0, cur, ffn_inp);
  8964. cb(cur, "ffn_out", il);
  8965. ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
  8966. if (layer_dir != nullptr) {
  8967. cur = ggml_add(ctx0, cur, layer_dir);
  8968. }
  8969. cb(cur, "l_out", il);
  8970. // input for next layer
  8971. inpL = cur;
  8972. }
  8973. cur = inpL;
  8974. cur = llm_build_norm(ctx0, cur, hparams,
  8975. NULL, NULL,
  8976. LLM_NORM, cb, -1);
  8977. cb(cur, "result_norm", -1);
  8978. // lm_head
  8979. cur = ggml_mul_mat(ctx0, model.output, cur);
  8980. cb(cur, "result_output", -1);
  8981. ggml_build_forward_expand(gf, cur);
  8982. return gf;
  8983. }
  8984. };
  8985. static struct ggml_cgraph * llama_build_graph_defrag(llama_context & lctx, const std::vector<uint32_t> & ids) {
  8986. llama_batch dummy;
  8987. dummy.n_tokens = 0;
  8988. llm_build_cb cb = [&](struct ggml_tensor * , const char * , int ) { };
  8989. struct llm_build_context llm(lctx, dummy, cb, false);
  8990. llm.init();
  8991. struct ggml_cgraph * result = llm.build_defrag(ids);
  8992. llm.free();
  8993. return result;
  8994. }
  8995. static struct ggml_cgraph * llama_build_graph_k_shift(llama_context & lctx) {
  8996. llama_batch dummy;
  8997. dummy.n_tokens = 0;
  8998. llm_build_cb cb = [&](struct ggml_tensor * , const char * , int ) { };
  8999. struct llm_build_context llm(lctx, dummy, cb, false);
  9000. llm.init();
  9001. struct ggml_cgraph * result = llm.build_k_shift();
  9002. llm.free();
  9003. return result;
  9004. }
  9005. static struct ggml_cgraph * llama_build_graph_s_copy(llama_context & lctx) {
  9006. llama_batch dummy;
  9007. dummy.n_tokens = 0;
  9008. llm_build_cb cb = [&](struct ggml_tensor * , const char * , int ) { };
  9009. struct llm_build_context llm(lctx, dummy, cb, false);
  9010. llm.init();
  9011. struct ggml_cgraph * result = llm.build_s_copy();
  9012. llm.free();
  9013. return result;
  9014. }
  9015. static struct ggml_cgraph * llama_build_graph(
  9016. llama_context & lctx,
  9017. const llama_batch & batch,
  9018. bool worst_case) {
  9019. const auto & model = lctx.model;
  9020. // this callback allows us to apply custom logic to each tensor (e.g. ggml-alloc, offloading, etc.)
  9021. llm_build_cb cb = [&](struct ggml_tensor * cur, const char * name, int il) {
  9022. if (il >= 0) {
  9023. ggml_format_name(cur, "%s-%d", name, il);
  9024. } else {
  9025. ggml_set_name(cur, name);
  9026. }
  9027. if (!lctx.cparams.offload_kqv) {
  9028. if (strcmp(name, "kqv_merged_cont") == 0) {
  9029. // all nodes between the KV store and the attention output are run on the CPU
  9030. ggml_backend_sched_set_tensor_backend(lctx.sched, cur, lctx.backend_cpu);
  9031. }
  9032. }
  9033. // norm may be automatically assigned to the backend of the previous layer, increasing data transfer between backends
  9034. // FIXME: fix in ggml_backend_sched
  9035. const bool full_offload = lctx.model.n_gpu_layers > (int)lctx.model.hparams.n_layer;
  9036. if (batch.n_tokens < 32 || full_offload) {
  9037. if (il != -1 && strcmp(name, "norm") == 0) {
  9038. for (auto * backend : lctx.backends) {
  9039. if (ggml_backend_buft_supports_backend(lctx.model.buft_layer[il].buft, backend)) {
  9040. ggml_backend_sched_set_tensor_backend(lctx.sched, cur, backend);
  9041. break;
  9042. }
  9043. }
  9044. }
  9045. }
  9046. };
  9047. struct ggml_cgraph * result = NULL;
  9048. struct llm_build_context llm(lctx, batch, cb, worst_case);
  9049. llm.init();
  9050. switch (model.arch) {
  9051. case LLM_ARCH_LLAMA:
  9052. {
  9053. result = llm.build_llama();
  9054. } break;
  9055. case LLM_ARCH_BAICHUAN:
  9056. {
  9057. result = llm.build_baichuan();
  9058. } break;
  9059. case LLM_ARCH_FALCON:
  9060. {
  9061. result = llm.build_falcon();
  9062. } break;
  9063. case LLM_ARCH_GROK:
  9064. {
  9065. result = llm.build_grok();
  9066. } break;
  9067. case LLM_ARCH_STARCODER:
  9068. {
  9069. result = llm.build_starcoder();
  9070. } break;
  9071. case LLM_ARCH_PERSIMMON:
  9072. {
  9073. result = llm.build_persimmon();
  9074. } break;
  9075. case LLM_ARCH_REFACT:
  9076. {
  9077. result = llm.build_refact();
  9078. } break;
  9079. case LLM_ARCH_BERT:
  9080. case LLM_ARCH_JINA_BERT_V2:
  9081. case LLM_ARCH_NOMIC_BERT:
  9082. {
  9083. result = llm.build_bert();
  9084. } break;
  9085. case LLM_ARCH_BLOOM:
  9086. {
  9087. result = llm.build_bloom();
  9088. } break;
  9089. case LLM_ARCH_MPT:
  9090. {
  9091. result = llm.build_mpt();
  9092. } break;
  9093. case LLM_ARCH_STABLELM:
  9094. {
  9095. result = llm.build_stablelm();
  9096. } break;
  9097. case LLM_ARCH_QWEN:
  9098. {
  9099. result = llm.build_qwen();
  9100. } break;
  9101. case LLM_ARCH_QWEN2:
  9102. {
  9103. result = llm.build_qwen2();
  9104. } break;
  9105. case LLM_ARCH_QWEN2MOE:
  9106. {
  9107. result = llm.build_qwen2moe();
  9108. } break;
  9109. case LLM_ARCH_PHI2:
  9110. {
  9111. result = llm.build_phi2();
  9112. } break;
  9113. case LLM_ARCH_PHI3:
  9114. {
  9115. result = llm.build_phi3();
  9116. } break;
  9117. case LLM_ARCH_PLAMO:
  9118. {
  9119. result = llm.build_plamo();
  9120. } break;
  9121. case LLM_ARCH_GPT2:
  9122. {
  9123. result = llm.build_gpt2();
  9124. } break;
  9125. case LLM_ARCH_CODESHELL:
  9126. {
  9127. result = llm.build_codeshell();
  9128. } break;
  9129. case LLM_ARCH_ORION:
  9130. {
  9131. result = llm.build_orion();
  9132. } break;
  9133. case LLM_ARCH_INTERNLM2:
  9134. {
  9135. result = llm.build_internlm2();
  9136. } break;
  9137. case LLM_ARCH_MINICPM:
  9138. {
  9139. result = llm.build_minicpm();
  9140. } break;
  9141. case LLM_ARCH_GEMMA:
  9142. {
  9143. result = llm.build_gemma();
  9144. } break;
  9145. case LLM_ARCH_STARCODER2:
  9146. {
  9147. result = llm.build_starcoder2();
  9148. } break;
  9149. case LLM_ARCH_MAMBA:
  9150. {
  9151. result = llm.build_mamba();
  9152. } break;
  9153. case LLM_ARCH_XVERSE:
  9154. {
  9155. result = llm.build_xverse();
  9156. } break;
  9157. case LLM_ARCH_COMMAND_R:
  9158. {
  9159. result = llm.build_command_r();
  9160. } break;
  9161. case LLM_ARCH_DBRX:
  9162. {
  9163. result = llm.build_dbrx();
  9164. } break;
  9165. case LLM_ARCH_OLMO:
  9166. {
  9167. result = llm.build_olmo();
  9168. } break;
  9169. default:
  9170. GGML_ASSERT(false);
  9171. }
  9172. llm.free();
  9173. return result;
  9174. }
  9175. static void llama_set_k_shift(llama_context & lctx) {
  9176. const int64_t kv_size = lctx.kv_self.size;
  9177. assert(ggml_backend_buffer_is_host(lctx.inp_K_shift->buffer));
  9178. int32_t * data = (int32_t *) lctx.inp_K_shift->data;
  9179. for (int i = 0; i < kv_size; ++i) {
  9180. data[i] = lctx.kv_self.cells[i].delta;
  9181. }
  9182. }
  9183. static void llama_set_s_copy(llama_context & lctx) {
  9184. const int64_t kv_size = lctx.kv_self.size;
  9185. assert(ggml_backend_buffer_is_host(lctx.inp_s_copy->buffer));
  9186. int32_t * data = (int32_t *) lctx.inp_s_copy->data;
  9187. for (int i = 0; i < kv_size; ++i) {
  9188. data[i] = lctx.kv_self.cells[i].src;
  9189. }
  9190. }
  9191. static void llama_set_inputs(llama_context & lctx, const llama_batch & batch) {
  9192. //
  9193. // set input data
  9194. //
  9195. const auto & hparams = lctx.model.hparams;
  9196. const auto & cparams = lctx.cparams;
  9197. const auto & kv_self = lctx.kv_self;
  9198. if (batch.token) {
  9199. const int64_t n_tokens = batch.n_tokens;
  9200. ggml_backend_tensor_set(lctx.inp_tokens, batch.token, 0, n_tokens*ggml_element_size(lctx.inp_tokens));
  9201. }
  9202. if (batch.embd) {
  9203. const int64_t n_embd = hparams.n_embd;
  9204. const int64_t n_tokens = batch.n_tokens;
  9205. ggml_backend_tensor_set(lctx.inp_embd, batch.embd, 0, n_tokens*n_embd*ggml_element_size(lctx.inp_embd));
  9206. }
  9207. if (batch.pos && lctx.inp_pos) {
  9208. const int64_t n_tokens = batch.n_tokens;
  9209. ggml_backend_tensor_set(lctx.inp_pos, batch.pos, 0, n_tokens*ggml_element_size(lctx.inp_pos));
  9210. }
  9211. if (hparams.causal_attn || cparams.pooling_type == LLAMA_POOLING_TYPE_NONE) {
  9212. GGML_ASSERT(lctx.inp_out_ids && "every model that can must skip unused outputs");
  9213. const int64_t n_tokens = batch.n_tokens;
  9214. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_out_ids->buffer));
  9215. int32_t * data = (int32_t *) lctx.inp_out_ids->data;
  9216. if (lctx.n_outputs == n_tokens) {
  9217. for (int i = 0; i < n_tokens; ++i) {
  9218. data[i] = i;
  9219. }
  9220. } else if (batch.logits) {
  9221. int32_t n_outputs = 0;
  9222. for (int i = 0; i < n_tokens; ++i) {
  9223. if (batch.logits[i]) {
  9224. data[n_outputs++] = i;
  9225. }
  9226. }
  9227. // the graph needs to have been passed the correct number of outputs
  9228. GGML_ASSERT(lctx.n_outputs == n_outputs);
  9229. } else if (lctx.n_outputs == 1) {
  9230. // only keep last output
  9231. data[0] = n_tokens - 1;
  9232. } else {
  9233. GGML_ASSERT(lctx.n_outputs == 0);
  9234. }
  9235. }
  9236. GGML_ASSERT(
  9237. // (!a || b) is a logical implication (a -> b)
  9238. // !hparams.causal_attn -> !cparams.causal_attn
  9239. (hparams.causal_attn || !cparams.causal_attn) &&
  9240. "causal attention with embedding models is not supported"
  9241. );
  9242. if (lctx.inp_KQ_mask) {
  9243. // NOTE: hparams.causal_attn indicates the model is capable of generation and uses the kv cache.
  9244. if (cparams.causal_attn) {
  9245. const int64_t n_kv = kv_self.n;
  9246. const int64_t n_tokens = batch.n_tokens;
  9247. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_KQ_mask->buffer));
  9248. float * data = (float *) lctx.inp_KQ_mask->data;
  9249. // For causal attention, use only the previous KV cells
  9250. // of the correct sequence for each token of the batch.
  9251. // It's assumed that if a token in the batch has multiple sequences, they are equivalent.
  9252. for (int h = 0; h < 1; ++h) {
  9253. for (int j = 0; j < n_tokens; ++j) {
  9254. const llama_pos pos = batch.pos[j];
  9255. const llama_seq_id seq_id = batch.seq_id[j][0];
  9256. for (int i = 0; i < n_kv; ++i) {
  9257. float f;
  9258. if (!lctx.kv_self.cells[i].has_seq_id(seq_id) || lctx.kv_self.cells[i].pos > pos) {
  9259. f = -INFINITY;
  9260. } else {
  9261. if (hparams.use_alibi) {
  9262. f = -fabs(lctx.kv_self.cells[i].pos - pos);
  9263. } else {
  9264. f = 0.0f;
  9265. }
  9266. }
  9267. data[h*(n_kv*n_tokens) + j*n_kv + i] = f;
  9268. }
  9269. }
  9270. for (int i = n_tokens; i < GGML_PAD(n_tokens, GGML_KQ_MASK_PAD); ++i) {
  9271. for (int j = 0; j < n_kv; ++j) {
  9272. data[h*(n_kv*n_tokens) + i*n_kv + j] = -INFINITY;
  9273. }
  9274. }
  9275. }
  9276. } else {
  9277. // when using kv cache, the mask needs to match the kv cache size
  9278. const int64_t n_tokens = batch.n_tokens;
  9279. const int64_t n_stride = hparams.causal_attn ? kv_self.n : n_tokens;
  9280. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_KQ_mask->buffer));
  9281. float * data = (float *) lctx.inp_KQ_mask->data;
  9282. for (int h = 0; h < 1; ++h) {
  9283. for (int j = 0; j < n_tokens; ++j) {
  9284. const llama_seq_id seq_id = batch.seq_id[j][0];
  9285. for (int i = 0; i < n_tokens; ++i) {
  9286. float f = -INFINITY;
  9287. for (int s = 0; s < batch.n_seq_id[i]; ++s) {
  9288. if (batch.seq_id[i][s] == seq_id) {
  9289. if (hparams.use_alibi) {
  9290. f = -fabs(batch.pos[i] - batch.pos[j]);
  9291. } else {
  9292. f = 0.0f;
  9293. }
  9294. break;
  9295. }
  9296. }
  9297. data[h*(n_tokens*n_tokens) + j*n_stride + i] = f;
  9298. }
  9299. for (int i = n_tokens; i < n_stride; ++i) {
  9300. data[h*(n_tokens*n_tokens) + j*n_stride + i] = -INFINITY;
  9301. }
  9302. }
  9303. }
  9304. }
  9305. }
  9306. if (cparams.pooling_type == LLAMA_POOLING_TYPE_MEAN) {
  9307. const int64_t n_tokens = batch.n_tokens;
  9308. GGML_ASSERT(lctx.inp_mean);
  9309. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_mean->buffer));
  9310. float * data = (float *) lctx.inp_mean->data;
  9311. memset(lctx.inp_mean->data, 0, n_tokens * n_tokens * ggml_element_size(lctx.inp_mean));
  9312. std::vector<uint64_t> sum(n_tokens, 0);
  9313. for (int i = 0; i < n_tokens; ++i) {
  9314. const llama_seq_id seq_id = batch.seq_id[i][0];
  9315. GGML_ASSERT(seq_id < n_tokens && "seq_id cannot be larger than n_tokens with pooling_type == MEAN");
  9316. sum[seq_id] += 1;
  9317. }
  9318. std::vector<float> div(n_tokens, 0.0f);
  9319. for (int i = 0; i < n_tokens; ++i) {
  9320. const uint64_t s = sum[i];
  9321. if (s > 0) {
  9322. div[i] = 1.0f/float(s);
  9323. }
  9324. }
  9325. for (int i = 0; i < n_tokens; ++i) {
  9326. const llama_seq_id seq_id = batch.seq_id[i][0];
  9327. data[seq_id*n_tokens + i] = div[seq_id];
  9328. }
  9329. }
  9330. if (cparams.pooling_type == LLAMA_POOLING_TYPE_CLS) {
  9331. const int64_t n_tokens = batch.n_tokens;
  9332. GGML_ASSERT(lctx.inp_cls);
  9333. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_cls->buffer));
  9334. uint32_t * data = (uint32_t *) lctx.inp_cls->data;
  9335. memset(lctx.inp_cls->data, 0, n_tokens * ggml_element_size(lctx.inp_cls));
  9336. for (int i = 0; i < n_tokens; ++i) {
  9337. const llama_seq_id seq_id = batch.seq_id[i][0];
  9338. const llama_pos pos = batch.pos[i];
  9339. GGML_ASSERT(seq_id < n_tokens && "seq_id cannot be larger than n_tokens with pooling_type == CLS");
  9340. if (pos == 0) {
  9341. data[seq_id] = i;
  9342. }
  9343. }
  9344. }
  9345. if (kv_self.recurrent) {
  9346. const int64_t n_kv = kv_self.n;
  9347. if (lctx.inp_s_mask) {
  9348. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_s_mask->buffer));
  9349. float * data = (float *) lctx.inp_s_mask->data;
  9350. // states which are not affected by the current batch are left untouched
  9351. for (int i = 0; i < n_kv; ++i) {
  9352. llama_seq_id seq_id = i + lctx.kv_self.head;
  9353. llama_kv_cell & kv_cell = lctx.kv_self.cells[seq_id];
  9354. bool has_self_seq = kv_cell.has_seq_id(seq_id);
  9355. data[i] = (float) has_self_seq;
  9356. // ensure current sequences will be kept
  9357. if (!has_self_seq && kv_cell.pos >= 0) {
  9358. kv_cell.seq_id.insert(seq_id);
  9359. }
  9360. }
  9361. }
  9362. // For Mamba (and other recurrent architectures),
  9363. // update the correct state(s)/sequence(s) for each token of the batch.
  9364. // Like with the KQ_mask, if a token in the batch has multiple sequences,
  9365. // they are assumed to be equivalent (not here, but in ggml_ssm_scan and ggml_ssm_conv).
  9366. if (lctx.inp_s_seq) {
  9367. const int64_t n_tokens = batch.n_tokens;
  9368. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_s_seq->buffer));
  9369. int32_t * data = (int32_t *) lctx.inp_s_seq->data;
  9370. for (int j = 0; j < n_tokens; ++j) {
  9371. const int32_t n_seq = batch.n_seq_id[j];
  9372. GGML_ASSERT(0 < n_seq); // a token should be part of at least 1 sequence
  9373. for (int i = 0; i < n_kv; ++i) {
  9374. if (i < n_seq) {
  9375. // for this type of model, the head is the minimum seq_id of the batch
  9376. data[j*n_kv + i] = batch.seq_id[j][i] - kv_self.head;
  9377. } else {
  9378. data[j*n_kv + i] = -1;
  9379. }
  9380. }
  9381. }
  9382. }
  9383. }
  9384. }
  9385. // Make sure enough space is available for outputs.
  9386. // Returns max number of outputs for which space was reserved.
  9387. static size_t llama_output_reserve(llama_context & lctx, size_t n_outputs) {
  9388. const auto & cparams = lctx.cparams;
  9389. const auto & hparams = lctx.model.hparams;
  9390. const size_t n_outputs_max = std::max(n_outputs, (size_t) cparams.n_seq_max);
  9391. const auto n_batch = cparams.n_batch;
  9392. const auto n_vocab = hparams.n_vocab;
  9393. const auto n_embd = hparams.n_embd;
  9394. // TODO: use a per-batch flag for logits presence instead
  9395. const bool has_logits = cparams.causal_attn;
  9396. const bool has_embd = cparams.embeddings && (hparams.causal_attn || cparams.pooling_type == LLAMA_POOLING_TYPE_NONE);
  9397. const size_t logits_size = has_logits ? n_vocab*n_outputs_max : 0;
  9398. const size_t embd_size = has_embd ? n_embd*n_outputs_max : 0;
  9399. if (lctx.output_ids.empty()) {
  9400. // init, never resized afterwards
  9401. lctx.output_ids.resize(n_batch);
  9402. }
  9403. const size_t prev_size = lctx.buf_output ? ggml_backend_buffer_get_size(lctx.buf_output) : 0;
  9404. const size_t new_size = (logits_size + embd_size) * sizeof(float);
  9405. // alloc only when more than the current capacity is required
  9406. // TODO: also consider shrinking the buffer
  9407. if (!lctx.buf_output || prev_size < new_size) {
  9408. if (lctx.buf_output) {
  9409. #ifndef NDEBUG
  9410. // This doesn't happen often, but may be annoying in some cases (like the HellaSwag benchmark)
  9411. LLAMA_LOG_INFO("%s: reallocating output buffer from size %.02f MiB to %.02f MiB\n", __func__, prev_size / 1024.0 / 1024.0, new_size / 1024.0 / 1024.0);
  9412. #endif
  9413. ggml_backend_buffer_free(lctx.buf_output);
  9414. lctx.buf_output = nullptr;
  9415. lctx.logits = nullptr;
  9416. lctx.embd = nullptr;
  9417. }
  9418. lctx.buf_output = ggml_backend_buft_alloc_buffer(llama_default_buffer_type_cpu(true), new_size);
  9419. if (lctx.buf_output == nullptr) {
  9420. LLAMA_LOG_ERROR("%s: failed to allocate output buffer of size %.2f MiB\n", __func__, new_size / (1024.0 * 1024.0));
  9421. return 0;
  9422. }
  9423. }
  9424. float * output_base = (float *) ggml_backend_buffer_get_base(lctx.buf_output);
  9425. lctx.logits = has_logits ? output_base : nullptr;
  9426. lctx.embd = has_embd ? output_base + logits_size : nullptr;
  9427. lctx.output_size = n_outputs_max;
  9428. lctx.logits_size = logits_size;
  9429. lctx.embd_size = embd_size;
  9430. // set all ids as invalid (negative)
  9431. std::fill(lctx.output_ids.begin(), lctx.output_ids.end(), -1);
  9432. ggml_backend_buffer_clear(lctx.buf_output, 0);
  9433. lctx.n_outputs = 0;
  9434. return n_outputs_max;
  9435. }
  9436. static void llama_graph_compute(
  9437. llama_context & lctx,
  9438. ggml_cgraph * gf,
  9439. int n_threads) {
  9440. #ifdef GGML_USE_MPI
  9441. const int64_t n_layer = lctx.model.hparams.n_layer;
  9442. ggml_mpi_graph_compute_pre(lctx.ctx_mpi, gf, n_layer);
  9443. #endif
  9444. #ifdef GGML_USE_METAL
  9445. if (ggml_backend_is_metal(lctx.backend_metal)) {
  9446. ggml_backend_metal_set_n_cb(lctx.backend_metal, n_threads);
  9447. }
  9448. #endif
  9449. if (lctx.backend_cpu != nullptr) {
  9450. ggml_backend_cpu_set_n_threads(lctx.backend_cpu, n_threads);
  9451. ggml_backend_cpu_set_abort_callback(lctx.backend_cpu, lctx.abort_callback, lctx.abort_callback_data);
  9452. }
  9453. ggml_backend_sched_graph_compute_async(lctx.sched, gf);
  9454. // fprintf(stderr, "splits: %d\n", ggml_backend_sched_get_n_splits(lctx.sched));
  9455. #ifdef GGML_USE_MPI
  9456. ggml_mpi_graph_compute_post(lctx.ctx_mpi, gf, n_layer);
  9457. #endif
  9458. }
  9459. // decode a batch of tokens by evaluating the transformer
  9460. //
  9461. // - lctx: llama context
  9462. // - batch: batch to evaluate
  9463. //
  9464. // return 0 on success
  9465. // return positive int on warning
  9466. // return negative int on error
  9467. //
  9468. static int llama_decode_internal(
  9469. llama_context & lctx,
  9470. llama_batch batch_all) { // TODO: rename back to batch
  9471. const uint32_t n_tokens_all = batch_all.n_tokens;
  9472. if (n_tokens_all == 0) {
  9473. LLAMA_LOG_ERROR("%s: n_tokens == 0", __func__);
  9474. return -1;
  9475. }
  9476. const auto & model = lctx.model;
  9477. const auto & hparams = model.hparams;
  9478. const auto & cparams = lctx.cparams;
  9479. GGML_ASSERT((!batch_all.token && batch_all.embd) || (batch_all.token && !batch_all.embd)); // NOLINT
  9480. GGML_ASSERT(n_tokens_all <= cparams.n_batch);
  9481. GGML_ASSERT((cparams.causal_attn || cparams.n_ubatch >= n_tokens_all) && "non-causal attention requires n_ubatch >= n_tokens");
  9482. if (lctx.t_compute_start_us == 0) {
  9483. lctx.t_compute_start_us = ggml_time_us();
  9484. }
  9485. lctx.n_queued_tokens += n_tokens_all;
  9486. #ifdef GGML_USE_MPI
  9487. // TODO: needs fix after #3228
  9488. GGML_ASSERT(false && "not implemented");
  9489. //ggml_mpi_eval_init(lctx.ctx_mpi, &n_tokens, &n_past, &n_threads);
  9490. #endif
  9491. auto & kv_self = lctx.kv_self;
  9492. const int64_t n_embd = hparams.n_embd;
  9493. const int64_t n_vocab = hparams.n_vocab;
  9494. uint32_t n_outputs = 0;
  9495. uint32_t n_outputs_prev = 0;
  9496. const auto n_ubatch = cparams.n_ubatch;
  9497. std::vector<llama_pos> pos;
  9498. std::vector<int32_t> n_seq_id;
  9499. std::vector<llama_seq_id *> seq_id_arr;
  9500. std::vector<std::vector<llama_seq_id>> seq_id;
  9501. // count outputs
  9502. if (batch_all.logits) {
  9503. for (uint32_t i = 0; i < n_tokens_all; ++i) {
  9504. n_outputs += batch_all.logits[i] != 0;
  9505. }
  9506. } else if (lctx.logits_all || (cparams.embeddings && cparams.pooling_type != LLAMA_POOLING_TYPE_NONE)) {
  9507. n_outputs = n_tokens_all;
  9508. } else {
  9509. // keep last output only
  9510. n_outputs = 1;
  9511. }
  9512. // reserve output buffer
  9513. if (llama_output_reserve(lctx, n_outputs) < n_outputs) {
  9514. LLAMA_LOG_ERROR("%s: could not reserve space for batch with %u outputs\n", __func__, n_outputs);
  9515. return -2;
  9516. };
  9517. // set output mappings
  9518. if (batch_all.logits) {
  9519. int32_t i_logits = 0;
  9520. for (uint32_t i = 0; i < n_tokens_all; ++i) {
  9521. if (batch_all.logits[i]) {
  9522. lctx.output_ids[i] = i_logits++;
  9523. }
  9524. }
  9525. } else {
  9526. for (uint32_t i = 0; i < n_outputs; ++i) {
  9527. lctx.output_ids[i] = i;
  9528. }
  9529. }
  9530. for (uint32_t cur_token = 0; cur_token < n_tokens_all; cur_token += n_ubatch) {
  9531. const uint32_t n_tokens = std::min(n_ubatch, n_tokens_all - cur_token);
  9532. llama_batch u_batch = {
  9533. /* .n_tokens = */ (int32_t) n_tokens,
  9534. /* .token = */ batch_all.token ? batch_all.token + cur_token : nullptr,
  9535. /* .embd = */ batch_all.embd ? batch_all.embd + cur_token*n_embd : nullptr,
  9536. /* .pos = */ batch_all.pos ? batch_all.pos + cur_token : nullptr,
  9537. /* .n_seq_id = */ batch_all.n_seq_id ? batch_all.n_seq_id + cur_token : nullptr,
  9538. /* .seq_id = */ batch_all.seq_id ? batch_all.seq_id + cur_token : nullptr,
  9539. /* .logits = */ batch_all.logits ? batch_all.logits + cur_token : nullptr,
  9540. /* .all_pos_0 = */ batch_all.all_pos_0 + (llama_pos) cur_token*batch_all.all_pos_1,
  9541. /* .all_pos_1 = */ batch_all.all_pos_1,
  9542. /* .all_seq_id = */ batch_all.all_seq_id,
  9543. };
  9544. // count the outputs in this u_batch
  9545. {
  9546. int32_t n_outputs_new = 0;
  9547. if (u_batch.logits) {
  9548. for (uint32_t i = 0; i < n_tokens; i++) {
  9549. n_outputs_new += u_batch.logits[i] != 0;
  9550. }
  9551. } else if (n_outputs == n_tokens_all) {
  9552. n_outputs_new = n_tokens;
  9553. } else {
  9554. // keep last output only
  9555. if (cur_token + n_tokens >= n_tokens_all) {
  9556. n_outputs_new = 1;
  9557. }
  9558. }
  9559. // needs to happen before the graph is built
  9560. lctx.n_outputs = n_outputs_new;
  9561. }
  9562. int n_threads = n_tokens == 1 ? cparams.n_threads : cparams.n_threads_batch;
  9563. GGML_ASSERT(n_threads > 0);
  9564. // helpers for smoother batch API transition
  9565. // after deprecating the llama_eval calls, these will be removed
  9566. if (u_batch.pos == nullptr) {
  9567. pos.resize(n_tokens);
  9568. for (uint32_t i = 0; i < n_tokens; i++) {
  9569. pos[i] = u_batch.all_pos_0 + i*u_batch.all_pos_1;
  9570. }
  9571. u_batch.pos = pos.data();
  9572. }
  9573. if (u_batch.seq_id == nullptr) {
  9574. n_seq_id.resize(n_tokens);
  9575. seq_id.resize(n_tokens);
  9576. seq_id_arr.resize(n_tokens);
  9577. for (uint32_t i = 0; i < n_tokens; i++) {
  9578. n_seq_id[i] = 1;
  9579. seq_id[i].resize(1);
  9580. seq_id[i][0] = u_batch.all_seq_id;
  9581. seq_id_arr[i] = seq_id[i].data();
  9582. }
  9583. u_batch.n_seq_id = n_seq_id.data();
  9584. u_batch.seq_id = seq_id_arr.data();
  9585. }
  9586. // non-causal masks do not use the KV cache
  9587. if (hparams.causal_attn) {
  9588. llama_kv_cache_update(&lctx);
  9589. // if we have enough unused cells before the current head ->
  9590. // better to start searching from the beginning of the cache, hoping to fill it
  9591. if (kv_self.head > kv_self.used + 2*n_tokens) {
  9592. kv_self.head = 0;
  9593. }
  9594. if (!llama_kv_cache_find_slot(kv_self, u_batch)) {
  9595. return 1;
  9596. }
  9597. if (!kv_self.recurrent) {
  9598. // a heuristic, to avoid attending the full cache if it is not yet utilized
  9599. // after enough generations, the benefit from this heuristic disappears
  9600. // if we start defragmenting the cache, the benefit from this will be more important
  9601. const uint32_t pad = llama_kv_cache_get_padding(cparams);
  9602. kv_self.n = std::min(kv_self.size, std::max(pad, GGML_PAD(llama_kv_cache_cell_max(kv_self), pad)));
  9603. //kv_self.n = llama_kv_cache_cell_max(kv_self);
  9604. }
  9605. }
  9606. //printf("kv_self.n = %5d, kv_self.used = %5d, kv_self.head = %5d\n", kv_self.n, kv_self.used, kv_self.head);
  9607. ggml_backend_sched_reset(lctx.sched);
  9608. ggml_backend_sched_set_eval_callback(lctx.sched, lctx.cparams.cb_eval, lctx.cparams.cb_eval_user_data);
  9609. ggml_cgraph * gf = llama_build_graph(lctx, u_batch, false);
  9610. // the output is always the last tensor in the graph
  9611. struct ggml_tensor * res = gf->nodes[gf->n_nodes - 1];
  9612. struct ggml_tensor * embd = gf->nodes[gf->n_nodes - 2];
  9613. if (lctx.n_outputs == 0) {
  9614. // no output
  9615. res = nullptr;
  9616. embd = nullptr;
  9617. } else if (!hparams.causal_attn) {
  9618. res = nullptr; // do not extract logits for embedding models such as BERT
  9619. // token or sequence embeddings
  9620. embd = gf->nodes[gf->n_nodes - 1];
  9621. GGML_ASSERT(strcmp(embd->name, "result_embd") == 0 || strcmp(embd->name, "result_embd_pooled") == 0);
  9622. } else if (cparams.embeddings) {
  9623. // the embeddings could be in the second to last tensor, or any of the previous tensors
  9624. int i_embd = gf->n_nodes - 2;
  9625. for (int i = 3; strcmp(embd->name, "result_norm") != 0; ++i) {
  9626. i_embd = gf->n_nodes - i;
  9627. if (i_embd < 0) { break; }
  9628. embd = gf->nodes[i_embd];
  9629. }
  9630. GGML_ASSERT(i_embd >= 0 && "missing result_norm tensor");
  9631. // TODO: use a per-batch flag to know when to skip logits while keeping embeddings
  9632. if (!cparams.causal_attn) {
  9633. res = nullptr; // do not extract logits when not needed
  9634. // skip computing logits
  9635. // TODO: is this safe?
  9636. gf->n_nodes = i_embd + 1;
  9637. }
  9638. } else {
  9639. embd = nullptr; // do not extract embeddings when not needed
  9640. GGML_ASSERT(strcmp(res->name, "result_output") == 0 && "missing result_output tensor");
  9641. }
  9642. // LLAMA_LOG_INFO("graph build time: %.3f ms (%d nodes, %d leafs)\n", (ggml_time_us() - t_start_us)/1000.0, gf->n_nodes, gf->n_leafs);
  9643. // for big prompts, if BLAS is enabled, it is better to use only one thread
  9644. // otherwise, the threads are spin-lock waiting for the BLAS calls and are degrading the performance
  9645. // TODO: this is mostly important for Apple Silicon where CBLAS is still performing very well
  9646. // we still need some threads to process all non-mul_mat ops, but not too much to avoid interfering
  9647. // with the BLAS calls. need a better solution
  9648. // MoE Special Case: This logic applies when hparams.n_expert == 0, i.e. the model is NOT an MoE model. When an MoE is
  9649. // being processed then Accelerate/BLAS will not be involved, so capping would limit performance.
  9650. if (n_tokens >= 32 && hparams.n_expert == 0 && ggml_cpu_has_blas() && !ggml_cpu_has_gpublas()) {
  9651. n_threads = std::min(4, n_threads);
  9652. }
  9653. ggml_backend_sched_alloc_graph(lctx.sched, gf);
  9654. llama_set_inputs(lctx, u_batch);
  9655. llama_graph_compute(lctx, gf, n_threads);
  9656. // update the kv ring buffer
  9657. {
  9658. kv_self.head += n_tokens;
  9659. // Ensure kv cache head points to a valid index.
  9660. if (kv_self.head >= kv_self.size) {
  9661. kv_self.head = 0;
  9662. }
  9663. }
  9664. #ifdef GGML_PERF
  9665. // print timing information per ggml operation (for debugging purposes)
  9666. // requires GGML_PERF to be defined
  9667. ggml_graph_print(gf);
  9668. #endif
  9669. // plot the computation graph in dot format (for debugging purposes)
  9670. //if (n_past%100 == 0) {
  9671. // ggml_graph_dump_dot(gf, NULL, "llama.dot");
  9672. //}
  9673. // extract logits
  9674. if (res) {
  9675. ggml_backend_t backend_res = ggml_backend_sched_get_tensor_backend(lctx.sched, res);
  9676. GGML_ASSERT(backend_res != nullptr);
  9677. GGML_ASSERT(lctx.logits != nullptr);
  9678. float * logits_out = lctx.logits + n_outputs_prev*n_vocab;
  9679. const int32_t n_outputs_new = lctx.n_outputs;
  9680. if (n_outputs_new) {
  9681. GGML_ASSERT( n_outputs_prev + n_outputs_new <= n_outputs);
  9682. GGML_ASSERT((n_outputs_prev + n_outputs_new)*n_vocab <= (int64_t) lctx.logits_size);
  9683. ggml_backend_tensor_get_async(backend_res, res, logits_out, 0, n_outputs_new*n_vocab*sizeof(float));
  9684. }
  9685. }
  9686. // extract embeddings
  9687. if (embd) {
  9688. ggml_backend_t backend_embd = ggml_backend_sched_get_tensor_backend(lctx.sched, embd);
  9689. GGML_ASSERT(backend_embd != nullptr);
  9690. switch (cparams.pooling_type) {
  9691. case LLAMA_POOLING_TYPE_NONE:
  9692. {
  9693. // extract token embeddings
  9694. GGML_ASSERT(lctx.embd != nullptr);
  9695. float * embd_out = lctx.embd + n_outputs_prev*n_embd;
  9696. const int32_t n_outputs_new = lctx.n_outputs;
  9697. if (n_outputs_new) {
  9698. GGML_ASSERT( n_outputs_prev + n_outputs_new <= n_outputs);
  9699. GGML_ASSERT((n_outputs_prev + n_outputs_new)*n_embd <= (int64_t) lctx.embd_size);
  9700. ggml_backend_tensor_get_async(backend_embd, embd, embd_out, 0, n_outputs_new*n_embd*sizeof(float));
  9701. }
  9702. } break;
  9703. case LLAMA_POOLING_TYPE_CLS:
  9704. case LLAMA_POOLING_TYPE_MEAN:
  9705. {
  9706. GGML_ASSERT(strcmp(embd->name, "result_embd_pooled") == 0);
  9707. // extract sequence embeddings
  9708. auto & embd_seq_out = lctx.embd_seq;
  9709. embd_seq_out.clear();
  9710. for (uint32_t i = 0; i < n_tokens; i++) {
  9711. const llama_seq_id seq_id = u_batch.seq_id[i][0];
  9712. if (embd_seq_out.find(seq_id) != embd_seq_out.end()) {
  9713. continue;
  9714. }
  9715. embd_seq_out[seq_id].resize(n_embd);
  9716. ggml_backend_tensor_get_async(backend_embd, embd, embd_seq_out[seq_id].data(), (n_embd*seq_id)*sizeof(float), n_embd*sizeof(float));
  9717. }
  9718. } break;
  9719. case LLAMA_POOLING_TYPE_UNSPECIFIED:
  9720. {
  9721. GGML_ASSERT(false && "unknown pooling type");
  9722. } break;
  9723. }
  9724. }
  9725. n_outputs_prev += lctx.n_outputs;
  9726. }
  9727. // set to total number of outputs in the batch, for use in llama_get_logits_ith
  9728. lctx.n_outputs = n_outputs;
  9729. // wait for the computation to finish (automatically done when obtaining the model output)
  9730. //llama_synchronize(&lctx);
  9731. // decide if we need to defrag the kv cache
  9732. if (cparams.causal_attn && cparams.defrag_thold >= 0.0f) {
  9733. const float fragmentation = kv_self.n >= 128 ? 1.0f - float(kv_self.used)/float(kv_self.n) : 0.0f;
  9734. // queue defragmentation for next llama_kv_cache_update
  9735. if (fragmentation > cparams.defrag_thold) {
  9736. //LLAMA_LOG_INFO("fragmentation: %.2f\n", fragmentation);
  9737. llama_kv_cache_defrag(kv_self);
  9738. }
  9739. }
  9740. // Reset state for the next token before backend sync, to allow the CPU activities in the reset to
  9741. // overlap with device computation.
  9742. ggml_backend_sched_reset(lctx.sched);
  9743. return 0;
  9744. }
  9745. // find holes from the beginning of the KV cache and fill them by moving data from the end of the cache
  9746. static void llama_kv_cache_defrag_internal(struct llama_context & lctx) {
  9747. auto & kv_self = lctx.kv_self;
  9748. const auto & hparams = lctx.model.hparams;
  9749. const uint32_t n_layer = hparams.n_layer;
  9750. const uint32_t n_kv = llama_kv_cache_cell_max(kv_self);
  9751. const uint32_t n_used = kv_self.used;
  9752. assert(n_used <= n_kv);
  9753. //const int64_t t_start = ggml_time_us();
  9754. // number of cells moved
  9755. uint32_t n_moves = 0;
  9756. // each move requires 6*n_layer tensors (see build_defrag)
  9757. // - source view, destination view, copy operation
  9758. // - x2 for keys and values
  9759. //const uint32_t max_moves = LLAMA_MAX_NODES/(6*n_layer);
  9760. // TODO: tmp fix https://github.com/ggerganov/llama.cpp/issues/6685#issuecomment-2057579516
  9761. const uint32_t max_moves = (LLAMA_MAX_NODES - 2*n_layer)/(6*n_layer);
  9762. // determine which KV cells to move where
  9763. //
  9764. // cell i moves to ids[i]
  9765. //
  9766. // if ids[i] == i || ids[i] == n_kv, then cell i is not moved
  9767. //
  9768. std::vector<uint32_t> ids(n_kv, n_kv);
  9769. for (uint32_t i0 = 0; i0 < n_used; ++i0) {
  9770. const auto & cell0 = kv_self.cells[i0];
  9771. if (!cell0.is_empty()) {
  9772. ids[i0] = i0;
  9773. continue;
  9774. }
  9775. // found a hole - fill it with data from the end of the cache
  9776. uint32_t nh = 1;
  9777. // determine the size of the hole
  9778. while (i0 + nh < n_used && kv_self.cells[i0 + nh].is_empty()) {
  9779. nh++;
  9780. }
  9781. uint32_t nf = 0;
  9782. uint32_t is = n_kv - 1;
  9783. // starting from the end, find nh non-empty cells
  9784. for (; is > i0; --is) {
  9785. const auto & cell1 = kv_self.cells[is];
  9786. if (cell1.is_empty() || ids[is] != n_kv) {
  9787. continue;
  9788. }
  9789. // non-empty cell which is not yet moved
  9790. nf++;
  9791. if (nf == nh) {
  9792. break;
  9793. }
  9794. }
  9795. // this can only happen if `n_used` is not accurate, which would be a bug
  9796. GGML_ASSERT(nf == nh && "KV defrag bug: nf != nh");
  9797. nf = 0;
  9798. uint32_t i1 = is;
  9799. // are we moving a continuous block of memory?
  9800. bool cont = false;
  9801. // should we stop searching for the next move?
  9802. bool stop = false;
  9803. // go back and move the nf cells to the hole
  9804. for (; i1 < n_kv; ++i1) {
  9805. auto & cell1 = kv_self.cells[i1];
  9806. if (cell1.is_empty() || ids[i1] != n_kv) {
  9807. if (n_moves == max_moves) {
  9808. stop = true;
  9809. break;
  9810. }
  9811. cont = false;
  9812. continue;
  9813. }
  9814. // this cell goes to (i0 + nf)
  9815. ids[i1] = i0 + nf;
  9816. // move the cell meta data
  9817. kv_self.cells[i0 + nf] = cell1;
  9818. // clear the old cell and move the head there
  9819. cell1 = llama_kv_cell();
  9820. kv_self.head = n_used;
  9821. if (!cont) {
  9822. n_moves++;
  9823. cont = true;
  9824. }
  9825. nf++;
  9826. if (nf == nh) {
  9827. break;
  9828. }
  9829. }
  9830. if (stop || n_moves == max_moves) {
  9831. break;
  9832. }
  9833. //LLAMA_LOG_INFO("(tmp log) KV defrag: move [%u, %u) to [%u, %u)\n", is, i1 + 1, i0, i0 + nh);
  9834. i0 += nh - 1;
  9835. }
  9836. if (n_moves == 0) {
  9837. return;
  9838. }
  9839. //LLAMA_LOG_INFO("(tmp log) KV defrag cell moves: %u\n", n_moves);
  9840. //LLAMA_LOG_INFO("expected gf nodes: %u\n", 6*n_moves*n_layer);
  9841. #if 0
  9842. // CPU defrag
  9843. //
  9844. // TODO: optimizations are possible:
  9845. // - multiple threads
  9846. // - avoid copying to the host memory when already there
  9847. //
  9848. // likely not worth the effort, as we have ggml_graph based defrag
  9849. //
  9850. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  9851. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa();
  9852. const uint32_t kv_size = kv_self.size;
  9853. std::vector<uint8_t> buf_k;
  9854. std::vector<uint8_t> buf_v;
  9855. for (uint32_t il = 0; il < n_layer; ++il) {
  9856. const size_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa);
  9857. const size_t k_size = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*kv_size);
  9858. const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type);
  9859. const size_t v_size = ggml_row_size (kv_self.v_l[il]->type, n_embd_v_gqa*kv_size);
  9860. buf_k.resize(k_size);
  9861. buf_v.resize(v_size);
  9862. ggml_backend_tensor_get(kv_self.k_l[il], buf_k.data(), 0, buf_k.size());
  9863. ggml_backend_tensor_get(kv_self.v_l[il], buf_v.data(), 0, buf_v.size());
  9864. // batch move [i, i+nm) to [id, id+nm)
  9865. // note: cells can move only to a lower index
  9866. for (uint32_t i = 0; i < n_kv; ++i) {
  9867. const uint32_t id = ids[i];
  9868. if (i == id || id == n_kv) {
  9869. continue;
  9870. }
  9871. uint32_t nm = 1;
  9872. while (i + nm < n_kv && ids[i + nm] == id + nm) {
  9873. nm++;
  9874. }
  9875. // move keys
  9876. {
  9877. const int64_t os = i*k_size_row;
  9878. const int64_t od = id*k_size_row;
  9879. memcpy(buf_k.data() + od, buf_k.data() + os, nm*k_size_row);
  9880. }
  9881. // move values (note: they are transposed)
  9882. {
  9883. const int64_t os = i;
  9884. const int64_t od = id;
  9885. for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
  9886. memcpy(buf_v.data() + (od + j*kv_size)*v_size_el, buf_v.data() + (os + j*kv_size)*v_size_el, nm*v_size_el);
  9887. }
  9888. }
  9889. i += nm - 1;
  9890. }
  9891. ggml_backend_tensor_set(kv_self.k_l[il], buf_k.data(), 0, buf_k.size());
  9892. ggml_backend_tensor_set(kv_self.v_l[il], buf_v.data(), 0, buf_v.size());
  9893. }
  9894. #else
  9895. // ggml_graph defrag
  9896. ggml_backend_sched_reset(lctx.sched);
  9897. ggml_cgraph * gf = llama_build_graph_defrag(lctx, ids);
  9898. llama_graph_compute(lctx, gf, lctx.cparams.n_threads);
  9899. #endif
  9900. //const int64_t t_end = ggml_time_us();
  9901. //LLAMA_LOG_INFO("(tmp log) KV defrag time: %.3f ms\n", (t_end - t_start)/1000.0);
  9902. }
  9903. static void llama_kv_cache_update_internal(struct llama_context & lctx) {
  9904. bool need_reserve = false;
  9905. // apply K-shift if needed
  9906. if (lctx.model.hparams.rope_type != LLAMA_ROPE_TYPE_NONE && lctx.kv_self.has_shift) {
  9907. {
  9908. ggml_backend_sched_reset(lctx.sched);
  9909. ggml_cgraph * gf = llama_build_graph_k_shift(lctx);
  9910. ggml_backend_sched_alloc_graph(lctx.sched, gf);
  9911. llama_set_k_shift(lctx);
  9912. llama_graph_compute(lctx, gf, lctx.cparams.n_threads);
  9913. need_reserve = true;
  9914. }
  9915. {
  9916. auto & kv_self = lctx.kv_self;
  9917. kv_self.has_shift = false;
  9918. for (uint32_t i = 0; i < kv_self.size; ++i) {
  9919. kv_self.cells[i].delta = 0;
  9920. }
  9921. }
  9922. }
  9923. if (lctx.kv_self.recurrent && lctx.kv_self.do_copy) {
  9924. {
  9925. ggml_backend_sched_reset(lctx.sched);
  9926. ggml_cgraph * gf = llama_build_graph_s_copy(lctx);
  9927. ggml_backend_sched_alloc_graph(lctx.sched, gf);
  9928. llama_set_s_copy(lctx);
  9929. llama_graph_compute(lctx, gf, lctx.cparams.n_threads);
  9930. need_reserve = true;
  9931. }
  9932. {
  9933. auto & kv_self = lctx.kv_self;
  9934. kv_self.do_copy = false;
  9935. for (uint32_t i = 0; i < kv_self.size; ++i) {
  9936. kv_self.cells[i].src = i;
  9937. }
  9938. }
  9939. }
  9940. // defragment the KV cache if needed
  9941. if (lctx.kv_self.do_defrag) {
  9942. llama_kv_cache_defrag_internal(lctx);
  9943. need_reserve = true;
  9944. lctx.kv_self.do_defrag = false;
  9945. }
  9946. // reserve a worst case graph again
  9947. if (need_reserve) {
  9948. // TODO: extract to a function
  9949. // build worst-case graph
  9950. int n_tokens = (int)std::min(lctx.cparams.n_ctx, lctx.cparams.n_ubatch);
  9951. int n_past = lctx.cparams.n_ctx - n_tokens;
  9952. llama_token token = llama_token_bos(&lctx.model); // not actually used by llama_build_graph, but required to choose between token and embedding inputs graph
  9953. ggml_cgraph * gf = llama_build_graph(lctx, llama_batch_get_one(&token, n_tokens, n_past, 0), true);
  9954. // initialize scheduler with the worst-case graph
  9955. ggml_backend_sched_reset(lctx.sched);
  9956. if (!ggml_backend_sched_reserve(lctx.sched, gf)) {
  9957. LLAMA_LOG_ERROR("%s: failed to allocate compute buffers\n", __func__);
  9958. }
  9959. }
  9960. }
  9961. //
  9962. // tokenizer
  9963. //
  9964. static enum llama_vocab_type llama_vocab_get_type(const llama_vocab & vocab) {
  9965. return vocab.type;
  9966. }
  9967. static bool llama_is_normal_token(const llama_vocab & vocab, llama_token id) {
  9968. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  9969. return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_NORMAL;
  9970. }
  9971. static bool llama_is_unknown_token(const llama_vocab & vocab, llama_token id) {
  9972. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  9973. return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_UNKNOWN;
  9974. }
  9975. static bool llama_is_control_token(const llama_vocab & vocab, llama_token id) {
  9976. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  9977. return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_CONTROL;
  9978. }
  9979. static bool llama_is_byte_token(const llama_vocab & vocab, llama_token id) {
  9980. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  9981. return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_BYTE;
  9982. }
  9983. static bool llama_is_user_defined_token(const llama_vocab& vocab, llama_token id) {
  9984. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  9985. return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_USER_DEFINED;
  9986. }
  9987. static uint8_t llama_token_to_byte(const llama_vocab& vocab, llama_token id) {
  9988. GGML_ASSERT(llama_vocab_get_type(vocab) != LLAMA_VOCAB_TYPE_NONE);
  9989. GGML_ASSERT(llama_is_byte_token(vocab, id));
  9990. const auto & token_data = vocab.id_to_token.at(id);
  9991. switch (llama_vocab_get_type(vocab)) {
  9992. case LLAMA_VOCAB_TYPE_SPM: {
  9993. auto buf = token_data.text.substr(3, 2);
  9994. return strtol(buf.c_str(), NULL, 16);
  9995. }
  9996. case LLAMA_VOCAB_TYPE_BPE: {
  9997. GGML_ASSERT(false);
  9998. return unicode_utf8_to_byte(token_data.text); // TODO: why is this here after GGML_ASSERT?
  9999. }
  10000. case LLAMA_VOCAB_TYPE_WPM: {
  10001. GGML_ASSERT(false);
  10002. }
  10003. default:
  10004. GGML_ASSERT(false);
  10005. }
  10006. }
  10007. static llama_token llama_byte_to_token(const llama_vocab & vocab, uint8_t ch) {
  10008. GGML_ASSERT(llama_vocab_get_type(vocab) != LLAMA_VOCAB_TYPE_NONE);
  10009. static const char * hex = "0123456789ABCDEF";
  10010. switch (llama_vocab_get_type(vocab)) {
  10011. case LLAMA_VOCAB_TYPE_SPM: {
  10012. const char buf[7] = { '<', '0', 'x', hex[ch >> 4], hex[ch & 15], '>', 0 };
  10013. auto token = vocab.token_to_id.find(buf);
  10014. if (token != vocab.token_to_id.end()) {
  10015. return (*token).second;
  10016. }
  10017. // Try to fall back to just the byte as a string
  10018. const char buf2[2] = { (char)ch, 0 };
  10019. return vocab.token_to_id.at(buf2);
  10020. }
  10021. case LLAMA_VOCAB_TYPE_WPM:
  10022. case LLAMA_VOCAB_TYPE_BPE: {
  10023. return vocab.token_to_id.at(unicode_byte_to_utf8(ch));
  10024. }
  10025. default:
  10026. GGML_ASSERT(false);
  10027. }
  10028. }
  10029. static void llama_escape_whitespace(std::string & text) {
  10030. replace_all(text, " ", "\xe2\x96\x81");
  10031. }
  10032. static void llama_unescape_whitespace(std::string & word) {
  10033. replace_all(word, "\xe2\x96\x81", " ");
  10034. }
  10035. struct llm_symbol {
  10036. using index = int;
  10037. index prev;
  10038. index next;
  10039. const char * text;
  10040. size_t n;
  10041. };
  10042. static_assert(std::is_trivially_copyable<llm_symbol>::value, "llm_symbol is not trivially copyable");
  10043. // SPM tokenizer
  10044. // original implementation:
  10045. // https://github.com/ggerganov/llama.cpp/commit/074bea2eb1f1349a0118239c4152914aecaa1be4
  10046. struct llm_bigram_spm {
  10047. struct comparator {
  10048. bool operator()(llm_bigram_spm & l, llm_bigram_spm & r) {
  10049. return (l.score < r.score) || (l.score == r.score && l.left > r.left);
  10050. }
  10051. };
  10052. using queue_storage = std::vector<llm_bigram_spm>;
  10053. using queue = std::priority_queue<llm_bigram_spm, queue_storage, comparator>;
  10054. llm_symbol::index left;
  10055. llm_symbol::index right;
  10056. float score;
  10057. size_t size;
  10058. };
  10059. struct llm_tokenizer_spm {
  10060. llm_tokenizer_spm(const llama_vocab & vocab) : vocab(vocab) {}
  10061. void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
  10062. // split string into utf8 chars
  10063. int index = 0;
  10064. size_t offs = 0;
  10065. while (offs < text.size()) {
  10066. llm_symbol sym;
  10067. size_t len = utf8_len(text[offs]);
  10068. sym.text = text.c_str() + offs;
  10069. sym.n = std::min(len, text.size() - offs);
  10070. offs += sym.n;
  10071. sym.prev = index - 1;
  10072. sym.next = offs == text.size() ? -1 : index + 1;
  10073. index++;
  10074. symbols.emplace_back(sym);
  10075. }
  10076. // seed the work queue with all possible 2-character tokens.
  10077. for (size_t i = 1; i < symbols.size(); ++i) {
  10078. try_add_bigram(i - 1, i);
  10079. }
  10080. // keep substituting the highest frequency pairs for as long as we can.
  10081. while (!work_queue.empty()) {
  10082. auto bigram = work_queue.top();
  10083. work_queue.pop();
  10084. auto & left_sym = symbols[bigram.left];
  10085. auto & right_sym = symbols[bigram.right];
  10086. // if one of the symbols already got merged, skip it.
  10087. if (left_sym.n == 0 || right_sym.n == 0 ||
  10088. left_sym.n + right_sym.n != bigram.size) {
  10089. continue;
  10090. }
  10091. // merge the right sym into the left one
  10092. left_sym.n += right_sym.n;
  10093. right_sym.n = 0;
  10094. //LLAMA_LOG_INFO("left = '%*s' size = %zu\n", (int) left_sym.n, left_sym.text, bigram.size);
  10095. // remove the right sym from the chain
  10096. left_sym.next = right_sym.next;
  10097. if (right_sym.next >= 0) {
  10098. symbols[right_sym.next].prev = bigram.left;
  10099. }
  10100. // find more substitutions
  10101. try_add_bigram(left_sym.prev, bigram.left);
  10102. try_add_bigram(bigram.left, left_sym.next);
  10103. }
  10104. for (int i = 0; i != -1; i = symbols[i].next) {
  10105. auto & symbol = symbols[i];
  10106. resegment(symbol, output);
  10107. }
  10108. }
  10109. private:
  10110. void resegment(llm_symbol & symbol, std::vector<llama_vocab::id> & output) {
  10111. auto text = std::string(symbol.text, symbol.n);
  10112. auto token = vocab.token_to_id.find(text);
  10113. // Do we need to support is_unused?
  10114. if (token != vocab.token_to_id.end()) {
  10115. output.push_back((*token).second);
  10116. return;
  10117. }
  10118. const auto p = rev_merge.find(text);
  10119. if (p == rev_merge.end()) {
  10120. // output any symbols that did not form tokens as bytes.
  10121. output.reserve(output.size() + symbol.n);
  10122. for (int j = 0; j < (int)symbol.n; ++j) {
  10123. llama_vocab::id token_id = llama_byte_to_token(vocab, symbol.text[j]);
  10124. output.push_back(token_id);
  10125. }
  10126. return;
  10127. }
  10128. resegment(symbols[p->second.first], output);
  10129. resegment(symbols[p->second.second], output);
  10130. }
  10131. void try_add_bigram(int left, int right) {
  10132. if (left == -1 || right == -1) {
  10133. return;
  10134. }
  10135. const std::string text = std::string(symbols[left].text, symbols[left].n + symbols[right].n);
  10136. auto token = vocab.token_to_id.find(text);
  10137. if (token == vocab.token_to_id.end()) {
  10138. return;
  10139. }
  10140. if (static_cast<size_t>((*token).second) >= vocab.id_to_token.size()) {
  10141. return;
  10142. }
  10143. const auto & tok_data = vocab.id_to_token[(*token).second];
  10144. llm_bigram_spm bigram;
  10145. bigram.left = left;
  10146. bigram.right = right;
  10147. bigram.score = tok_data.score;
  10148. bigram.size = text.size();
  10149. work_queue.push(bigram);
  10150. // Do we need to support is_unused?
  10151. rev_merge[text] = std::make_pair(left, right);
  10152. }
  10153. const llama_vocab & vocab;
  10154. std::vector<llm_symbol> symbols;
  10155. llm_bigram_spm::queue work_queue;
  10156. std::map<std::string, std::pair<int, int>> rev_merge;
  10157. };
  10158. // BPE tokenizer
  10159. // adapted from https://github.com/cmp-nct/ggllm.cpp [MIT License]
  10160. // tried to simplify unicode stuff, so most likely does not work 100% correctly!
  10161. // TODO: there are a lot of common parts between spm and bpe tokenizers, should be refactored and reused
  10162. struct llm_bigram_bpe {
  10163. struct comparator {
  10164. bool operator()(const llm_bigram_bpe & l, const llm_bigram_bpe & r) const {
  10165. return l.rank > r.rank || (l.rank == r.rank && l.left > r.left);
  10166. }
  10167. };
  10168. using queue_storage = std::vector<llm_bigram_bpe>;
  10169. using queue = std::priority_queue<llm_bigram_bpe, queue_storage, comparator>;
  10170. llm_symbol::index left;
  10171. llm_symbol::index right;
  10172. std::string text;
  10173. int rank;
  10174. size_t size;
  10175. };
  10176. struct llm_tokenizer_bpe {
  10177. llm_tokenizer_bpe(const llama_vocab & vocab): vocab(vocab) {}
  10178. void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
  10179. int final_prev_index = -1;
  10180. bool ignore_merges = false;
  10181. std::vector<std::string> word_collection;
  10182. switch (vocab.type) {
  10183. case LLAMA_VOCAB_TYPE_BPE:
  10184. switch (vocab.type_pre) {
  10185. case LLAMA_VOCAB_PRE_TYPE_LLAMA3:
  10186. ignore_merges = true;
  10187. word_collection = unicode_regex_split(text, {
  10188. // original regex from tokenizer.json
  10189. //"(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
  10190. // adapted: https://github.com/ggerganov/llama.cpp/pull/6920#issuecomment-2080233989
  10191. "(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
  10192. });
  10193. break;
  10194. case LLAMA_VOCAB_PRE_TYPE_DBRX:
  10195. word_collection = unicode_regex_split(text, {
  10196. // same as llama3
  10197. "(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
  10198. });
  10199. break;
  10200. case LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_LLM:
  10201. word_collection = unicode_regex_split(text, {
  10202. "[\r\n]",
  10203. "\\s?[A-Za-zµÀ-ÖØ-öø-ƺƼ-ƿDŽ-ʓʕ-ʯͰ-ͳͶͷͻ-ͽͿΆΈ-ΊΌΎ-ΡΣ-ϵϷ-ҁҊ-ԯԱ-ՖႠ-ჅᎠ-Ᏽᏸ-ᏽᲐ-ᲺᲽ-Ჿᴀ-ᴫᵫ-ᵷᵹ-ᶚḀ-ἕἘ-Ἕἠ-ὅὈ-Ὅὐ-ὗὙὛὝὟ-ώᾀ-ᾴᾶ-ᾼιῂ-ῄῆ-ῌῐ-ΐῖ-Ίῠ-Ῥῲ-ῴῶ-ῼℂℇℊ-ℓℕℙ-ℝℤΩℨK-ℭℯ-ℴℹℼ-ℿⅅ-ⅉⅎↃↄⰀ-ⱻⱾ-ⳤⳫ-ⳮⳲⳳꙀ-ꙭꚀ-ꚛꜢ-ꝯꝱ-ꞇꞋ-ꞎꭰ-ꮿff-stﬓ-ﬗA-Za-z𐐀-𐑏𐒰-𐓓𐓘-𐓻𐲀-𐲲𐳀-𐳲𑢠-𑣟𞤀-𞥃]+",
  10204. "\\s?[!-/:-~!-/:-~‘-‟ -。]+",
  10205. "\\s+$",
  10206. "[一-龥ࠀ-一가-퟿]+",
  10207. "\\p{N}+",
  10208. });
  10209. break;
  10210. case LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_CODER:
  10211. word_collection = unicode_regex_split(text, {
  10212. "[\r\n]",
  10213. "\\s?\\p{L}+",
  10214. "\\s?\\p{P}+",
  10215. "[一-龥ࠀ-一가-퟿]+",
  10216. "\\p{N}",
  10217. });
  10218. break;
  10219. case LLAMA_VOCAB_PRE_TYPE_FALCON:
  10220. word_collection = unicode_regex_split(text, {
  10221. "[\\p{P}\\$\\+<=>\\^~\\|]+",
  10222. "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
  10223. "[0-9][0-9][0-9]",
  10224. });
  10225. break;
  10226. case LLAMA_VOCAB_PRE_TYPE_MPT:
  10227. // TODO: MPT pre-tokenization regexes are unknown
  10228. // the following are close, but not exact. run the following:
  10229. // ./bin/test-tokenizer-0 ../models/ggml-vocab-mpt.gguf
  10230. GGML_ASSERT("MPT pre-tokenization regexes are unknown - fixes needed");
  10231. word_collection = unicode_regex_split(text, {
  10232. "\\s?\\p{L}+",
  10233. "\\s?\\p{P}+",
  10234. "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
  10235. });
  10236. break;
  10237. case LLAMA_VOCAB_PRE_TYPE_STARCODER:
  10238. case LLAMA_VOCAB_PRE_TYPE_REFACT:
  10239. case LLAMA_VOCAB_PRE_TYPE_COMMAND_R:
  10240. word_collection = unicode_regex_split(text, {
  10241. "\\p{N}",
  10242. "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
  10243. });
  10244. break;
  10245. case LLAMA_VOCAB_PRE_TYPE_GPT2:
  10246. case LLAMA_VOCAB_PRE_TYPE_OLMO:
  10247. word_collection = unicode_regex_split(text, {
  10248. "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
  10249. });
  10250. break;
  10251. case LLAMA_VOCAB_PRE_TYPE_QWEN2:
  10252. word_collection = unicode_regex_split(text, {
  10253. // original regex from tokenizer.json
  10254. // "(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+"
  10255. "(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
  10256. });
  10257. break;
  10258. default:
  10259. // default regex for BPE tokenization pre-processing
  10260. word_collection = unicode_regex_split(text, {
  10261. "[\\p{P}\\$\\+<=>\\^~\\|]+",
  10262. "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
  10263. "\\p{N}+",
  10264. "[0-9][0-9][0-9]",
  10265. });
  10266. break;
  10267. }
  10268. break;
  10269. default:
  10270. GGML_ASSERT(false);
  10271. break;
  10272. }
  10273. symbols_final.clear();
  10274. for (auto & word : word_collection) {
  10275. work_queue = llm_bigram_bpe::queue();
  10276. symbols.clear();
  10277. int index = 0;
  10278. size_t offset = 0;
  10279. if (ignore_merges && vocab.token_to_id.find(word) != vocab.token_to_id.end()) {
  10280. symbols.emplace_back(llm_symbol{-1, -1, word.c_str(), word.size()});
  10281. offset = word.size();
  10282. }
  10283. while (offset < word.size()) {
  10284. llm_symbol sym;
  10285. size_t char_len = std::min(word.size() - offset, (size_t) ::utf8_len(word[offset]));
  10286. sym.text = word.c_str() + offset;
  10287. sym.n = char_len;
  10288. offset += sym.n;
  10289. sym.prev = index - 1;
  10290. sym.next = offset == word.size() ? -1 : index + 1;
  10291. index++;
  10292. symbols.emplace_back(sym);
  10293. }
  10294. for (size_t i = 1; i < symbols.size(); ++i) {
  10295. add_new_bigram(i - 1, i);
  10296. }
  10297. // build token(s)
  10298. while (!work_queue.empty()) {
  10299. auto bigram = work_queue.top();
  10300. work_queue.pop();
  10301. auto & left_symbol = symbols[bigram.left];
  10302. auto & right_symbol = symbols[bigram.right];
  10303. if (left_symbol.n == 0 || right_symbol.n == 0) {
  10304. continue;
  10305. }
  10306. std::string left_token = std::string(left_symbol.text, left_symbol.n);
  10307. std::string right_token = std::string(right_symbol.text, right_symbol.n);
  10308. if (left_token + right_token != bigram.text) {
  10309. continue; // Skip this bigram if it's outdated
  10310. }
  10311. // merge the right sym into the left one
  10312. left_symbol.n += right_symbol.n;
  10313. right_symbol.n = 0;
  10314. // remove the right sym from the chain
  10315. left_symbol.next = right_symbol.next;
  10316. if (right_symbol.next >= 0) {
  10317. symbols[right_symbol.next].prev = bigram.left;
  10318. }
  10319. add_new_bigram(left_symbol.prev, bigram.left); // left side of current symbol
  10320. add_new_bigram(bigram.left, left_symbol.next); // right side of current symbol
  10321. }
  10322. // add the finished tokens to the final list keeping correct order for next and prev
  10323. for (auto & sym : symbols) {
  10324. if (sym.n > 0) {
  10325. sym.prev = final_prev_index;
  10326. sym.next = -1;
  10327. if (final_prev_index != -1) {
  10328. symbols_final[final_prev_index].next = symbols_final.size();
  10329. }
  10330. symbols_final.emplace_back(sym);
  10331. final_prev_index = symbols_final.size() - 1;
  10332. }
  10333. }
  10334. }
  10335. symbols = symbols_final;
  10336. if (!symbols.empty()) {
  10337. for (int i = 0; i != -1; i = symbols[i].next) {
  10338. auto & symbol = symbols[i];
  10339. if (symbol.n == 0) {
  10340. continue;
  10341. }
  10342. const std::string str = std::string(symbol.text, symbol.n);
  10343. const auto token = vocab.token_to_id.find(str);
  10344. if (token == vocab.token_to_id.end()) {
  10345. for (auto j = str.begin(); j != str.end(); ++j) {
  10346. std::string byte_str(1, *j);
  10347. auto token_multibyte = vocab.token_to_id.find(byte_str);
  10348. if (token_multibyte == vocab.token_to_id.end()) {
  10349. throw std::runtime_error("ERROR: byte not found in vocab");
  10350. }
  10351. output.push_back((*token_multibyte).second);
  10352. }
  10353. } else {
  10354. output.push_back((*token).second);
  10355. }
  10356. }
  10357. }
  10358. }
  10359. private:
  10360. void add_new_bigram(int left, int right) {
  10361. if (left == -1 || right == -1) {
  10362. return;
  10363. }
  10364. std::string left_token = std::string(symbols[left].text, symbols[left].n);
  10365. std::string right_token = std::string(symbols[right].text, symbols[right].n);
  10366. int rank_found = -1;
  10367. rank_found = vocab.find_bpe_rank(left_token, right_token);
  10368. if (rank_found < 0) {
  10369. return;
  10370. }
  10371. llm_bigram_bpe bigram;
  10372. bigram.left = left;
  10373. bigram.right = right;
  10374. bigram.text = left_token + right_token;
  10375. bigram.size = left_token.size() + right_token.size();
  10376. bigram.rank = rank_found;
  10377. work_queue.push(bigram);
  10378. }
  10379. const llama_vocab & vocab;
  10380. std::vector<llm_symbol> symbols;
  10381. std::vector<llm_symbol> symbols_final;
  10382. llm_bigram_bpe::queue work_queue;
  10383. };
  10384. struct llm_tokenizer_wpm {
  10385. llm_tokenizer_wpm(const llama_vocab & vocab): vocab(vocab) {}
  10386. void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
  10387. auto * token_map = &vocab.token_to_id;
  10388. // normalize and split by whitespace
  10389. std::vector<std::string> words = preprocess(text);
  10390. // bos token prepended already
  10391. // find the longest tokens that form the words
  10392. for (const std::string &word : words) {
  10393. // skip empty words
  10394. if (word.size() == 0) {
  10395. continue;
  10396. }
  10397. // prepend phantom space
  10398. std::string word1 = "\xe2\x96\x81" + word;
  10399. int n = word1.size();
  10400. // we're at the start of a new word
  10401. int i = 0;
  10402. bool match_any = false;
  10403. // move through character position in word
  10404. while (i < n) {
  10405. // loop through possible match length
  10406. bool match = false;
  10407. for (int j = n; j > i; j--) {
  10408. auto it = token_map->find(word1.substr(i, j - i));
  10409. if (it != token_map->end()) {
  10410. output.push_back(it->second);
  10411. match = true;
  10412. match_any = true;
  10413. i = j;
  10414. break;
  10415. }
  10416. }
  10417. // must be an unknown character
  10418. if (!match) {
  10419. i++;
  10420. }
  10421. }
  10422. // we didn't find any matches for this word
  10423. if (!match_any) {
  10424. output.push_back(vocab.special_unk_id);
  10425. }
  10426. }
  10427. }
  10428. std::vector<std::string> preprocess(const std::string & text) {
  10429. std::vector<uint32_t> cpts_nfd = unicode_cpts_normalize_nfd(unicode_cpts_from_utf8(text));
  10430. // strip accents, strip control, uniformize whitespace,
  10431. // to lowercase, pad chinese characters, pad punctuation
  10432. std::string new_str = "";
  10433. for (uint32_t code : cpts_nfd) {
  10434. const codepoint_flags flags = unicode_cpt_flags(code);
  10435. if (flags.is_accent_mark || flags.is_control) {
  10436. continue;
  10437. }
  10438. code = unicode_tolower(code);
  10439. if (flags.is_separator || flags.is_whitespace) { //####FIXME: is_separator ?
  10440. code = ' ';
  10441. }
  10442. std::string s = unicode_cpt_to_utf8(code);
  10443. if (flags.is_punctuation || is_ascii_punct(code) || is_chinese_char(code)) {
  10444. new_str += " ";
  10445. new_str += s;
  10446. new_str += " ";
  10447. } else {
  10448. new_str += s;
  10449. }
  10450. }
  10451. // split by whitespace
  10452. uint64_t l = 0;
  10453. uint64_t r = 0;
  10454. std::vector<std::string> words;
  10455. while (r < new_str.size()) {
  10456. // if is whitespace
  10457. if (isspace(new_str[r], std::locale::classic())) {
  10458. if (r > l) words.push_back(new_str.substr(l, (r - l)));
  10459. l = r + 1;
  10460. r = l;
  10461. } else {
  10462. r += 1;
  10463. }
  10464. }
  10465. if (r > l) {
  10466. words.push_back(new_str.substr(l, (r - l)));
  10467. }
  10468. return words;
  10469. }
  10470. bool is_ascii_punct(uint32_t code) {
  10471. if (code > 0xFF) {
  10472. return false;
  10473. }
  10474. auto c = char(static_cast<unsigned char>(code));
  10475. return ispunct(c, std::locale::classic());
  10476. }
  10477. bool is_chinese_char(uint32_t cpt) {
  10478. if ((cpt >= 0x4E00 && cpt <= 0x9FFF) ||
  10479. (cpt >= 0x3400 && cpt <= 0x4DBF) ||
  10480. (cpt >= 0x20000 && cpt <= 0x2A6DF) ||
  10481. (cpt >= 0x2A700 && cpt <= 0x2B73F) ||
  10482. (cpt >= 0x2B740 && cpt <= 0x2B81F) ||
  10483. (cpt >= 0x2B920 && cpt <= 0x2CEAF) || // this should be 0x2B820 but in hf rust code it is 0x2B920
  10484. (cpt >= 0xF900 && cpt <= 0xFAFF) ||
  10485. (cpt >= 0x2F800 && cpt <= 0x2FA1F) ||
  10486. (cpt >= 0x3000 && cpt <= 0x303F) ||
  10487. (cpt >= 0xFF00 && cpt <= 0xFFEF)) {
  10488. return true; // NOLINT
  10489. }
  10490. return false;
  10491. }
  10492. const llama_vocab & vocab;
  10493. };
  10494. typedef enum FRAGMENT_BUFFER_VARIANT_TYPE {
  10495. FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN,
  10496. FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT
  10497. } FRAGMENT_BUFFER_VARIANT_TYPE;
  10498. struct fragment_buffer_variant {
  10499. fragment_buffer_variant(llama_vocab::id _token)
  10500. :
  10501. type(FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN),
  10502. token(_token),
  10503. raw_text(_dummy),
  10504. offset(0),
  10505. length(0) {}
  10506. fragment_buffer_variant(const std::string & _raw_text, int64_t _offset, int64_t _length)
  10507. :
  10508. type(FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT),
  10509. token((llama_vocab::id) - 1),
  10510. raw_text(_raw_text),
  10511. offset(_offset),
  10512. length(_length){
  10513. GGML_ASSERT(_offset >= 0);
  10514. GGML_ASSERT(_length >= 1);
  10515. GGML_ASSERT(offset + length <= raw_text.length());
  10516. }
  10517. const FRAGMENT_BUFFER_VARIANT_TYPE type;
  10518. const llama_vocab::id token;
  10519. const std::string _dummy;
  10520. const std::string & raw_text;
  10521. const uint64_t offset;
  10522. const uint64_t length;
  10523. };
  10524. // #define PRETOKENIZERDEBUG
  10525. static void tokenizer_st_partition(const llama_vocab & vocab, std::forward_list<fragment_buffer_variant> & buffer) {
  10526. // for each special token
  10527. for (const auto & st: vocab.special_tokens_cache) {
  10528. const auto & special_token = st.first;
  10529. const auto & special_id = st.second;
  10530. // for each text fragment
  10531. std::forward_list<fragment_buffer_variant>::iterator it = buffer.begin();
  10532. while (it != buffer.end()) {
  10533. auto & fragment = (*it);
  10534. // if a fragment is text ( not yet processed )
  10535. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  10536. auto * raw_text = &(fragment.raw_text);
  10537. auto raw_text_base_offset = fragment.offset;
  10538. auto raw_text_base_length = fragment.length;
  10539. // loop over the text
  10540. while (true) {
  10541. // find the first occurrence of a given special token in this fragment
  10542. // passing offset argument only limit the "search area" but match coordinates
  10543. // are still relative to the source full raw_text
  10544. auto match = raw_text->find(special_token, raw_text_base_offset);
  10545. // no occurrences found, stop processing this fragment for a given special token
  10546. if (match == std::string::npos) break;
  10547. // check if match is within bounds of offset <-> length
  10548. if (match + special_token.length() > raw_text_base_offset + raw_text_base_length) break;
  10549. #ifdef PRETOKENIZERDEBUG
  10550. LLAMA_LOG_WARN("FF: (%ld %ld %ld) '%s'\n", raw_text->length(), raw_text_base_offset, raw_text_base_length, raw_text->substr(raw_text_base_offset, raw_text_base_length).c_str());
  10551. #endif
  10552. auto source = std::distance(buffer.begin(), it);
  10553. // if match is further than base offset
  10554. // then we have some text to the left of it
  10555. if (match > raw_text_base_offset) {
  10556. // left
  10557. const int64_t left_reminder_offset = raw_text_base_offset + 0;
  10558. const int64_t left_reminder_length = match - raw_text_base_offset;
  10559. buffer.emplace_after(it, (*raw_text), left_reminder_offset, left_reminder_length);
  10560. #ifdef PRETOKENIZERDEBUG
  10561. LLAMA_LOG_WARN("FL: (%ld %ld) '%s'\n", left_reminder_offset, left_reminder_length, raw_text->substr(left_reminder_offset, left_reminder_length).c_str());
  10562. #endif
  10563. it++;
  10564. }
  10565. // special token
  10566. buffer.emplace_after(it, special_id);
  10567. it++;
  10568. // right
  10569. if (match + special_token.length() < raw_text_base_offset + raw_text_base_length) {
  10570. const int64_t right_reminder_offset = match + special_token.length();
  10571. const int64_t right_reminder_length = raw_text_base_length - ((match - raw_text_base_offset) + special_token.length());
  10572. buffer.emplace_after(it, (*raw_text), right_reminder_offset, right_reminder_length);
  10573. #ifdef PRETOKENIZERDEBUG
  10574. LLAMA_LOG_WARN("FR: (%ld %ld) '%s'\n", right_reminder_offset, right_reminder_length, raw_text->substr(right_reminder_offset, right_reminder_length).c_str());
  10575. #endif
  10576. it++;
  10577. if (source == 0) {
  10578. buffer.erase_after(buffer.before_begin());
  10579. } else {
  10580. buffer.erase_after(std::next(buffer.begin(), (source-1)));
  10581. }
  10582. // repeat for the right side
  10583. raw_text_base_offset = right_reminder_offset;
  10584. raw_text_base_length = right_reminder_length;
  10585. #ifdef PRETOKENIZERDEBUG
  10586. LLAMA_LOG_WARN("RR: (%ld %ld) '%s'\n", raw_text_base_offset, raw_text_base_length, raw_text->substr(raw_text_base_offset, raw_text_base_length).c_str());
  10587. #endif
  10588. } else {
  10589. if (source == 0) {
  10590. buffer.erase_after(buffer.before_begin());
  10591. } else {
  10592. buffer.erase_after(std::next(buffer.begin(), (source-1)));
  10593. }
  10594. break;
  10595. }
  10596. }
  10597. }
  10598. it++;
  10599. }
  10600. }
  10601. }
  10602. static std::vector<llama_vocab::id> llama_tokenize_internal(const llama_vocab & vocab, std::string raw_text, bool add_special, bool parse_special) {
  10603. std::vector<llama_vocab::id> output;
  10604. std::forward_list<fragment_buffer_variant> fragment_buffer;
  10605. if (!raw_text.empty()) {
  10606. fragment_buffer.emplace_front(raw_text, 0, raw_text.length());
  10607. if (parse_special) tokenizer_st_partition(vocab, fragment_buffer);
  10608. }
  10609. switch (vocab.type) {
  10610. case LLAMA_VOCAB_TYPE_SPM:
  10611. {
  10612. // OG tokenizer behavior:
  10613. //
  10614. // tokenizer.encode('', add_special_tokens=True) returns [1]
  10615. // tokenizer.encode('', add_special_tokens=False) returns []
  10616. if (add_special && vocab.special_add_bos != 0) {
  10617. GGML_ASSERT(vocab.special_bos_id != -1);
  10618. output.push_back(vocab.special_bos_id);
  10619. }
  10620. for (const auto & fragment : fragment_buffer) {
  10621. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  10622. // without adding this leading whitespace, we do not get the same results as the original tokenizer
  10623. // TODO: It's likely possible to get rid of this string copy entirely
  10624. // by modifying llm_tokenizer_x to operate with string offsets like pre-tokenizer
  10625. // and passing 'add space prefix' as bool argument
  10626. //
  10627. auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
  10628. if (&fragment == &fragment_buffer.front()) {
  10629. if (vocab.add_space_prefix) {
  10630. raw_text = " " + raw_text; // prefix with space if the first token is not special
  10631. }
  10632. }
  10633. #ifdef PRETOKENIZERDEBUG
  10634. LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
  10635. #endif
  10636. llm_tokenizer_spm tokenizer(vocab);
  10637. llama_escape_whitespace(raw_text);
  10638. tokenizer.tokenize(raw_text, output);
  10639. } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
  10640. output.push_back(fragment.token);
  10641. }
  10642. }
  10643. if (add_special && vocab.special_add_bos != 0 && output.size() >= 2 && output[1] == vocab.special_bos_id) {
  10644. LLAMA_LOG_WARN(
  10645. "%s: Added a BOS token to the prompt as specified by the model but the prompt "
  10646. "also starts with a BOS token. So now the final prompt starts with 2 BOS tokens. "
  10647. "Are you sure this is what you want?\n", __FUNCTION__);
  10648. }
  10649. if (add_special && vocab.special_add_eos == 1) {
  10650. GGML_ASSERT(vocab.special_eos_id != -1);
  10651. output.push_back(vocab.special_eos_id);
  10652. }
  10653. } break;
  10654. case LLAMA_VOCAB_TYPE_BPE:
  10655. {
  10656. if (add_special && vocab.special_add_bos != 0) {
  10657. GGML_ASSERT(vocab.special_bos_id != -1);
  10658. output.push_back(vocab.special_bos_id);
  10659. }
  10660. for (const auto & fragment : fragment_buffer) {
  10661. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  10662. auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
  10663. #ifdef PRETOKENIZERDEBUG
  10664. LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
  10665. #endif
  10666. llm_tokenizer_bpe tokenizer(vocab);
  10667. tokenizer.tokenize(raw_text, output);
  10668. } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
  10669. output.push_back(fragment.token);
  10670. }
  10671. }
  10672. if (add_special && vocab.special_add_bos != 0 && output.size() >= 2 && output[1] == vocab.special_bos_id) {
  10673. LLAMA_LOG_WARN(
  10674. "%s: Added a BOS token to the prompt as specified by the model but the prompt "
  10675. "also starts with a BOS token. So now the final prompt starts with 2 BOS tokens. "
  10676. "Are you sure this is what you want?\n", __FUNCTION__);
  10677. }
  10678. if (add_special && vocab.special_add_eos == 1) {
  10679. GGML_ASSERT(vocab.special_add_eos != -1);
  10680. output.push_back(vocab.special_eos_id);
  10681. }
  10682. } break;
  10683. case LLAMA_VOCAB_TYPE_WPM:
  10684. {
  10685. if (add_special) {
  10686. GGML_ASSERT(vocab.special_cls_id != -1);
  10687. output.push_back(vocab.special_cls_id);
  10688. }
  10689. for (const auto & fragment : fragment_buffer) {
  10690. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  10691. auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
  10692. #ifdef PRETOKENIZERDEBUG
  10693. LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
  10694. #endif
  10695. llm_tokenizer_wpm tokenizer(vocab);
  10696. tokenizer.tokenize(raw_text, output);
  10697. } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
  10698. output.push_back(fragment.token);
  10699. }
  10700. }
  10701. if (add_special) {
  10702. GGML_ASSERT(vocab.special_sep_id != -1);
  10703. output.push_back(vocab.special_sep_id);
  10704. }
  10705. } break;
  10706. case LLAMA_VOCAB_TYPE_NONE:
  10707. GGML_ASSERT(false);
  10708. }
  10709. return output;
  10710. }
  10711. //
  10712. // grammar - internal
  10713. //
  10714. // Decodes a UTF-8 string which may end in an incomplete sequence. Adds a terminating 0 for use as
  10715. // pointer. If an invalid sequence is encountered, returns `llama_partial_utf8.n_remain == -1`.
  10716. std::pair<std::vector<uint32_t>, llama_partial_utf8> decode_utf8(
  10717. const std::string & src,
  10718. llama_partial_utf8 partial_start) {
  10719. static const int lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 2, 2, 3, 4 };
  10720. const char * pos = src.c_str();
  10721. std::vector<uint32_t> code_points;
  10722. // common english strings have the same number of codepoints and bytes. `+ 1` for the terminating 0.
  10723. code_points.reserve(src.size() + 1);
  10724. uint32_t value = partial_start.value;
  10725. int n_remain = partial_start.n_remain;
  10726. // continue previous decode, if applicable
  10727. while (*pos != 0 && n_remain > 0) {
  10728. uint8_t next_byte = static_cast<uint8_t>(*pos);
  10729. if ((next_byte >> 6) != 2) {
  10730. // invalid sequence, abort
  10731. code_points.push_back(0);
  10732. return std::make_pair(std::move(code_points), llama_partial_utf8{ 0, -1 });
  10733. }
  10734. value = (value << 6) + (next_byte & 0x3F);
  10735. ++pos;
  10736. --n_remain;
  10737. }
  10738. if (partial_start.n_remain > 0 && n_remain == 0) {
  10739. code_points.push_back(value);
  10740. }
  10741. // decode any subsequent utf-8 sequences, which may end in an incomplete one
  10742. while (*pos != 0) {
  10743. uint8_t first_byte = static_cast<uint8_t>(*pos);
  10744. uint8_t highbits = first_byte >> 4;
  10745. n_remain = lookup[highbits] - 1;
  10746. if (n_remain < 0) {
  10747. // invalid sequence, abort
  10748. code_points.clear();
  10749. code_points.push_back(0);
  10750. return std::make_pair(std::move(code_points), llama_partial_utf8{ 0, n_remain });
  10751. }
  10752. uint8_t mask = (1 << (7 - n_remain)) - 1;
  10753. value = first_byte & mask;
  10754. ++pos;
  10755. while (*pos != 0 && n_remain > 0) {
  10756. value = (value << 6) + (static_cast<uint8_t>(*pos) & 0x3F);
  10757. ++pos;
  10758. --n_remain;
  10759. }
  10760. if (n_remain == 0) {
  10761. code_points.push_back(value);
  10762. }
  10763. }
  10764. code_points.push_back(0);
  10765. return std::make_pair(std::move(code_points), llama_partial_utf8{ value, n_remain });
  10766. }
  10767. // returns true iff pos points to the end of one of the definitions of a rule
  10768. static bool llama_grammar_is_end_of_sequence(const llama_grammar_element * pos) {
  10769. switch (pos->type) {
  10770. case LLAMA_GRETYPE_END: return true; // NOLINT
  10771. case LLAMA_GRETYPE_ALT: return true; // NOLINT
  10772. default: return false;
  10773. }
  10774. }
  10775. // returns true iff chr satisfies the char range at pos (regular or inverse range)
  10776. // asserts that pos is pointing to a char range element
  10777. static std::pair<bool, const llama_grammar_element *> llama_grammar_match_char(
  10778. const llama_grammar_element * pos,
  10779. const uint32_t chr) {
  10780. bool found = false;
  10781. bool is_positive_char = pos->type == LLAMA_GRETYPE_CHAR;
  10782. GGML_ASSERT(is_positive_char || pos->type == LLAMA_GRETYPE_CHAR_NOT); // NOLINT
  10783. do {
  10784. if (pos[1].type == LLAMA_GRETYPE_CHAR_RNG_UPPER) {
  10785. // inclusive range, e.g. [a-z]
  10786. found = found || (pos->value <= chr && chr <= pos[1].value);
  10787. pos += 2;
  10788. } else {
  10789. // exact char match, e.g. [a] or "a"
  10790. found = found || pos->value == chr;
  10791. pos += 1;
  10792. }
  10793. } while (pos->type == LLAMA_GRETYPE_CHAR_ALT);
  10794. return std::make_pair(found == is_positive_char, pos);
  10795. }
  10796. // returns true iff some continuation of the given partial UTF-8 sequence could satisfy the char
  10797. // range at pos (regular or inverse range)
  10798. // asserts that pos is pointing to a char range element
  10799. static bool llama_grammar_match_partial_char(
  10800. const llama_grammar_element * pos,
  10801. const llama_partial_utf8 partial_utf8) {
  10802. bool is_positive_char = pos->type == LLAMA_GRETYPE_CHAR;
  10803. GGML_ASSERT(is_positive_char || pos->type == LLAMA_GRETYPE_CHAR_NOT);
  10804. uint32_t partial_value = partial_utf8.value;
  10805. int n_remain = partial_utf8.n_remain;
  10806. // invalid sequence or 7-bit char split across 2 bytes (overlong)
  10807. if (n_remain < 0 || (n_remain == 1 && partial_value < 2)) {
  10808. return false;
  10809. }
  10810. // range of possible code points this partial UTF-8 sequence could complete to
  10811. uint32_t low = partial_value << (n_remain * 6);
  10812. uint32_t high = low | ((1 << (n_remain * 6)) - 1);
  10813. if (low == 0) {
  10814. if (n_remain == 2) {
  10815. low = 1 << 11;
  10816. } else if (n_remain == 3) {
  10817. low = 1 << 16;
  10818. }
  10819. }
  10820. do {
  10821. if (pos[1].type == LLAMA_GRETYPE_CHAR_RNG_UPPER) {
  10822. // inclusive range, e.g. [a-z]
  10823. if (pos->value <= high && low <= pos[1].value) {
  10824. return is_positive_char;
  10825. }
  10826. pos += 2;
  10827. } else {
  10828. // exact char match, e.g. [a] or "a"
  10829. if (low <= pos->value && pos->value <= high) {
  10830. return is_positive_char;
  10831. }
  10832. pos += 1;
  10833. }
  10834. } while (pos->type == LLAMA_GRETYPE_CHAR_ALT);
  10835. return !is_positive_char;
  10836. }
  10837. // transforms a grammar pushdown stack into N possible stacks, all ending
  10838. // at a character range (terminal element)
  10839. static void llama_grammar_advance_stack(
  10840. const std::vector<std::vector<llama_grammar_element>> & rules,
  10841. const std::vector<const llama_grammar_element *> & stack,
  10842. std::vector<std::vector<const llama_grammar_element *>> & new_stacks) {
  10843. if (stack.empty()) {
  10844. if (std::find(new_stacks.begin(), new_stacks.end(), stack) == new_stacks.end()) {
  10845. new_stacks.emplace_back(stack);
  10846. }
  10847. return;
  10848. }
  10849. const llama_grammar_element * pos = stack.back();
  10850. switch (pos->type) {
  10851. case LLAMA_GRETYPE_RULE_REF: {
  10852. const size_t rule_id = static_cast<size_t>(pos->value);
  10853. const llama_grammar_element * subpos = rules[rule_id].data();
  10854. do {
  10855. // init new stack without the top (pos)
  10856. std::vector<const llama_grammar_element *> new_stack(stack.begin(), stack.end() - 1);
  10857. if (!llama_grammar_is_end_of_sequence(pos + 1)) {
  10858. // if this rule ref is followed by another element, add that to stack
  10859. new_stack.push_back(pos + 1);
  10860. }
  10861. if (!llama_grammar_is_end_of_sequence(subpos)) {
  10862. // if alternate is nonempty, add to stack
  10863. new_stack.push_back(subpos);
  10864. }
  10865. llama_grammar_advance_stack(rules, new_stack, new_stacks);
  10866. while (!llama_grammar_is_end_of_sequence(subpos)) {
  10867. // scan to end of alternate def
  10868. subpos++;
  10869. }
  10870. if (subpos->type == LLAMA_GRETYPE_ALT) {
  10871. // there's another alternate def of this rule to process
  10872. subpos++;
  10873. } else {
  10874. break;
  10875. }
  10876. } while (true);
  10877. break;
  10878. }
  10879. case LLAMA_GRETYPE_CHAR:
  10880. case LLAMA_GRETYPE_CHAR_NOT:
  10881. if (std::find(new_stacks.begin(), new_stacks.end(), stack) == new_stacks.end()) {
  10882. // only add the stack if it's not a duplicate of one we already have
  10883. new_stacks.emplace_back(stack);
  10884. }
  10885. break;
  10886. default:
  10887. // end of alternate (LLAMA_GRETYPE_END, LLAMA_GRETYPE_ALT) or middle of char range
  10888. // (LLAMA_GRETYPE_CHAR_ALT, LLAMA_GRETYPE_CHAR_RNG_UPPER); stack should never be left on
  10889. // those
  10890. GGML_ASSERT(false);
  10891. }
  10892. }
  10893. // takes a set of possible pushdown stacks on a grammar, which are required to
  10894. // be positioned at a character range (see `llama_grammar_advance_stack`), and
  10895. // produces the N possible stacks if the given char is accepted at those
  10896. // positions
  10897. void llama_grammar_accept(
  10898. const std::vector<std::vector<llama_grammar_element>> & rules,
  10899. const std::vector<std::vector<const llama_grammar_element *>> & stacks,
  10900. const uint32_t chr,
  10901. std::vector<std::vector<const llama_grammar_element *>> & new_stacks) {
  10902. new_stacks.clear();
  10903. for (const auto & stack : stacks) {
  10904. if (stack.empty()) {
  10905. continue;
  10906. }
  10907. auto match = llama_grammar_match_char(stack.back(), chr);
  10908. if (match.first) {
  10909. const llama_grammar_element * pos = match.second;
  10910. // update top of stack to next element, if any
  10911. std::vector<const llama_grammar_element *> new_stack(stack.begin(), stack.end() - 1);
  10912. if (!llama_grammar_is_end_of_sequence(pos)) {
  10913. new_stack.push_back(pos);
  10914. }
  10915. llama_grammar_advance_stack(rules, new_stack, new_stacks);
  10916. }
  10917. }
  10918. }
  10919. static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates(
  10920. const std::vector<std::vector<llama_grammar_element>> & rules,
  10921. const std::vector<std::vector<const llama_grammar_element *>> & stacks,
  10922. const std::vector<llama_grammar_candidate> & candidates);
  10923. static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates_for_stack(
  10924. const std::vector<std::vector<llama_grammar_element>> & rules,
  10925. const std::vector<const llama_grammar_element *> & stack,
  10926. const std::vector<llama_grammar_candidate> & candidates) {
  10927. std::vector<llama_grammar_candidate> rejects;
  10928. rejects.reserve(candidates.size());
  10929. if (stack.empty()) {
  10930. for (const auto & tok : candidates) {
  10931. if (*tok.code_points != 0 || tok.partial_utf8.n_remain != 0) {
  10932. rejects.push_back(tok);
  10933. }
  10934. }
  10935. return rejects;
  10936. }
  10937. const llama_grammar_element * stack_pos = stack.back();
  10938. std::vector<llama_grammar_candidate> next_candidates;
  10939. next_candidates.reserve(candidates.size());
  10940. for (const auto & tok : candidates) {
  10941. if (*tok.code_points == 0) {
  10942. // reached end of full codepoints in token, reject iff it ended in a partial sequence
  10943. // that cannot satisfy this position in grammar
  10944. if (tok.partial_utf8.n_remain != 0 &&
  10945. !llama_grammar_match_partial_char(stack_pos, tok.partial_utf8)) {
  10946. rejects.push_back(tok);
  10947. }
  10948. } else if (llama_grammar_match_char(stack_pos, *tok.code_points).first) {
  10949. next_candidates.push_back({ tok.index, tok.code_points + 1, tok.partial_utf8 });
  10950. } else {
  10951. rejects.push_back(tok);
  10952. }
  10953. }
  10954. const auto * stack_pos_after = llama_grammar_match_char(stack_pos, 0).second;
  10955. // update top of stack to next element, if any
  10956. std::vector<const llama_grammar_element *> stack_after(stack.begin(), stack.end() - 1);
  10957. if (!llama_grammar_is_end_of_sequence(stack_pos_after)) {
  10958. stack_after.push_back(stack_pos_after);
  10959. }
  10960. std::vector<std::vector<const llama_grammar_element *>> next_stacks;
  10961. llama_grammar_advance_stack(rules, stack_after, next_stacks);
  10962. auto next_rejects = llama_grammar_reject_candidates(rules, next_stacks, next_candidates);
  10963. for (const auto & tok : next_rejects) {
  10964. rejects.push_back({ tok.index, tok.code_points - 1, tok.partial_utf8 });
  10965. }
  10966. return rejects;
  10967. }
  10968. static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates(
  10969. const std::vector<std::vector<llama_grammar_element>> & rules,
  10970. const std::vector<std::vector<const llama_grammar_element *>> & stacks,
  10971. const std::vector<llama_grammar_candidate> & candidates) {
  10972. GGML_ASSERT(!stacks.empty()); // REVIEW
  10973. if (candidates.empty()) {
  10974. return std::vector<llama_grammar_candidate>();
  10975. }
  10976. auto rejects = llama_grammar_reject_candidates_for_stack(rules, stacks.front(), candidates);
  10977. for (size_t i = 1, size = stacks.size(); i < size; ++i) {
  10978. rejects = llama_grammar_reject_candidates_for_stack(rules, stacks[i], rejects);
  10979. }
  10980. return rejects;
  10981. }
  10982. static bool llama_grammar_detect_left_recursion(
  10983. const std::vector<std::vector<llama_grammar_element>> & rules,
  10984. size_t rule_index,
  10985. std::vector<bool> * rules_visited,
  10986. std::vector<bool> * rules_in_progress,
  10987. std::vector<bool> * rules_may_be_empty) {
  10988. if ((*rules_in_progress)[rule_index]) {
  10989. return true;
  10990. }
  10991. (*rules_in_progress)[rule_index] = true;
  10992. const std::vector<llama_grammar_element> & rule = rules[rule_index];
  10993. // First check if the rule might produce the empty string. This could be done combined with the second
  10994. // step but it's more readable as two steps.
  10995. bool at_rule_start = true;
  10996. for (size_t i = 0; i < rule.size(); i++) {
  10997. if (llama_grammar_is_end_of_sequence(&rule[i])) {
  10998. if (at_rule_start) {
  10999. (*rules_may_be_empty)[rule_index] = true;
  11000. break;
  11001. }
  11002. at_rule_start = true;
  11003. } else {
  11004. at_rule_start = false;
  11005. }
  11006. }
  11007. // Second, recurse into leftmost nonterminals (or next-leftmost as long as the previous nonterminal may
  11008. // be empty)
  11009. bool recurse_into_nonterminal = true;
  11010. for (size_t i = 0; i < rule.size(); i++) {
  11011. if (rule[i].type == LLAMA_GRETYPE_RULE_REF && recurse_into_nonterminal) {
  11012. if (llama_grammar_detect_left_recursion(rules, (size_t)rule[i].value, rules_visited, rules_in_progress, rules_may_be_empty)) {
  11013. return true;
  11014. }
  11015. if (!((*rules_may_be_empty)[(size_t)rule[i].value])) {
  11016. recurse_into_nonterminal = false;
  11017. }
  11018. } else if (llama_grammar_is_end_of_sequence(&rule[i])) {
  11019. recurse_into_nonterminal = true;
  11020. } else {
  11021. recurse_into_nonterminal = false;
  11022. }
  11023. }
  11024. (*rules_in_progress)[rule_index] = false;
  11025. (*rules_visited)[rule_index] = true;
  11026. return false;
  11027. }
  11028. //
  11029. // grammar - external
  11030. //
  11031. struct llama_grammar * llama_grammar_init(
  11032. const llama_grammar_element ** rules,
  11033. size_t n_rules,
  11034. size_t start_rule_index) {
  11035. const llama_grammar_element * pos;
  11036. // copy rule definitions into vectors
  11037. std::vector<std::vector<llama_grammar_element>> vec_rules(n_rules);
  11038. for (size_t i = 0; i < n_rules; i++) {
  11039. for (pos = rules[i]; pos->type != LLAMA_GRETYPE_END; pos++) {
  11040. vec_rules[i].push_back(*pos);
  11041. }
  11042. vec_rules[i].push_back({LLAMA_GRETYPE_END, 0});
  11043. }
  11044. // Check for left recursion
  11045. std::vector<bool> rules_visited(n_rules);
  11046. std::vector<bool> rules_in_progress(n_rules);
  11047. std::vector<bool> rules_may_be_empty(n_rules);
  11048. for (size_t i = 0; i < n_rules; i++) {
  11049. if (rules_visited[i]) {
  11050. continue;
  11051. }
  11052. if (llama_grammar_detect_left_recursion(vec_rules, i, &rules_visited, &rules_in_progress, &rules_may_be_empty)) {
  11053. throw std::runtime_error(format("unsupported grammar, left recursion detected for nonterminal at index %zu", i));
  11054. }
  11055. }
  11056. // loop over alternates of start rule to build initial stacks
  11057. std::vector<std::vector<const llama_grammar_element *>> stacks;
  11058. pos = vec_rules[start_rule_index].data();
  11059. do {
  11060. std::vector<const llama_grammar_element *> stack;
  11061. if (!llama_grammar_is_end_of_sequence(pos)) {
  11062. // if alternate is nonempty, add to stack
  11063. stack.push_back(pos);
  11064. }
  11065. llama_grammar_advance_stack(vec_rules, stack, stacks);
  11066. while (!llama_grammar_is_end_of_sequence(pos)) {
  11067. // scan to end of alternate def
  11068. pos++;
  11069. }
  11070. if (pos->type == LLAMA_GRETYPE_ALT) {
  11071. // there's another alternate def of this rule to process
  11072. pos++;
  11073. } else {
  11074. break;
  11075. }
  11076. } while (true);
  11077. // Important: vec_rules has to be moved here, not copied, because stacks contains
  11078. // pointers to elements of vec_rules. If vec_rules were copied into llama_grammar
  11079. // then the pointers would be invalidated when the local vec_rules goes out of scope.
  11080. return new llama_grammar{ std::move(vec_rules), std::move(stacks), {} };
  11081. }
  11082. void llama_grammar_free(struct llama_grammar * grammar) {
  11083. delete grammar;
  11084. }
  11085. struct llama_grammar * llama_grammar_copy(const struct llama_grammar * grammar) {
  11086. llama_grammar * result = new llama_grammar{ grammar->rules, grammar->stacks, grammar->partial_utf8 };
  11087. // redirect elements in stacks to point to new rules
  11088. for (size_t is = 0; is < result->stacks.size(); is++) {
  11089. for (size_t ie = 0; ie < result->stacks[is].size(); ie++) {
  11090. for (size_t ir0 = 0; ir0 < grammar->rules.size(); ir0++) {
  11091. for (size_t ir1 = 0; ir1 < grammar->rules[ir0].size(); ir1++) {
  11092. if (grammar->stacks[is][ie] == &grammar->rules[ir0][ir1]) {
  11093. result->stacks[is][ie] = &result->rules[ir0][ir1];
  11094. }
  11095. }
  11096. }
  11097. }
  11098. }
  11099. return result;
  11100. }
  11101. //
  11102. // sampling
  11103. //
  11104. void llama_set_rng_seed(struct llama_context * ctx, uint32_t seed) {
  11105. if (seed == LLAMA_DEFAULT_SEED) {
  11106. seed = time(NULL);
  11107. }
  11108. ctx->rng.seed(seed);
  11109. }
  11110. void llama_sample_softmax(struct llama_context * ctx, llama_token_data_array * candidates) {
  11111. GGML_ASSERT(candidates->size > 0);
  11112. const int64_t t_start_sample_us = ggml_time_us();
  11113. // Sort the logits in descending order
  11114. if (!candidates->sorted) {
  11115. std::sort(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
  11116. return a.logit > b.logit;
  11117. });
  11118. candidates->sorted = true;
  11119. }
  11120. float max_l = candidates->data[0].logit;
  11121. float cum_sum = 0.0f;
  11122. for (size_t i = 0; i < candidates->size; ++i) {
  11123. float p = expf(candidates->data[i].logit - max_l);
  11124. candidates->data[i].p = p;
  11125. cum_sum += p;
  11126. }
  11127. for (size_t i = 0; i < candidates->size; ++i) {
  11128. candidates->data[i].p /= cum_sum;
  11129. }
  11130. if (ctx) {
  11131. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11132. }
  11133. }
  11134. void llama_sample_top_k(struct llama_context * ctx, llama_token_data_array * candidates, int32_t k, size_t min_keep) {
  11135. // TODO: move bucket sort to separate function so that top_p/tail_free/typical/softmax first is equally fast
  11136. // if (k >= (int32_t)candidates->size) {
  11137. // return;
  11138. // }
  11139. const int64_t t_start_sample_us = ggml_time_us();
  11140. if (k <= 0) {
  11141. k = candidates->size;
  11142. }
  11143. k = std::max(k, (int) min_keep);
  11144. k = std::min(k, (int) candidates->size);
  11145. // Sort scores in descending order
  11146. if (!candidates->sorted) {
  11147. auto comp = [](const llama_token_data & a, const llama_token_data & b) {
  11148. return a.logit > b.logit;
  11149. };
  11150. if (k <= 128) {
  11151. std::partial_sort(candidates->data, candidates->data + k, candidates->data + candidates->size, comp);
  11152. } else {
  11153. constexpr int nbuckets = 128;
  11154. constexpr float bucket_low = -10.0f;
  11155. constexpr float bucket_high = 10.0f;
  11156. constexpr float bucket_scale = nbuckets/(bucket_high - bucket_low);
  11157. constexpr float bucker_inter = -bucket_low * bucket_scale;
  11158. std::vector<int> bucket_idx(candidates->size);
  11159. std::vector<int> histo(nbuckets, 0);
  11160. for (int i = 0; i < (int)candidates->size; ++i) {
  11161. const float val = candidates->data[i].logit;
  11162. int ib = int(bucket_scale * val + bucker_inter); //nbuckets * (val - bucket_low) / (bucket_high - bucket_low);
  11163. ib = std::max(0, std::min(nbuckets-1, ib));
  11164. bucket_idx[i] = ib;
  11165. ++histo[ib];
  11166. }
  11167. int nhave = 0;
  11168. int ib = nbuckets - 1;
  11169. for ( ; ib >= 0; --ib) {
  11170. nhave += histo[ib];
  11171. if (nhave >= k) break;
  11172. }
  11173. std::vector<llama_token_data> tmp_tokens(nhave);
  11174. auto ptr = tmp_tokens.data();
  11175. std::vector<llama_token_data*> bucket_ptrs;
  11176. bucket_ptrs.reserve(nbuckets - ib);
  11177. for (int j = nbuckets - 1; j >= ib; --j) {
  11178. bucket_ptrs.push_back(ptr);
  11179. ptr += histo[j];
  11180. }
  11181. for (int i = 0; i < (int)candidates->size; ++i) {
  11182. int j = bucket_idx[i];
  11183. if (j >= ib) {
  11184. *bucket_ptrs[nbuckets-1-j]++ = candidates->data[i];
  11185. }
  11186. }
  11187. ptr = tmp_tokens.data();
  11188. int ndone = 0;
  11189. for (int j = nbuckets-1; j > ib; --j) {
  11190. std::sort(ptr, ptr + histo[j], comp);
  11191. ptr += histo[j];
  11192. ndone += histo[j];
  11193. }
  11194. std::partial_sort(ptr, ptr + k - ndone, ptr + histo[ib], comp);
  11195. std::memcpy(candidates->data, tmp_tokens.data(), k*sizeof(llama_token_data));
  11196. }
  11197. candidates->sorted = true;
  11198. }
  11199. candidates->size = k;
  11200. if (ctx) {
  11201. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11202. }
  11203. }
  11204. void llama_sample_top_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
  11205. if (p >= 1.0f) {
  11206. return;
  11207. }
  11208. llama_sample_softmax(ctx, candidates);
  11209. const int64_t t_start_sample_us = ggml_time_us();
  11210. // Compute the cumulative probabilities
  11211. float cum_sum = 0.0f;
  11212. size_t last_idx = candidates->size;
  11213. for (size_t i = 0; i < candidates->size; ++i) {
  11214. cum_sum += candidates->data[i].p;
  11215. // Check if the running sum is at least p or if we have kept at least min_keep tokens
  11216. // we set the last index to i+1 to indicate that the current iterate should be included in the set
  11217. if (cum_sum >= p && i + 1 >= min_keep) {
  11218. last_idx = i + 1;
  11219. break;
  11220. }
  11221. }
  11222. // Resize the output vector to keep only the top-p tokens
  11223. candidates->size = last_idx;
  11224. if (ctx) {
  11225. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11226. }
  11227. }
  11228. void llama_sample_min_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
  11229. if (p <= 0.0f || !candidates->size) {
  11230. return;
  11231. }
  11232. const int64_t t_start_sample_us = ggml_time_us();
  11233. bool min_p_applied = false;
  11234. // if the candidates aren't sorted, try the unsorted implementation first
  11235. if (!candidates->sorted) {
  11236. std::vector<llama_token_data> filtered_tokens;
  11237. float max_logit = -FLT_MAX;
  11238. for (size_t i = 0; i < candidates->size; ++i) {
  11239. max_logit = std::max(max_logit, candidates->data[i].logit);
  11240. }
  11241. const float min_logit = max_logit + logf(p); // min logit for p_i >= p * p_max
  11242. for (size_t i = 0; i < candidates->size; ++i) {
  11243. if (candidates->data[i].logit >= min_logit) {
  11244. filtered_tokens.push_back(candidates->data[i]);
  11245. }
  11246. }
  11247. // if we have enough values the operation was a success
  11248. if (filtered_tokens.size() >= min_keep) {
  11249. memcpy(candidates->data, filtered_tokens.data(), filtered_tokens.size()*sizeof(llama_token_data));
  11250. candidates->size = filtered_tokens.size();
  11251. min_p_applied = true;
  11252. }
  11253. }
  11254. // if the candidates are sorted or the unsorted implementation failed, use this implementation
  11255. if (!min_p_applied) {
  11256. // Sort the logits in descending order
  11257. if (!candidates->sorted) {
  11258. std::sort(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
  11259. return a.logit > b.logit;
  11260. });
  11261. candidates->sorted = true;
  11262. }
  11263. const float min_logit = candidates->data[0].logit + logf(p); // min logit for p_i >= p * p_max
  11264. size_t i = 1; // first token always matches
  11265. for (; i < candidates->size; ++i) {
  11266. if (candidates->data[i].logit < min_logit && i >= min_keep) {
  11267. break; // prob too small
  11268. }
  11269. }
  11270. // Resize the output vector to keep only the matching tokens
  11271. candidates->size = i;
  11272. }
  11273. if (ctx) {
  11274. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11275. }
  11276. }
  11277. void llama_sample_tail_free(struct llama_context * ctx, llama_token_data_array * candidates, float z, size_t min_keep) {
  11278. if (z >= 1.0f || candidates->size <= 2) {
  11279. return;
  11280. }
  11281. llama_sample_softmax(nullptr, candidates);
  11282. const int64_t t_start_sample_us = ggml_time_us();
  11283. // Compute the first and second derivatives
  11284. std::vector<float> first_derivatives(candidates->size - 1);
  11285. std::vector<float> second_derivatives(candidates->size - 2);
  11286. for (size_t i = 0; i < first_derivatives.size(); ++i) {
  11287. first_derivatives[i] = candidates->data[i].p - candidates->data[i + 1].p;
  11288. }
  11289. for (size_t i = 0; i < second_derivatives.size(); ++i) {
  11290. second_derivatives[i] = first_derivatives[i] - first_derivatives[i + 1];
  11291. }
  11292. // Calculate absolute value of second derivatives
  11293. for (size_t i = 0; i < second_derivatives.size(); ++i) {
  11294. second_derivatives[i] = std::abs(second_derivatives[i]);
  11295. }
  11296. // Normalize the second derivatives
  11297. {
  11298. const float second_derivatives_sum = std::accumulate(second_derivatives.begin(), second_derivatives.end(), 0.0f);
  11299. if (second_derivatives_sum > 1e-6f) {
  11300. for (float & value : second_derivatives) {
  11301. value /= second_derivatives_sum;
  11302. }
  11303. } else {
  11304. for (float & value : second_derivatives) {
  11305. value = 1.0f / second_derivatives.size();
  11306. }
  11307. }
  11308. }
  11309. float cum_sum = 0.0f;
  11310. size_t last_idx = candidates->size;
  11311. for (size_t i = 0; i < second_derivatives.size(); ++i) {
  11312. cum_sum += second_derivatives[i];
  11313. // Check if the running sum is greater than z or if we have kept at least min_keep tokens
  11314. if (cum_sum > z && i >= min_keep) {
  11315. last_idx = i;
  11316. break;
  11317. }
  11318. }
  11319. // Resize the output vector to keep only the tokens above the tail location
  11320. candidates->size = last_idx;
  11321. if (ctx) {
  11322. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11323. }
  11324. }
  11325. void llama_sample_typical(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
  11326. // Reference implementation:
  11327. // https://github.com/huggingface/transformers/compare/main...cimeister:typical-sampling:typical-pr
  11328. if (p >= 1.0f) {
  11329. return;
  11330. }
  11331. // Compute the softmax of logits and calculate entropy
  11332. llama_sample_softmax(nullptr, candidates);
  11333. const int64_t t_start_sample_us = ggml_time_us();
  11334. float entropy = 0.0f;
  11335. for (size_t i = 0; i < candidates->size; ++i) {
  11336. entropy += -candidates->data[i].p * logf(candidates->data[i].p);
  11337. }
  11338. // Compute the absolute difference between negative log probability and entropy for each candidate
  11339. std::vector<float> shifted_scores;
  11340. for (size_t i = 0; i < candidates->size; ++i) {
  11341. float shifted_score = fabsf(-logf(candidates->data[i].p) - entropy);
  11342. shifted_scores.push_back(shifted_score);
  11343. }
  11344. // Sort tokens based on the shifted_scores and their corresponding indices
  11345. std::vector<size_t> indices(candidates->size);
  11346. std::iota(indices.begin(), indices.end(), 0);
  11347. std::sort(indices.begin(), indices.end(), [&](size_t a, size_t b) {
  11348. return shifted_scores[a] < shifted_scores[b];
  11349. });
  11350. // Compute the cumulative probabilities
  11351. float cum_sum = 0.0f;
  11352. size_t last_idx = indices.size();
  11353. for (size_t i = 0; i < indices.size(); ++i) {
  11354. size_t idx = indices[i];
  11355. cum_sum += candidates->data[idx].p;
  11356. // Check if the running sum is greater than typical or if we have kept at least min_keep tokens
  11357. if (cum_sum > p && i >= min_keep - 1) {
  11358. last_idx = i + 1;
  11359. break;
  11360. }
  11361. }
  11362. // Resize the output vector to keep only the locally typical tokens
  11363. std::vector<llama_token_data> new_candidates;
  11364. for (size_t i = 0; i < last_idx; ++i) {
  11365. size_t idx = indices[i];
  11366. new_candidates.push_back(candidates->data[idx]);
  11367. }
  11368. // Replace the data in candidates with the new_candidates data
  11369. std::copy(new_candidates.begin(), new_candidates.end(), candidates->data);
  11370. candidates->size = new_candidates.size();
  11371. candidates->sorted = false;
  11372. if (ctx) {
  11373. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11374. }
  11375. }
  11376. void llama_sample_entropy(struct llama_context * ctx, llama_token_data_array * candidates_p, float min_temp, float max_temp, float exponent_val) {
  11377. const int64_t t_start_sample_us = ggml_time_us();
  11378. // no need to do anything if there is only one (or zero) candidates
  11379. if(candidates_p->size <= 1) {
  11380. return;
  11381. }
  11382. // Calculate maximum possible entropy
  11383. float max_entropy = -logf(1.0f / candidates_p->size);
  11384. llama_sample_softmax(nullptr, candidates_p);
  11385. // Calculate entropy of the softmax probabilities
  11386. float entropy = 0.0f;
  11387. for (size_t i = 0; i < candidates_p->size; ++i) {
  11388. float prob = candidates_p->data[i].p;
  11389. if (prob > 0.0f) { // Ensure no log(0)
  11390. entropy -= prob * logf(prob);
  11391. }
  11392. }
  11393. // Normalize the entropy (max_entropy cannot be 0 here because we checked candidates_p->size != 1 above)
  11394. float normalized_entropy = entropy / max_entropy;
  11395. // Map the normalized entropy to the desired temperature range using the power function
  11396. float dyn_temp = min_temp + (max_temp - min_temp) * powf(normalized_entropy, exponent_val);
  11397. #ifdef DEBUG
  11398. LLAMA_LOG_INFO("Your text maxtemp value is: %f\n", max_temp);
  11399. LLAMA_LOG_INFO("Entropy: %f\n", entropy);
  11400. LLAMA_LOG_INFO("Max Possible Entropy: %f\n", max_entropy);
  11401. LLAMA_LOG_INFO("Normalized Entropy: %f\n", normalized_entropy);
  11402. LLAMA_LOG_INFO("Exponent: %f\n", exponent_val);
  11403. LLAMA_LOG_INFO("Dynamic Temperature (dyn_temp): %f\n", dyn_temp);
  11404. #endif
  11405. // Apply the dynamically calculated temperature scaling
  11406. for (size_t i = 0; i < candidates_p->size; ++i) {
  11407. candidates_p->data[i].logit /= dyn_temp;
  11408. }
  11409. // Re-compute softmax probabilities after scaling logits with dynamic temperature
  11410. double max_l_double = candidates_p->data[0].logit;
  11411. double cum_sum_double = 0.0;
  11412. for (size_t i = 0; i < candidates_p->size; ++i) {
  11413. double p = exp(candidates_p->data[i].logit - max_l_double);
  11414. candidates_p->data[i].p = p; // Store the scaled probability
  11415. cum_sum_double += p;
  11416. }
  11417. for (size_t i = 0; i < candidates_p->size; ++i) {
  11418. candidates_p->data[i].p /= cum_sum_double; // Re-normalize the probabilities
  11419. }
  11420. #ifdef DEBUG
  11421. // Print the updated top 25 probabilities after temperature scaling
  11422. LLAMA_LOG_INFO("\nUpdated Top 25 Probabilities After Dynamic Temperature Scaling (in percentages):\n");
  11423. for (size_t i = 0; i < 25 && i < candidates_p->size; ++i) {
  11424. LLAMA_LOG_INFO("Token %zu: %f%%\n", i + 1, candidates_p->data[i].p * 100.0f);
  11425. }
  11426. #endif
  11427. if (ctx) {
  11428. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11429. }
  11430. }
  11431. void llama_sample_temp(struct llama_context * ctx, llama_token_data_array * candidates_p, float temp) {
  11432. const int64_t t_start_sample_us = ggml_time_us();
  11433. for (size_t i = 0; i < candidates_p->size; ++i) {
  11434. candidates_p->data[i].logit /= temp;
  11435. }
  11436. if (ctx) {
  11437. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11438. }
  11439. }
  11440. void llama_sample_repetition_penalties(
  11441. struct llama_context * ctx,
  11442. llama_token_data_array * candidates,
  11443. const llama_token * last_tokens,
  11444. size_t penalty_last_n,
  11445. float penalty_repeat,
  11446. float penalty_freq,
  11447. float penalty_present) {
  11448. if (penalty_last_n == 0 || (penalty_repeat == 1.0f && penalty_freq == 0.0f && penalty_present == 0.0f)) {
  11449. return;
  11450. }
  11451. const int64_t t_start_sample_us = ggml_time_us();
  11452. // Create a frequency map to count occurrences of each token in last_tokens
  11453. std::unordered_map<llama_token, int> token_count;
  11454. for (size_t i = 0; i < penalty_last_n; ++i) {
  11455. token_count[last_tokens[i]]++;
  11456. }
  11457. // Apply frequency and presence penalties to the candidates
  11458. for (size_t i = 0; i < candidates->size; ++i) {
  11459. const auto token_iter = token_count.find(candidates->data[i].id);
  11460. if (token_iter == token_count.end()) {
  11461. continue;
  11462. }
  11463. const int count = token_iter->second;
  11464. // The academic publication that described this technique actually just only divided, but that would cause tokens with negative logits to become more likely, which is obviously wrong.
  11465. // This is common fix for this problem, which is to multiply by the penalty instead of dividing.
  11466. if (candidates->data[i].logit <= 0) {
  11467. candidates->data[i].logit *= penalty_repeat;
  11468. } else {
  11469. candidates->data[i].logit /= penalty_repeat;
  11470. }
  11471. candidates->data[i].logit -= float(count) * penalty_freq + float(count > 0) * penalty_present;
  11472. }
  11473. candidates->sorted = false;
  11474. if (ctx) {
  11475. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11476. }
  11477. }
  11478. void llama_sample_grammar(struct llama_context * ctx, llama_token_data_array * candidates, const struct llama_grammar * grammar) {
  11479. GGML_ASSERT(ctx);
  11480. const int64_t t_start_sample_us = ggml_time_us();
  11481. bool allow_eog = false;
  11482. for (const auto & stack : grammar->stacks) {
  11483. if (stack.empty()) {
  11484. allow_eog = true;
  11485. break;
  11486. }
  11487. }
  11488. std::vector<std::pair<std::vector<uint32_t>, llama_partial_utf8>> candidates_decoded;
  11489. candidates_decoded.reserve(candidates->size);
  11490. std::vector<llama_grammar_candidate> candidates_grammar;
  11491. candidates_grammar.reserve(candidates->size);
  11492. for (size_t i = 0; i < candidates->size; ++i) {
  11493. const llama_token id = candidates->data[i].id;
  11494. const std::string piece = llama_token_to_piece(ctx, id, false);
  11495. if (llama_token_is_eog(&ctx->model, id)) {
  11496. if (!allow_eog) {
  11497. candidates->data[i].logit = -INFINITY;
  11498. }
  11499. } else if (piece.empty() || piece[0] == 0) {
  11500. candidates->data[i].logit = -INFINITY;
  11501. } else {
  11502. candidates_decoded.push_back(decode_utf8(piece, grammar->partial_utf8));
  11503. candidates_grammar.push_back({ i, candidates_decoded.back().first.data(), candidates_decoded.back().second });
  11504. }
  11505. }
  11506. const auto rejects = llama_grammar_reject_candidates(grammar->rules, grammar->stacks, candidates_grammar);
  11507. for (const auto & reject : rejects) {
  11508. candidates->data[reject.index].logit = -INFINITY;
  11509. }
  11510. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11511. }
  11512. static void llama_log_softmax(float * array, size_t size) {
  11513. float max_l = *std::max_element(array, array + size);
  11514. float sum = 0.f;
  11515. for (size_t i = 0; i < size; ++i) {
  11516. float p = expf(array[i] - max_l);
  11517. sum += p;
  11518. array[i] = p;
  11519. }
  11520. for (size_t i = 0; i < size; ++i) {
  11521. array[i] = logf(array[i] / sum);
  11522. }
  11523. }
  11524. void llama_sample_apply_guidance(
  11525. struct llama_context * ctx,
  11526. float * logits,
  11527. float * logits_guidance,
  11528. float scale) {
  11529. GGML_ASSERT(ctx);
  11530. const auto t_start_sample_us = ggml_time_us();
  11531. const auto n_vocab = llama_n_vocab(llama_get_model(ctx));
  11532. llama_log_softmax(logits, n_vocab);
  11533. llama_log_softmax(logits_guidance, n_vocab);
  11534. for (int i = 0; i < n_vocab; ++i) {
  11535. auto & l = logits[i];
  11536. const auto & g = logits_guidance[i];
  11537. l = scale * (l - g) + g;
  11538. }
  11539. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11540. }
  11541. llama_token llama_sample_token_mirostat(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, int32_t m, float * mu) {
  11542. GGML_ASSERT(ctx);
  11543. auto N = float(llama_n_vocab(llama_get_model(ctx)));
  11544. int64_t t_start_sample_us;
  11545. t_start_sample_us = ggml_time_us();
  11546. llama_sample_softmax(nullptr, candidates);
  11547. // Estimate s_hat using the most probable m tokens
  11548. float s_hat = 0.0;
  11549. float sum_ti_bi = 0.0;
  11550. float sum_ti_sq = 0.0;
  11551. for (size_t i = 0; i < size_t(m - 1) && i < candidates->size - 1; ++i) {
  11552. float t_i = logf(float(i + 2) / float(i + 1));
  11553. float b_i = logf(candidates->data[i].p / candidates->data[i + 1].p);
  11554. sum_ti_bi += t_i * b_i;
  11555. sum_ti_sq += t_i * t_i;
  11556. }
  11557. s_hat = sum_ti_bi / sum_ti_sq;
  11558. // Compute k from the estimated s_hat and target surprise value
  11559. float epsilon_hat = s_hat - 1;
  11560. float k = powf((epsilon_hat * powf(2, *mu)) / (1 - powf(N, -epsilon_hat)), 1 / s_hat);
  11561. // Sample the next word X using top-k sampling
  11562. llama_sample_top_k(nullptr, candidates, int(k), 1);
  11563. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11564. llama_token X = llama_sample_token(ctx, candidates);
  11565. t_start_sample_us = ggml_time_us();
  11566. // Compute error as the difference between observed surprise and target surprise value
  11567. size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
  11568. return candidate.id == X;
  11569. }));
  11570. float observed_surprise = -log2f(candidates->data[X_idx].p);
  11571. float e = observed_surprise - tau;
  11572. // Update mu using the learning rate and error
  11573. *mu = *mu - eta * e;
  11574. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11575. return X;
  11576. }
  11577. llama_token llama_sample_token_mirostat_v2(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, float * mu) {
  11578. int64_t t_start_sample_us;
  11579. t_start_sample_us = ggml_time_us();
  11580. llama_sample_softmax(ctx, candidates);
  11581. // Truncate the words with surprise values greater than mu
  11582. candidates->size = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
  11583. return -log2f(candidate.p) > *mu;
  11584. }));
  11585. if (candidates->size == 0) {
  11586. candidates->size = 1;
  11587. }
  11588. if (ctx) {
  11589. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11590. }
  11591. // Normalize the probabilities of the remaining words
  11592. llama_sample_softmax(ctx, candidates);
  11593. // Sample the next word X from the remaining words
  11594. llama_token X = llama_sample_token(ctx, candidates);
  11595. t_start_sample_us = ggml_time_us();
  11596. // Compute error as the difference between observed surprise and target surprise value
  11597. size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
  11598. return candidate.id == X;
  11599. }));
  11600. float observed_surprise = -log2f(candidates->data[X_idx].p);
  11601. float e = observed_surprise - tau;
  11602. // Update mu using the learning rate and error
  11603. *mu = *mu - eta * e;
  11604. if (ctx) {
  11605. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11606. }
  11607. return X;
  11608. }
  11609. llama_token llama_sample_token_greedy(struct llama_context * ctx, llama_token_data_array * candidates) {
  11610. const int64_t t_start_sample_us = ggml_time_us();
  11611. // Find max element
  11612. auto * max_iter = std::max_element(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
  11613. return a.logit < b.logit;
  11614. });
  11615. llama_token result = max_iter->id;
  11616. if (ctx) {
  11617. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11618. ctx->n_sample++;
  11619. }
  11620. return result;
  11621. }
  11622. llama_token llama_sample_token_with_rng(struct llama_context * ctx, llama_token_data_array * candidates, std::mt19937 & rng) {
  11623. GGML_ASSERT(ctx);
  11624. const int64_t t_start_sample_us = ggml_time_us();
  11625. llama_sample_softmax(nullptr, candidates);
  11626. std::vector<float> probs;
  11627. probs.reserve(candidates->size);
  11628. for (size_t i = 0; i < candidates->size; ++i) {
  11629. probs.push_back(candidates->data[i].p);
  11630. }
  11631. std::discrete_distribution<> dist(probs.begin(), probs.end());
  11632. int idx = dist(rng);
  11633. llama_token result = candidates->data[idx].id;
  11634. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11635. ctx->n_sample++;
  11636. return result;
  11637. }
  11638. llama_token llama_sample_token(struct llama_context * ctx, llama_token_data_array * candidates) {
  11639. return llama_sample_token_with_rng(ctx, candidates, ctx->rng);
  11640. }
  11641. void llama_grammar_accept_token(struct llama_context * ctx, struct llama_grammar * grammar, llama_token token) {
  11642. const int64_t t_start_sample_us = ggml_time_us();
  11643. if (llama_token_is_eog(&ctx->model, token)) {
  11644. for (const auto & stack : grammar->stacks) {
  11645. if (stack.empty()) {
  11646. return;
  11647. }
  11648. }
  11649. GGML_ASSERT(false);
  11650. }
  11651. const std::string piece = llama_token_to_piece(ctx, token, false);
  11652. // Note terminating 0 in decoded string
  11653. const auto decoded = decode_utf8(piece, grammar->partial_utf8);
  11654. const auto & code_points = decoded.first;
  11655. std::vector<std::vector<const llama_grammar_element *>> tmp_new_stacks;
  11656. for (auto it = code_points.begin(), end = code_points.end() - 1; it != end; ++it) {
  11657. llama_grammar_accept(grammar->rules, grammar->stacks, *it, tmp_new_stacks);
  11658. grammar->stacks = tmp_new_stacks;
  11659. }
  11660. grammar->partial_utf8 = decoded.second;
  11661. GGML_ASSERT(!grammar->stacks.empty());
  11662. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11663. }
  11664. //
  11665. // Beam search
  11666. //
  11667. struct llama_beam {
  11668. std::vector<llama_token> tokens;
  11669. float p; // Cumulative beam probability (renormalized relative to all beams)
  11670. bool eob; // Initialize end-of-beam to false. Callback sets this to true.
  11671. // Sort beams by probability. In case of ties, prefer beams at eob.
  11672. bool operator<(const llama_beam & rhs) const {
  11673. return std::make_pair(p, eob) < std::make_pair(rhs.p, rhs.eob);
  11674. }
  11675. // Shift off first n tokens and discard them.
  11676. void shift_tokens(const size_t n) {
  11677. if (n) {
  11678. std::copy(tokens.begin() + n, tokens.end(), tokens.begin());
  11679. tokens.resize(tokens.size() - n);
  11680. }
  11681. }
  11682. llama_beam_view view() const { return {tokens.data(), tokens.size(), p, eob}; }
  11683. };
  11684. // A struct for calculating logit-related info.
  11685. struct llama_logit_info {
  11686. const float * const logits;
  11687. const int n_vocab;
  11688. const float max_l;
  11689. const float normalizer;
  11690. struct sum_exp {
  11691. float max_l;
  11692. float operator()(float sum, float l) const { return sum + std::exp(l - max_l); }
  11693. };
  11694. llama_logit_info(llama_context * ctx)
  11695. : logits(llama_get_logits(ctx))
  11696. , n_vocab(llama_n_vocab(llama_get_model(ctx)))
  11697. , max_l(*std::max_element(logits, logits + n_vocab))
  11698. , normalizer(1.0f / std::accumulate(logits, logits + n_vocab, 0.0f, sum_exp{max_l}))
  11699. { }
  11700. llama_token_data get_token_data(const llama_token token_id) const {
  11701. constexpr auto p = std::numeric_limits<float>::quiet_NaN(); // never used
  11702. return {token_id, logits[token_id], p};
  11703. }
  11704. // Return top k token_data by logit.
  11705. std::vector<llama_token_data> top_k(size_t k) {
  11706. std::vector<llama_token_data> min_heap; // min-heap by logit
  11707. const llama_token k_min = std::min(static_cast<llama_token>(k), n_vocab);
  11708. min_heap.reserve(k_min);
  11709. for (llama_token token_id = 0 ; token_id < k_min ; ++token_id) {
  11710. min_heap.push_back(get_token_data(token_id));
  11711. }
  11712. auto comp = [](const llama_token_data & a, const llama_token_data & b) { return a.logit > b.logit; };
  11713. std::make_heap(min_heap.begin(), min_heap.end(), comp);
  11714. for (llama_token token_id = k_min ; token_id < n_vocab ; ++token_id) {
  11715. if (min_heap.front().logit < logits[token_id]) {
  11716. std::pop_heap(min_heap.begin(), min_heap.end(), comp);
  11717. min_heap.back().id = token_id;
  11718. min_heap.back().logit = logits[token_id];
  11719. std::push_heap(min_heap.begin(), min_heap.end(), comp);
  11720. }
  11721. }
  11722. return min_heap;
  11723. }
  11724. float probability_from_logit(float logit) const {
  11725. return normalizer * std::exp(logit - max_l);
  11726. }
  11727. };
  11728. struct llama_beam_search_data {
  11729. llama_context * ctx;
  11730. size_t n_beams;
  11731. int n_past;
  11732. int n_predict;
  11733. std::vector<llama_beam> beams;
  11734. std::vector<llama_beam> next_beams;
  11735. // Re-calculated on each loop iteration
  11736. size_t common_prefix_length;
  11737. // Used to communicate to/from callback on beams state.
  11738. std::vector<llama_beam_view> beam_views;
  11739. llama_beam_search_data(llama_context * ctx, size_t n_beams, int n_past, int n_predict)
  11740. : ctx(ctx)
  11741. , n_beams(n_beams)
  11742. , n_past(n_past)
  11743. , n_predict(n_predict)
  11744. , beam_views(n_beams) {
  11745. beams.reserve(n_beams);
  11746. next_beams.reserve(n_beams);
  11747. }
  11748. // Collapse beams to a single beam given by index.
  11749. void collapse_beams(const size_t beam_idx) {
  11750. if (0u < beam_idx) {
  11751. std::swap(beams[0], beams[beam_idx]);
  11752. }
  11753. beams.resize(1);
  11754. }
  11755. // Min-heaps are used to efficiently collect the top-k elements (k=n_beams).
  11756. // The repetitive patterns below reflect the 2 stages of heaps:
  11757. // * Gather elements until the vector is full, then call std::make_heap() on it.
  11758. // * If the heap is full and a new element is found that should be included, pop the
  11759. // least element to the back(), replace it with the new, then push it into the heap.
  11760. void fill_next_beams_by_top_probabilities(llama_beam & beam) {
  11761. // Min-heaps use a greater-than comparator.
  11762. const auto comp = [](const llama_beam & a, const llama_beam & b) { return a.p > b.p; };
  11763. if (beam.eob) {
  11764. // beam is at end-of-sentence, so just copy it to next_beams if its probability is high enough.
  11765. if (next_beams.size() < n_beams) {
  11766. next_beams.push_back(std::move(beam));
  11767. if (next_beams.size() == n_beams) {
  11768. std::make_heap(next_beams.begin(), next_beams.end(), comp);
  11769. }
  11770. } else if (next_beams.front().p < beam.p) {
  11771. std::pop_heap(next_beams.begin(), next_beams.end(), comp);
  11772. next_beams.back() = std::move(beam);
  11773. std::push_heap(next_beams.begin(), next_beams.end(), comp);
  11774. }
  11775. } else {
  11776. // beam is not at end-of-sentence, so branch with next top_k tokens.
  11777. if (!beam.tokens.empty()) {
  11778. llama_decode(ctx, llama_batch_get_one(beam.tokens.data(), beam.tokens.size(), n_past, 0));
  11779. }
  11780. llama_logit_info logit_info(ctx);
  11781. std::vector<llama_token_data> next_tokens = logit_info.top_k(n_beams);
  11782. // Clear the kv slot so that other beams may try different tokens at this position. The llama_decode()
  11783. // call in loop() will conclusively fill in the kv slot once the beams converge at this position.
  11784. llama_kv_cache_seq_rm(ctx, 0, n_past, -1);
  11785. size_t i=0;
  11786. if (next_beams.size() < n_beams) {
  11787. for (; next_beams.size() < n_beams ; ++i) {
  11788. llama_beam next_beam = beam;
  11789. next_beam.tokens.push_back(next_tokens[i].id);
  11790. next_beam.p *= logit_info.probability_from_logit(next_tokens[i].logit);
  11791. next_beams.push_back(std::move(next_beam));
  11792. }
  11793. std::make_heap(next_beams.begin(), next_beams.end(), comp);
  11794. } else {
  11795. for (; next_beams.front().p == 0.0f ; ++i) {
  11796. std::pop_heap(next_beams.begin(), next_beams.end(), comp);
  11797. next_beams.back() = beam;
  11798. next_beams.back().tokens.push_back(next_tokens[i].id);
  11799. next_beams.back().p *= logit_info.probability_from_logit(next_tokens[i].logit);
  11800. std::push_heap(next_beams.begin(), next_beams.end(), comp);
  11801. }
  11802. }
  11803. for (; i < n_beams ; ++i) {
  11804. const float next_p = beam.p * logit_info.probability_from_logit(next_tokens[i].logit);
  11805. if (next_beams.front().p < next_p) {
  11806. std::pop_heap(next_beams.begin(), next_beams.end(), comp);
  11807. next_beams.back() = beam;
  11808. next_beams.back().tokens.push_back(next_tokens[i].id);
  11809. next_beams.back().p = next_p;
  11810. std::push_heap(next_beams.begin(), next_beams.end(), comp);
  11811. }
  11812. }
  11813. }
  11814. }
  11815. // Find common_prefix_length based on beams.
  11816. // Requires beams is not empty.
  11817. size_t find_common_prefix_length() {
  11818. size_t common_prefix_length = beams[0].tokens.size();
  11819. for (size_t i = 1 ; i < beams.size() ; ++i) {
  11820. common_prefix_length = std::min(common_prefix_length, beams[i].tokens.size());
  11821. for (size_t j = 0 ; j < common_prefix_length ; ++j) {
  11822. if (beams[0].tokens[j] != beams[i].tokens[j]) {
  11823. common_prefix_length = j;
  11824. break;
  11825. }
  11826. }
  11827. }
  11828. return common_prefix_length;
  11829. }
  11830. // Construct beams_state to send back to caller via the callback function.
  11831. // Side effect: set common_prefix_length = find_common_prefix_length();
  11832. llama_beams_state get_beams_state(const bool last_call) {
  11833. for (size_t i = 0 ; i < beams.size() ; ++i) {
  11834. beam_views[i] = beams[i].view();
  11835. }
  11836. common_prefix_length = find_common_prefix_length();
  11837. return {beam_views.data(), beams.size(), common_prefix_length, last_call};
  11838. }
  11839. // Loop:
  11840. // * while i < n_predict, AND
  11841. // * any of the beams have not yet reached end-of-beam (eob), AND
  11842. // * the highest probability beam(s) (plural in case of ties) are not at end-of-sentence
  11843. // (since all other beam probabilities can only decrease)
  11844. void loop(const llama_beam_search_callback_fn_t callback, void * const callback_data) {
  11845. beams.push_back({{}, 1.0f, false}); // Start with one empty beam w/ probability = 1.0 and !eob.
  11846. const auto not_eob = [](const llama_beam & beam) { return !beam.eob; };
  11847. for (int i = 0 ; i < n_predict && std::any_of(beams.begin(),beams.end(),not_eob) &&
  11848. !beams[top_beam_index()].eob ; ++i) {
  11849. callback(callback_data, get_beams_state(false)); // Sets common_prefix_length
  11850. update_beams_from_beam_views(); // Update values (p,eob) that callback may have changed.
  11851. if (common_prefix_length) {
  11852. llama_decode(ctx, llama_batch_get_one(beams[0].tokens.data(), common_prefix_length, n_past, 0));
  11853. n_past += common_prefix_length;
  11854. }
  11855. // Zero-out next_beam probabilities to place them last in following min-heap.
  11856. std::for_each(next_beams.begin(), next_beams.end(), [](llama_beam & beam) { beam.p = 0.0f; });
  11857. for (llama_beam & beam : beams) {
  11858. beam.shift_tokens(common_prefix_length);
  11859. fill_next_beams_by_top_probabilities(beam);
  11860. }
  11861. // next_beams become the beams of next/final iteration. Swap them to re-use memory.
  11862. beams.swap(next_beams);
  11863. renormalize_beam_probabilities(beams);
  11864. }
  11865. collapse_beams(top_beam_index());
  11866. callback(callback_data, get_beams_state(true));
  11867. }
  11868. // As beams grow, the cumulative probabilities decrease.
  11869. // Renormalize them to avoid floating point underflow.
  11870. static void renormalize_beam_probabilities(std::vector<llama_beam> & beams) {
  11871. const auto sum_p = [](float sum, llama_beam & beam) { return sum + beam.p; };
  11872. const float inv_sum = 1.0f / std::accumulate(beams.begin(), beams.end(), 0.0f, sum_p);
  11873. std::for_each(beams.begin(), beams.end(), [=](llama_beam & beam) { beam.p *= inv_sum; });
  11874. }
  11875. // Assumes beams is non-empty. Uses llama_beam::operator<() for ordering.
  11876. size_t top_beam_index() {
  11877. return std::max_element(beams.begin(), beams.end()) - beams.begin();
  11878. }
  11879. // Copy (p,eob) for each beam which may have been changed by the callback.
  11880. void update_beams_from_beam_views() {
  11881. for (size_t i = 0 ; i < beams.size() ; ++i) {
  11882. beams[i].p = beam_views[i].p;
  11883. beams[i].eob = beam_views[i].eob;
  11884. }
  11885. }
  11886. };
  11887. void llama_beam_search(llama_context * ctx,
  11888. llama_beam_search_callback_fn_t callback, void * callback_data,
  11889. size_t n_beams, int n_past, int n_predict) {
  11890. assert(ctx);
  11891. const int64_t t_start_sample_us = ggml_time_us();
  11892. llama_beam_search_data beam_search_data(ctx, n_beams, n_past, n_predict);
  11893. beam_search_data.loop(callback, callback_data);
  11894. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11895. ctx->n_sample++;
  11896. }
  11897. //
  11898. // quantization
  11899. //
  11900. struct quantize_state_internal {
  11901. const llama_model & model;
  11902. const llama_model_quantize_params * params;
  11903. int n_attention_wv = 0;
  11904. int n_ffn_down = 0;
  11905. int n_ffn_gate = 0;
  11906. int n_ffn_up = 0;
  11907. int i_attention_wv = 0;
  11908. int i_ffn_down = 0;
  11909. int i_ffn_gate = 0;
  11910. int i_ffn_up = 0;
  11911. int n_k_quantized = 0;
  11912. int n_fallback = 0;
  11913. bool has_imatrix = false;
  11914. // used to figure out if a model shares tok_embd with the output weight
  11915. bool has_output = false;
  11916. quantize_state_internal(const llama_model & model, const llama_model_quantize_params * params)
  11917. : model(model)
  11918. , params(params)
  11919. {}
  11920. };
  11921. static void llama_tensor_dequantize_internal(
  11922. struct ggml_tensor * tensor, std::vector<no_init<float>> & output, std::vector<std::thread> & workers,
  11923. const size_t nelements, const int nthread
  11924. ) {
  11925. if (output.size() < nelements) {
  11926. output.resize(nelements);
  11927. }
  11928. float * f32_output = (float *) output.data();
  11929. ggml_type_traits_t qtype;
  11930. if (ggml_is_quantized(tensor->type)) {
  11931. qtype = ggml_internal_get_type_traits(tensor->type);
  11932. if (qtype.to_float == NULL) {
  11933. throw std::runtime_error(format("type %s unsupported for integer quantization: no dequantization available", ggml_type_name(tensor->type)));
  11934. }
  11935. } else if (tensor->type != GGML_TYPE_F16 &&
  11936. tensor->type != GGML_TYPE_BF16) {
  11937. throw std::runtime_error(format("cannot dequantize/convert tensor type %s", ggml_type_name(tensor->type)));
  11938. }
  11939. if (nthread < 2) {
  11940. if (tensor->type == GGML_TYPE_F16) {
  11941. ggml_fp16_to_fp32_row((ggml_fp16_t *)tensor->data, f32_output, nelements);
  11942. } else if (tensor->type == GGML_TYPE_BF16) {
  11943. ggml_bf16_to_fp32_row((ggml_bf16_t *)tensor->data, f32_output, nelements);
  11944. } else if (ggml_is_quantized(tensor->type)) {
  11945. qtype.to_float(tensor->data, f32_output, nelements);
  11946. } else {
  11947. GGML_ASSERT(false); // unreachable
  11948. }
  11949. return;
  11950. }
  11951. size_t block_size;
  11952. if (tensor->type == GGML_TYPE_F16 ||
  11953. tensor->type == GGML_TYPE_BF16) {
  11954. block_size = 1;
  11955. } else {
  11956. block_size = (size_t)ggml_blck_size(tensor->type);
  11957. }
  11958. size_t block_size_bytes = ggml_type_size(tensor->type);
  11959. GGML_ASSERT(nelements % block_size == 0);
  11960. size_t nblocks = nelements / block_size;
  11961. size_t blocks_per_thread = nblocks / nthread;
  11962. size_t spare_blocks = nblocks - (blocks_per_thread * nthread); // if blocks aren't divisible by thread count
  11963. size_t in_buff_offs = 0;
  11964. size_t out_buff_offs = 0;
  11965. for (int tnum = 0; tnum < nthread; tnum++) {
  11966. size_t thr_blocks = blocks_per_thread + (tnum == nthread - 1 ? spare_blocks : 0); // num blocks for this thread
  11967. size_t thr_elems = thr_blocks * block_size; // number of elements for this thread
  11968. size_t thr_block_bytes = thr_blocks * block_size_bytes; // number of input bytes for this thread
  11969. auto compute = [qtype] (ggml_type typ, uint8_t * inbuf, float * outbuf, int nels) {
  11970. if (typ == GGML_TYPE_F16) {
  11971. ggml_fp16_to_fp32_row((ggml_fp16_t *)inbuf, outbuf, nels);
  11972. } else if (typ == GGML_TYPE_BF16) {
  11973. ggml_bf16_to_fp32_row((ggml_bf16_t *)inbuf, outbuf, nels);
  11974. } else {
  11975. qtype.to_float(inbuf, outbuf, nels);
  11976. }
  11977. };
  11978. workers.emplace_back(compute, tensor->type, (uint8_t *) tensor->data + in_buff_offs, f32_output + out_buff_offs, thr_elems);
  11979. in_buff_offs += thr_block_bytes;
  11980. out_buff_offs += thr_elems;
  11981. }
  11982. for (auto & w : workers) { w.join(); }
  11983. workers.clear();
  11984. }
  11985. static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type new_type, const ggml_tensor * tensor, llama_ftype ftype) {
  11986. const std::string name = ggml_get_name(tensor);
  11987. // TODO: avoid hardcoded tensor names - use the TN_* constants
  11988. const llm_arch arch = qs.model.arch;
  11989. const auto tn = LLM_TN(arch);
  11990. auto use_more_bits = [](int i_layer, int num_layers) -> bool {
  11991. return i_layer < num_layers/8 || i_layer >= 7*num_layers/8 || (i_layer - num_layers/8)%3 == 2;
  11992. };
  11993. const int n_expert = std::max(1, (int)qs.model.hparams.n_expert);
  11994. auto layer_info = [n_expert] (int i_layer, int n_layer, const char * name) {
  11995. if (n_expert > 1) {
  11996. // Believe it or not, "experts" in the FFN of Mixtral-8x7B are not consecutive, but iccasionally randomly
  11997. // sprinkled in the model. Hence, simply dividing i_ffn_down by n_expert does not work
  11998. // for getting the current layer as I initially thought, and we need to resort to parsing the
  11999. // tensor name.
  12000. if (sscanf(name, "blk.%d.", &i_layer) != 1) {
  12001. throw std::runtime_error(format("Failed to determine layer for tensor %s", name));
  12002. }
  12003. if (i_layer < 0 || i_layer >= n_layer) {
  12004. throw std::runtime_error(format("Bad layer %d for tensor %s. Must be in [0, %d)", i_layer, name, n_layer));
  12005. }
  12006. }
  12007. return std::make_pair(i_layer, n_layer);
  12008. };
  12009. // for arches that share the same tensor between the token embeddings and the output, we quantize the token embeddings
  12010. // with the quantization of the output tensor
  12011. if (name == tn(LLM_TENSOR_OUTPUT, "weight") || (!qs.has_output && name == tn(LLM_TENSOR_TOKEN_EMBD, "weight"))) {
  12012. if (qs.params->output_tensor_type < GGML_TYPE_COUNT) {
  12013. new_type = qs.params->output_tensor_type;
  12014. } else {
  12015. int nx = tensor->ne[0];
  12016. if (arch == LLM_ARCH_FALCON || nx % QK_K != 0) {
  12017. new_type = GGML_TYPE_Q8_0;
  12018. }
  12019. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS ||
  12020. ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ||
  12021. ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) {
  12022. new_type = GGML_TYPE_Q5_K;
  12023. }
  12024. else if (new_type != GGML_TYPE_Q8_0) {
  12025. new_type = GGML_TYPE_Q6_K;
  12026. }
  12027. }
  12028. } else if (name == "token_embd.weight") {
  12029. if (qs.params->token_embedding_type < GGML_TYPE_COUNT) {
  12030. new_type = qs.params->token_embedding_type;
  12031. } else {
  12032. if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS ||
  12033. ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) {
  12034. new_type = GGML_TYPE_Q2_K;
  12035. }
  12036. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M) {
  12037. new_type = GGML_TYPE_IQ3_S;
  12038. }
  12039. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
  12040. new_type = GGML_TYPE_IQ3_S;
  12041. }
  12042. }
  12043. } else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ1_S ||
  12044. ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) {
  12045. if (name.find("attn_v.weight") != std::string::npos) {
  12046. if (qs.model.hparams.n_gqa() >= 4 || qs.model.hparams.n_expert >= 4) new_type = GGML_TYPE_Q4_K;
  12047. else new_type = ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ? GGML_TYPE_IQ3_S : GGML_TYPE_Q2_K;
  12048. ++qs.i_attention_wv;
  12049. }
  12050. else if (qs.model.hparams.n_expert == 8 && name.find("attn_k.weight") != std::string::npos) {
  12051. new_type = GGML_TYPE_Q4_K;
  12052. }
  12053. else if (name.find("ffn_down") != std::string::npos) {
  12054. if (qs.i_ffn_down < qs.n_ffn_down/8) {
  12055. new_type = ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ? GGML_TYPE_IQ3_S : GGML_TYPE_Q2_K;
  12056. }
  12057. ++qs.i_ffn_down;
  12058. }
  12059. else if (name.find("attn_output.weight") != std::string::npos) {
  12060. if (qs.model.hparams.n_expert == 8) {
  12061. new_type = GGML_TYPE_Q5_K;
  12062. } else {
  12063. if (ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) new_type = GGML_TYPE_IQ2_XXS;
  12064. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M) new_type = GGML_TYPE_IQ3_S;
  12065. }
  12066. }
  12067. } else if (name.find("attn_v.weight") != std::string::npos) {
  12068. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) {
  12069. new_type = qs.model.hparams.n_gqa() >= 4 ? GGML_TYPE_Q4_K : GGML_TYPE_Q3_K;
  12070. }
  12071. else if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S && qs.model.hparams.n_gqa() >= 4) {
  12072. new_type = GGML_TYPE_Q4_K;
  12073. }
  12074. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
  12075. new_type = qs.model.hparams.n_gqa() >= 4 ? GGML_TYPE_Q4_K : !qs.has_imatrix ? GGML_TYPE_IQ3_S : GGML_TYPE_IQ3_XXS;
  12076. }
  12077. else if ((ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_S) && qs.model.hparams.n_gqa() >= 4) {
  12078. new_type = GGML_TYPE_Q4_K;
  12079. }
  12080. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M) {
  12081. new_type = GGML_TYPE_Q4_K;
  12082. }
  12083. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) {
  12084. new_type = qs.i_attention_wv < 2 ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K;
  12085. }
  12086. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
  12087. else if ((ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) && qs.model.hparams.n_gqa() >= 4) {
  12088. new_type = GGML_TYPE_Q5_K;
  12089. }
  12090. else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) &&
  12091. use_more_bits(qs.i_attention_wv, qs.n_attention_wv)) new_type = GGML_TYPE_Q6_K;
  12092. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && qs.i_attention_wv < 4) new_type = GGML_TYPE_Q5_K;
  12093. else if (QK_K == 64 && (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_S) &&
  12094. (qs.i_attention_wv < qs.n_attention_wv/8 || qs.i_attention_wv >= 7*qs.n_attention_wv/8)) new_type = GGML_TYPE_Q6_K;
  12095. if (qs.model.type == MODEL_70B) {
  12096. // In the 70B model we have 8 heads sharing the same attn_v weights. As a result, the attn_v.weight tensor is
  12097. // 8x smaller compared to attn_q.weight. Hence, we can get a nice boost in quantization accuracy with
  12098. // nearly negligible increase in model size by quantizing this tensor with more bits:
  12099. if (new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K) new_type = GGML_TYPE_Q5_K;
  12100. }
  12101. if (qs.model.hparams.n_expert == 8) {
  12102. // for the 8-expert model, bumping this to Q8_0 trades just ~128MB
  12103. // TODO: explore better strategies
  12104. new_type = GGML_TYPE_Q8_0;
  12105. }
  12106. ++qs.i_attention_wv;
  12107. } else if (name.find("attn_k.weight") != std::string::npos) {
  12108. if (qs.model.hparams.n_expert == 8) {
  12109. // for the 8-expert model, bumping this to Q8_0 trades just ~128MB
  12110. // TODO: explore better strategies
  12111. new_type = GGML_TYPE_Q8_0;
  12112. }
  12113. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS) {
  12114. new_type = GGML_TYPE_IQ3_XXS;
  12115. }
  12116. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
  12117. new_type = GGML_TYPE_IQ2_S;
  12118. }
  12119. } else if (name.find("attn_q.weight") != std::string::npos) {
  12120. if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS) {
  12121. new_type = GGML_TYPE_IQ3_XXS;
  12122. }
  12123. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
  12124. new_type = GGML_TYPE_IQ2_S;
  12125. }
  12126. } else if (name.find("ffn_down") != std::string::npos) {
  12127. auto info = layer_info(qs.i_ffn_down, qs.n_ffn_down, name.c_str());
  12128. int i_layer = info.first, n_layer = info.second;
  12129. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
  12130. else if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S) {
  12131. if (i_layer < n_layer/8) new_type = GGML_TYPE_Q4_K;
  12132. }
  12133. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS && !qs.has_imatrix) {
  12134. new_type = i_layer < n_layer/8 ? GGML_TYPE_Q4_K : GGML_TYPE_Q3_K;
  12135. }
  12136. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) {
  12137. new_type = i_layer < n_layer/16 ? GGML_TYPE_Q5_K
  12138. : arch != LLM_ARCH_FALCON || use_more_bits(i_layer, n_layer) ? GGML_TYPE_Q4_K
  12139. : GGML_TYPE_Q3_K;
  12140. }
  12141. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M && (i_layer < n_layer/8 ||
  12142. (qs.model.hparams.n_expert == 8 && use_more_bits(i_layer, n_layer)))) {
  12143. new_type = GGML_TYPE_Q4_K;
  12144. }
  12145. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) {
  12146. new_type = arch == LLM_ARCH_FALCON ? GGML_TYPE_Q4_K : GGML_TYPE_Q5_K;
  12147. }
  12148. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) {
  12149. if (arch == LLM_ARCH_FALCON) {
  12150. new_type = i_layer < n_layer/16 ? GGML_TYPE_Q6_K :
  12151. use_more_bits(i_layer, n_layer) ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K;
  12152. } else {
  12153. if (use_more_bits(i_layer, n_layer)) new_type = GGML_TYPE_Q6_K;
  12154. }
  12155. }
  12156. else if (i_layer < n_layer/8 && (ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) && !qs.has_imatrix) {
  12157. new_type = GGML_TYPE_Q5_K;
  12158. }
  12159. else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M && use_more_bits(i_layer, n_layer)) new_type = GGML_TYPE_Q6_K;
  12160. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && arch != LLM_ARCH_FALCON && i_layer < n_layer/8) {
  12161. new_type = GGML_TYPE_Q5_K;
  12162. }
  12163. else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_0 || ftype == LLAMA_FTYPE_MOSTLY_Q5_0)
  12164. && qs.has_imatrix && i_layer < n_layer/8) {
  12165. // Guard against craziness in the first few ffn_down layers that can happen even with imatrix for Q4_0/Q5_0.
  12166. // We only do it when an imatrix is provided because a) we want to make sure that one can always get the
  12167. // same quantization as before imatrix stuff, and b) Q4_1/Q5_1 do go crazy on ffn_down without an imatrix.
  12168. new_type = ftype == LLAMA_FTYPE_MOSTLY_Q4_0 ? GGML_TYPE_Q4_1 : GGML_TYPE_Q5_1;
  12169. }
  12170. ++qs.i_ffn_down;
  12171. } else if (name.find("attn_output.weight") != std::string::npos) {
  12172. if (arch != LLM_ARCH_FALCON) {
  12173. if (qs.model.hparams.n_expert == 8) {
  12174. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS ||
  12175. ftype == LLAMA_FTYPE_MOSTLY_Q3_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL ||
  12176. ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_IQ3_S ||
  12177. ftype == LLAMA_FTYPE_MOSTLY_IQ3_M || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) {
  12178. new_type = GGML_TYPE_Q5_K;
  12179. }
  12180. } else {
  12181. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K ) new_type = GGML_TYPE_Q3_K;
  12182. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) new_type = GGML_TYPE_IQ3_S;
  12183. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M ) new_type = GGML_TYPE_Q4_K;
  12184. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L ) new_type = GGML_TYPE_Q5_K;
  12185. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M ) new_type = GGML_TYPE_Q4_K;
  12186. }
  12187. } else {
  12188. if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q4_K;
  12189. }
  12190. }
  12191. else if (name.find("attn_qkv.weight") != std::string::npos) {
  12192. if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L || ftype == LLAMA_FTYPE_MOSTLY_IQ3_M) {
  12193. new_type = GGML_TYPE_Q4_K;
  12194. }
  12195. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) new_type = GGML_TYPE_Q5_K;
  12196. else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) new_type = GGML_TYPE_Q6_K;
  12197. }
  12198. else if (name.find("ffn_gate") != std::string::npos) {
  12199. auto info = layer_info(qs.i_ffn_gate, qs.n_ffn_gate, name.c_str());
  12200. int i_layer = info.first, n_layer = info.second;
  12201. if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS && (i_layer >= n_layer/8 && i_layer < 7*n_layer/8)) {
  12202. new_type = GGML_TYPE_IQ3_XXS;
  12203. }
  12204. ++qs.i_ffn_gate;
  12205. }
  12206. else if (name.find("ffn_up") != std::string::npos) {
  12207. auto info = layer_info(qs.i_ffn_up, qs.n_ffn_up, name.c_str());
  12208. int i_layer = info.first, n_layer = info.second;
  12209. if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS && (i_layer >= n_layer/8 && i_layer < 7*n_layer/8)) {
  12210. new_type = GGML_TYPE_IQ3_XXS;
  12211. }
  12212. ++qs.i_ffn_up;
  12213. }
  12214. // if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
  12215. //}
  12216. // IK: let's remove this, else Q2_K is almost the same as Q3_K_S
  12217. //else if (name.find("ffn_gate") != std::string::npos || name.find("ffn_up") != std::string::npos) {
  12218. // if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
  12219. //}
  12220. // This can be used to reduce the size of the Q5_K_S model.
  12221. // The associated PPL increase is fully in line with the size reduction
  12222. //else {
  12223. // if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_S) new_type = GGML_TYPE_Q4_K;
  12224. //}
  12225. bool convert_incompatible_tensor = false;
  12226. if (new_type == GGML_TYPE_Q2_K || new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K ||
  12227. new_type == GGML_TYPE_Q5_K || new_type == GGML_TYPE_Q6_K || new_type == GGML_TYPE_IQ4_XS ||
  12228. new_type == GGML_TYPE_IQ2_XS || new_type == GGML_TYPE_IQ2_XXS || new_type == GGML_TYPE_IQ2_S ||
  12229. new_type == GGML_TYPE_IQ3_XXS || new_type == GGML_TYPE_IQ1_S || new_type == GGML_TYPE_IQ3_S ||
  12230. new_type == GGML_TYPE_IQ1_M) {
  12231. int nx = tensor->ne[0];
  12232. int ny = tensor->ne[1];
  12233. if (nx % QK_K != 0) {
  12234. LLAMA_LOG_WARN("\n\n%s : tensor cols %d x %d are not divisible by %d, required for %s", __func__, nx, ny, QK_K, ggml_type_name(new_type));
  12235. convert_incompatible_tensor = true;
  12236. } else {
  12237. ++qs.n_k_quantized;
  12238. }
  12239. }
  12240. if (convert_incompatible_tensor) {
  12241. switch (new_type) {
  12242. case GGML_TYPE_IQ2_XXS:
  12243. case GGML_TYPE_IQ2_XS:
  12244. case GGML_TYPE_IQ2_S:
  12245. case GGML_TYPE_IQ3_XXS:
  12246. case GGML_TYPE_IQ3_S:
  12247. case GGML_TYPE_IQ1_S:
  12248. case GGML_TYPE_IQ1_M:
  12249. case GGML_TYPE_Q2_K:
  12250. case GGML_TYPE_Q3_K:
  12251. case GGML_TYPE_IQ4_XS: new_type = GGML_TYPE_IQ4_NL; break;
  12252. case GGML_TYPE_Q4_K: new_type = GGML_TYPE_Q5_0; break;
  12253. case GGML_TYPE_Q5_K: new_type = GGML_TYPE_Q5_1; break;
  12254. case GGML_TYPE_Q6_K: new_type = GGML_TYPE_Q8_0; break;
  12255. default: throw std::runtime_error("\nUnsupported tensor size encountered\n");
  12256. }
  12257. LLAMA_LOG_WARN(" - using fallback quantization %s\n", ggml_type_name(new_type));
  12258. ++qs.n_fallback;
  12259. }
  12260. return new_type;
  12261. }
  12262. static size_t llama_tensor_quantize_internal(enum ggml_type new_type, const float * f32_data, void * new_data, const int64_t chunk_size, int64_t nrows, int64_t n_per_row, const float * imatrix, std::vector<std::thread> & workers, const int nthread) {
  12263. if (nthread < 2) {
  12264. // single-thread
  12265. size_t new_size = ggml_quantize_chunk(new_type, f32_data, new_data, 0, nrows, n_per_row, imatrix);
  12266. if (!ggml_validate_row_data(new_type, new_data, new_size)) {
  12267. throw std::runtime_error("quantized data validation failed");
  12268. }
  12269. return new_size;
  12270. }
  12271. std::mutex mutex;
  12272. int64_t counter = 0;
  12273. size_t new_size = 0;
  12274. bool valid = true;
  12275. auto compute = [&mutex, &counter, &new_size, &valid, new_type, f32_data, new_data, chunk_size,
  12276. nrows, n_per_row, imatrix]() {
  12277. const int64_t nrows_per_chunk = chunk_size / n_per_row;
  12278. size_t local_size = 0;
  12279. while (true) {
  12280. std::unique_lock<std::mutex> lock(mutex);
  12281. int64_t first_row = counter; counter += nrows_per_chunk;
  12282. if (first_row >= nrows) {
  12283. if (local_size > 0) {
  12284. new_size += local_size;
  12285. }
  12286. break;
  12287. }
  12288. lock.unlock();
  12289. const int64_t this_nrow = std::min(nrows - first_row, nrows_per_chunk);
  12290. size_t this_size = ggml_quantize_chunk(new_type, f32_data, new_data, first_row * n_per_row, this_nrow, n_per_row, imatrix);
  12291. local_size += this_size;
  12292. // validate the quantized data
  12293. const size_t row_size = ggml_row_size(new_type, n_per_row);
  12294. void * this_data = (char *) new_data + first_row * row_size;
  12295. if (!ggml_validate_row_data(new_type, this_data, this_size)) {
  12296. std::unique_lock<std::mutex> lock(mutex);
  12297. valid = false;
  12298. break;
  12299. }
  12300. }
  12301. };
  12302. for (int it = 0; it < nthread - 1; ++it) {
  12303. workers.emplace_back(compute);
  12304. }
  12305. compute();
  12306. for (auto & w : workers) { w.join(); }
  12307. workers.clear();
  12308. if (!valid) {
  12309. throw std::runtime_error("quantized data validation failed");
  12310. }
  12311. return new_size;
  12312. }
  12313. static void llama_model_quantize_internal(const std::string & fname_inp, const std::string & fname_out, const llama_model_quantize_params * params) {
  12314. ggml_type default_type;
  12315. llama_ftype ftype = params->ftype;
  12316. switch (params->ftype) {
  12317. case LLAMA_FTYPE_MOSTLY_Q4_0: default_type = GGML_TYPE_Q4_0; break;
  12318. case LLAMA_FTYPE_MOSTLY_Q4_1: default_type = GGML_TYPE_Q4_1; break;
  12319. case LLAMA_FTYPE_MOSTLY_Q5_0: default_type = GGML_TYPE_Q5_0; break;
  12320. case LLAMA_FTYPE_MOSTLY_Q5_1: default_type = GGML_TYPE_Q5_1; break;
  12321. case LLAMA_FTYPE_MOSTLY_Q8_0: default_type = GGML_TYPE_Q8_0; break;
  12322. case LLAMA_FTYPE_MOSTLY_F16: default_type = GGML_TYPE_F16; break;
  12323. case LLAMA_FTYPE_MOSTLY_BF16: default_type = GGML_TYPE_BF16; break;
  12324. case LLAMA_FTYPE_ALL_F32: default_type = GGML_TYPE_F32; break;
  12325. // K-quants
  12326. case LLAMA_FTYPE_MOSTLY_Q2_K_S:
  12327. case LLAMA_FTYPE_MOSTLY_Q2_K: default_type = GGML_TYPE_Q2_K; break;
  12328. case LLAMA_FTYPE_MOSTLY_IQ3_XS: default_type = GGML_TYPE_IQ3_S; break;
  12329. case LLAMA_FTYPE_MOSTLY_Q3_K_S:
  12330. case LLAMA_FTYPE_MOSTLY_Q3_K_M:
  12331. case LLAMA_FTYPE_MOSTLY_Q3_K_L: default_type = GGML_TYPE_Q3_K; break;
  12332. case LLAMA_FTYPE_MOSTLY_Q4_K_S:
  12333. case LLAMA_FTYPE_MOSTLY_Q4_K_M: default_type = GGML_TYPE_Q4_K; break;
  12334. case LLAMA_FTYPE_MOSTLY_Q5_K_S:
  12335. case LLAMA_FTYPE_MOSTLY_Q5_K_M: default_type = GGML_TYPE_Q5_K; break;
  12336. case LLAMA_FTYPE_MOSTLY_Q6_K: default_type = GGML_TYPE_Q6_K; break;
  12337. case LLAMA_FTYPE_MOSTLY_IQ2_XXS: default_type = GGML_TYPE_IQ2_XXS; break;
  12338. case LLAMA_FTYPE_MOSTLY_IQ2_XS: default_type = GGML_TYPE_IQ2_XS; break;
  12339. case LLAMA_FTYPE_MOSTLY_IQ2_S: default_type = GGML_TYPE_IQ2_XS; break;
  12340. case LLAMA_FTYPE_MOSTLY_IQ2_M: default_type = GGML_TYPE_IQ2_S; break;
  12341. case LLAMA_FTYPE_MOSTLY_IQ3_XXS: default_type = GGML_TYPE_IQ3_XXS; break;
  12342. case LLAMA_FTYPE_MOSTLY_IQ1_S: default_type = GGML_TYPE_IQ1_S; break;
  12343. case LLAMA_FTYPE_MOSTLY_IQ1_M: default_type = GGML_TYPE_IQ1_M; break;
  12344. case LLAMA_FTYPE_MOSTLY_IQ4_NL: default_type = GGML_TYPE_IQ4_NL; break;
  12345. case LLAMA_FTYPE_MOSTLY_IQ4_XS: default_type = GGML_TYPE_IQ4_XS; break;
  12346. case LLAMA_FTYPE_MOSTLY_IQ3_S: default_type = GGML_TYPE_IQ3_S; break;
  12347. case LLAMA_FTYPE_MOSTLY_IQ3_M: default_type = GGML_TYPE_IQ3_S; break;
  12348. default: throw std::runtime_error(format("invalid output file type %d\n", ftype));
  12349. }
  12350. int nthread = params->nthread;
  12351. if (nthread <= 0) {
  12352. nthread = std::thread::hardware_concurrency();
  12353. }
  12354. // mmap consistently increases speed Linux, and also increases speed on Windows with
  12355. // hot cache. It may cause a slowdown on macOS, possibly related to free memory.
  12356. #if defined(__linux__) || defined(_WIN32)
  12357. constexpr bool use_mmap = true;
  12358. #else
  12359. constexpr bool use_mmap = false;
  12360. #endif
  12361. llama_model_kv_override * kv_overrides = nullptr;
  12362. if (params->kv_overrides) {
  12363. auto v = (std::vector<llama_model_kv_override>*)params->kv_overrides;
  12364. kv_overrides = v->data();
  12365. }
  12366. llama_model_loader ml(fname_inp, use_mmap, /*check_tensors*/ true, kv_overrides);
  12367. ml.init_mappings(false); // no prefetching
  12368. llama_model model;
  12369. llm_load_arch(ml, model);
  12370. llm_load_hparams(ml, model);
  12371. struct quantize_state_internal qs(model, params);
  12372. if (params->only_copy) {
  12373. ftype = model.ftype;
  12374. }
  12375. const std::unordered_map<std::string, std::vector<float>> * imatrix_data = nullptr;
  12376. if (params->imatrix) {
  12377. imatrix_data = static_cast<const std::unordered_map<std::string, std::vector<float>>*>(params->imatrix);
  12378. if (imatrix_data) {
  12379. LLAMA_LOG_INFO("================================ Have weights data with %d entries\n",int(imatrix_data->size()));
  12380. qs.has_imatrix = true;
  12381. }
  12382. }
  12383. const size_t align = GGUF_DEFAULT_ALIGNMENT;
  12384. struct gguf_context * ctx_out = gguf_init_empty();
  12385. // copy the KV pairs from the input file
  12386. gguf_set_kv (ctx_out, ml.meta);
  12387. gguf_set_val_u32(ctx_out, "general.quantization_version", GGML_QNT_VERSION);
  12388. gguf_set_val_u32(ctx_out, "general.file_type", ftype);
  12389. // Remove split metadata
  12390. gguf_remove_key(ctx_out, ml.llm_kv(LLM_KV_SPLIT_NO).c_str());
  12391. gguf_remove_key(ctx_out, ml.llm_kv(LLM_KV_SPLIT_COUNT).c_str());
  12392. gguf_remove_key(ctx_out, ml.llm_kv(LLM_KV_SPLIT_TENSORS_COUNT).c_str());
  12393. if (params->kv_overrides) {
  12394. const std::vector<llama_model_kv_override> & overrides = *(const std::vector<llama_model_kv_override> *)params->kv_overrides;
  12395. for (auto & o : overrides) {
  12396. if (o.key[0] == 0) break;
  12397. if (o.tag == LLAMA_KV_OVERRIDE_TYPE_FLOAT) {
  12398. gguf_set_val_f32(ctx_out, o.key, o.val_f64);
  12399. } else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_INT) {
  12400. gguf_set_val_i32(ctx_out, o.key, o.val_i64);
  12401. } else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_BOOL) {
  12402. gguf_set_val_bool(ctx_out, o.key, o.val_bool);
  12403. } else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_STR) {
  12404. gguf_set_val_str(ctx_out, o.key, o.val_str);
  12405. } else {
  12406. LLAMA_LOG_WARN("%s: unknown KV override type for key %s\n", __func__, o.key);
  12407. }
  12408. }
  12409. }
  12410. for (int i = 0; i < ml.n_tensors; ++i) {
  12411. const struct ggml_tensor * meta = ml.get_tensor_meta(i);
  12412. const std::string name = ggml_get_name(meta);
  12413. // TODO: avoid hardcoded tensor names - use the TN_* constants
  12414. if (name.find("attn_v.weight") != std::string::npos ||
  12415. name.find("attn_qkv.weight") != std::string::npos) {
  12416. ++qs.n_attention_wv;
  12417. } else if (name == LLM_TN(model.arch)(LLM_TENSOR_OUTPUT, "weight")) {
  12418. qs.has_output = true;
  12419. }
  12420. }
  12421. qs.n_ffn_down = qs.n_ffn_gate = qs.n_ffn_up = (int)model.hparams.n_layer;
  12422. // sanity checks
  12423. //
  12424. // - qs.n_attention_wv == 0 for Mamba models
  12425. // - qs.n_attention_wv == model.hparams.n_layer for Transformer models
  12426. //
  12427. GGML_ASSERT((qs.n_attention_wv == 0 || qs.n_attention_wv == (int)model.hparams.n_layer) && "n_attention_wv is unexpected");
  12428. size_t total_size_org = 0;
  12429. size_t total_size_new = 0;
  12430. std::vector<std::thread> workers;
  12431. workers.reserve(nthread);
  12432. int idx = 0;
  12433. std::vector<no_init<uint8_t>> read_data;
  12434. std::vector<no_init<uint8_t>> work;
  12435. std::vector<no_init<float>> f32_conv_buf;
  12436. uint16_t n_split = 1;
  12437. // Assume split index is continuous
  12438. if (params->keep_split) {
  12439. for (int i = 0; i < ml.n_tensors; ++i) {
  12440. n_split = std::max(uint16_t(ml.get_weight(i)->idx+1), n_split);
  12441. }
  12442. }
  12443. std::vector<gguf_context*> ctx_outs(n_split, NULL);
  12444. ctx_outs[0] = ctx_out;
  12445. // populate the original tensors so we get an initial meta data
  12446. for (int i = 0; i < ml.n_tensors; ++i) {
  12447. auto weight = ml.get_weight(i);
  12448. uint16_t i_split = params->keep_split ? weight->idx : 0;
  12449. struct ggml_tensor * tensor = weight->tensor;
  12450. if (ctx_outs[i_split] == NULL) {
  12451. ctx_outs[i_split] = gguf_init_empty();
  12452. }
  12453. gguf_add_tensor(ctx_outs[i_split], tensor);
  12454. }
  12455. // Set split info if needed
  12456. if (n_split > 1) {
  12457. for (size_t i = 0; i < ctx_outs.size(); ++i) {
  12458. gguf_set_val_u16(ctx_outs[i], ml.llm_kv(LLM_KV_SPLIT_NO).c_str(), i);
  12459. gguf_set_val_u16(ctx_outs[i], ml.llm_kv(LLM_KV_SPLIT_COUNT).c_str(), n_split);
  12460. gguf_set_val_i32(ctx_outs[i], ml.llm_kv(LLM_KV_SPLIT_TENSORS_COUNT).c_str(), ml.n_tensors);
  12461. }
  12462. }
  12463. int cur_split = -1;
  12464. std::ofstream fout;
  12465. auto close_ofstream = [&]() {
  12466. // Write metadata and close file handler
  12467. if (fout.is_open()) {
  12468. fout.seekp(0);
  12469. std::vector<uint8_t> data(gguf_get_meta_size(ctx_outs[cur_split]));
  12470. gguf_get_meta_data(ctx_outs[cur_split], data.data());
  12471. fout.write((const char *) data.data(), data.size());
  12472. fout.close();
  12473. }
  12474. };
  12475. auto new_ofstream = [&](int index) {
  12476. cur_split = index;
  12477. GGML_ASSERT(ctx_outs[cur_split] && "Find uninitialized gguf_context");
  12478. std::string fname = fname_out;
  12479. if (params->keep_split) {
  12480. char split_path[PATH_MAX] = {0};
  12481. llama_split_path(split_path, sizeof(split_path), fname_out.c_str(), cur_split, n_split);
  12482. fname = std::string(split_path);
  12483. }
  12484. fout = std::ofstream(fname, std::ios::binary);
  12485. fout.exceptions(std::ofstream::failbit); // fail fast on write errors
  12486. const size_t meta_size = gguf_get_meta_size(ctx_outs[cur_split]);
  12487. // placeholder for the meta data
  12488. ::zeros(fout, meta_size);
  12489. };
  12490. const auto tn = LLM_TN(model.arch);
  12491. new_ofstream(0);
  12492. for (int i = 0; i < ml.n_tensors; ++i) {
  12493. auto weight = ml.get_weight(i);
  12494. struct ggml_tensor * tensor = weight->tensor;
  12495. if (weight->idx != cur_split && params->keep_split) {
  12496. close_ofstream();
  12497. new_ofstream(weight->idx);
  12498. }
  12499. const std::string name = ggml_get_name(tensor);
  12500. if (!ml.use_mmap) {
  12501. if (read_data.size() < ggml_nbytes(tensor)) {
  12502. read_data.resize(ggml_nbytes(tensor));
  12503. }
  12504. tensor->data = read_data.data();
  12505. }
  12506. ml.load_data_for(tensor);
  12507. LLAMA_LOG_INFO("[%4d/%4d] %36s - [%s], type = %6s, ",
  12508. ++idx, ml.n_tensors,
  12509. ggml_get_name(tensor),
  12510. llama_format_tensor_shape(tensor).c_str(),
  12511. ggml_type_name(tensor->type));
  12512. // This used to be a regex, but <regex> has an extreme cost to compile times.
  12513. bool quantize = name.rfind("weight") == name.size() - 6; // ends with 'weight'?
  12514. // quantize only 2D and 3D tensors (experts)
  12515. quantize &= (ggml_n_dims(tensor) >= 2);
  12516. // do not quantize norm tensors
  12517. quantize &= name.find("_norm.weight") == std::string::npos;
  12518. quantize &= params->quantize_output_tensor || name != "output.weight";
  12519. quantize &= !params->only_copy;
  12520. // do not quantize expert gating tensors
  12521. // NOTE: can't use LLM_TN here because the layer number is not known
  12522. quantize &= name.find("ffn_gate_inp.weight") == std::string::npos;
  12523. // do not quantize positional embeddings and token types (BERT)
  12524. quantize &= name != LLM_TN(model.arch)(LLM_TENSOR_POS_EMBD, "weight");
  12525. quantize &= name != LLM_TN(model.arch)(LLM_TENSOR_TOKEN_TYPES, "weight");
  12526. // do not quantize Mamba's small yet 2D weights
  12527. // NOTE: can't use LLM_TN here because the layer number is not known
  12528. quantize &= name.find("ssm_conv1d.weight") == std::string::npos;
  12529. quantize &= name.find("ssm_x.weight") == std::string::npos;
  12530. quantize &= name.find("ssm_dt.weight") == std::string::npos;
  12531. enum ggml_type new_type;
  12532. void * new_data;
  12533. size_t new_size;
  12534. if (quantize) {
  12535. new_type = default_type;
  12536. // get more optimal quantization type based on the tensor shape, layer, etc.
  12537. if (!params->pure && ggml_is_quantized(default_type)) {
  12538. new_type = llama_tensor_get_type(qs, new_type, tensor, ftype);
  12539. }
  12540. if (params->token_embedding_type < GGML_TYPE_COUNT && strcmp(tensor->name, "token_embd.weight") == 0) {
  12541. new_type = params->token_embedding_type;
  12542. }
  12543. if (params->output_tensor_type < GGML_TYPE_COUNT && strcmp(tensor->name, "output.weight") == 0) {
  12544. new_type = params->output_tensor_type;
  12545. }
  12546. // If we've decided to quantize to the same type the tensor is already
  12547. // in then there's nothing to do.
  12548. quantize = tensor->type != new_type;
  12549. }
  12550. if (!quantize) {
  12551. new_type = tensor->type;
  12552. new_data = tensor->data;
  12553. new_size = ggml_nbytes(tensor);
  12554. LLAMA_LOG_INFO("size = %8.3f MB\n", ggml_nbytes(tensor)/1024.0/1024.0);
  12555. } else {
  12556. const int64_t nelements = ggml_nelements(tensor);
  12557. const float * imatrix = nullptr;
  12558. if (imatrix_data) {
  12559. auto it = imatrix_data->find(tensor->name);
  12560. if (it == imatrix_data->end()) {
  12561. LLAMA_LOG_INFO("\n====== %s: did not find weights for %s\n", __func__, tensor->name);
  12562. } else {
  12563. if (it->second.size() == (size_t)tensor->ne[0]*tensor->ne[2]) {
  12564. imatrix = it->second.data();
  12565. } else {
  12566. LLAMA_LOG_INFO("\n====== %s: imatrix size %d is different from tensor size %d for %s\n", __func__,
  12567. int(it->second.size()), int(tensor->ne[0]*tensor->ne[2]), tensor->name);
  12568. // this can happen when quantizing an old mixtral model with split tensors with a new incompatible imatrix
  12569. // this is a significant error and it may be good idea to abort the process if this happens,
  12570. // since many people will miss the error and not realize that most of the model is being quantized without an imatrix
  12571. // tok_embd should be ignored in this case, since it always causes this warning
  12572. if (name != tn(LLM_TENSOR_TOKEN_EMBD, "weight")) {
  12573. throw std::runtime_error(format("imatrix size %d is different from tensor size %d for %s",
  12574. int(it->second.size()), int(tensor->ne[0]*tensor->ne[2]), tensor->name));
  12575. }
  12576. }
  12577. }
  12578. }
  12579. if ((new_type == GGML_TYPE_IQ2_XXS ||
  12580. new_type == GGML_TYPE_IQ2_XS ||
  12581. new_type == GGML_TYPE_IQ2_S ||
  12582. new_type == GGML_TYPE_IQ1_S ||
  12583. (new_type == GGML_TYPE_IQ1_M && strcmp(tensor->name, "token_embd.weight") && strcmp(tensor->name, "output.weight")) ||
  12584. (new_type == GGML_TYPE_Q2_K && params->ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S && strcmp(tensor->name, "token_embd.weight") != 0)) && !imatrix) {
  12585. LLAMA_LOG_ERROR("\n\n============================================================\n");
  12586. LLAMA_LOG_ERROR("Missing importance matrix for tensor %s in a very low-bit quantization\n", tensor->name);
  12587. LLAMA_LOG_ERROR("The result will be garbage, so bailing out\n");
  12588. LLAMA_LOG_ERROR("============================================================\n\n");
  12589. throw std::runtime_error(format("Missing importance matrix for tensor %s in a very low-bit quantization", tensor->name));
  12590. }
  12591. float * f32_data;
  12592. if (tensor->type == GGML_TYPE_F32) {
  12593. f32_data = (float *) tensor->data;
  12594. } else if (ggml_is_quantized(tensor->type) && !params->allow_requantize) {
  12595. throw std::runtime_error(format("requantizing from type %s is disabled", ggml_type_name(tensor->type)));
  12596. } else {
  12597. llama_tensor_dequantize_internal(tensor, f32_conv_buf, workers, nelements, nthread);
  12598. f32_data = (float *) f32_conv_buf.data();
  12599. }
  12600. LLAMA_LOG_INFO("converting to %s .. ", ggml_type_name(new_type));
  12601. fflush(stdout);
  12602. if (work.size() < (size_t)nelements * 4) {
  12603. work.resize(nelements * 4); // upper bound on size
  12604. }
  12605. new_data = work.data();
  12606. const int64_t n_per_row = tensor->ne[0];
  12607. const int64_t nrows = tensor->ne[1];
  12608. static const int64_t min_chunk_size = 32 * 512;
  12609. const int64_t chunk_size = n_per_row >= min_chunk_size ? n_per_row : n_per_row * ((min_chunk_size + n_per_row - 1)/n_per_row);
  12610. const int64_t nelements_matrix = tensor->ne[0] * tensor->ne[1];
  12611. const int64_t nchunk = (nelements_matrix + chunk_size - 1)/chunk_size;
  12612. const int64_t nthread_use = nthread > 1 ? std::max((int64_t)1, std::min((int64_t)nthread, nchunk)) : 1;
  12613. // quantize each expert separately since they have different importance matrices
  12614. new_size = 0;
  12615. for (int64_t i03 = 0; i03 < tensor->ne[2]; ++i03) {
  12616. const float * f32_data_03 = f32_data + i03 * nelements_matrix;
  12617. void * new_data_03 = (char *)new_data + ggml_row_size(new_type, n_per_row) * i03 * nrows;
  12618. const float * imatrix_03 = imatrix ? imatrix + i03 * n_per_row : nullptr;
  12619. new_size += llama_tensor_quantize_internal(new_type, f32_data_03, new_data_03, chunk_size, nrows, n_per_row, imatrix_03, workers, nthread_use);
  12620. }
  12621. LLAMA_LOG_INFO("size = %8.2f MiB -> %8.2f MiB\n", ggml_nbytes(tensor)/1024.0/1024.0, new_size/1024.0/1024.0);
  12622. }
  12623. total_size_org += ggml_nbytes(tensor);
  12624. total_size_new += new_size;
  12625. // update the gguf meta data as we go
  12626. gguf_set_tensor_type(ctx_outs[cur_split], name.c_str(), new_type);
  12627. gguf_set_tensor_data(ctx_outs[cur_split], name.c_str(), new_data, new_size);
  12628. // write tensor data + padding
  12629. fout.write((const char *) new_data, new_size);
  12630. zeros(fout, GGML_PAD(new_size, align) - new_size);
  12631. }
  12632. close_ofstream();
  12633. for (auto & c:ctx_outs) {
  12634. gguf_free(c);
  12635. }
  12636. LLAMA_LOG_INFO("%s: model size = %8.2f MB\n", __func__, total_size_org/1024.0/1024.0);
  12637. LLAMA_LOG_INFO("%s: quant size = %8.2f MB\n", __func__, total_size_new/1024.0/1024.0);
  12638. if (qs.n_fallback > 0) {
  12639. LLAMA_LOG_WARN("%s: WARNING: %d of %d tensor(s) required fallback quantization\n",
  12640. __func__, qs.n_fallback, qs.n_k_quantized + qs.n_fallback);
  12641. }
  12642. }
  12643. static int llama_apply_lora_from_file_internal(
  12644. const struct llama_model & model, const char * path_lora, float scale, const char * path_base_model, int n_threads
  12645. ) {
  12646. LLAMA_LOG_INFO("%s: applying lora adapter from '%s' - please wait ...\n", __func__, path_lora);
  12647. const int64_t t_start_lora_us = ggml_time_us();
  12648. llama_file fin(path_lora, "rb");
  12649. // verify magic and version
  12650. {
  12651. uint32_t magic = fin.read_u32();
  12652. if (magic != LLAMA_FILE_MAGIC_GGLA) {
  12653. LLAMA_LOG_ERROR("%s: bad file magic\n", __func__);
  12654. return 1;
  12655. }
  12656. uint32_t format_version = fin.read_u32();
  12657. if (format_version != 1) {
  12658. LLAMA_LOG_ERROR("%s: unsupported file version\n", __func__ );
  12659. return 1;
  12660. }
  12661. }
  12662. int32_t lora_r = fin.read_u32();
  12663. int32_t lora_alpha = fin.read_u32();
  12664. float scaling = scale * (float)lora_alpha / (float)lora_r;
  12665. LLAMA_LOG_INFO("%s: r = %d, alpha = %d, scaling = %.2f\n", __func__, lora_r, lora_alpha, scaling);
  12666. // load base model
  12667. std::unique_ptr<llama_model_loader> ml;
  12668. if (path_base_model) {
  12669. LLAMA_LOG_INFO("%s: loading base model from '%s'\n", __func__, path_base_model);
  12670. ml.reset(new llama_model_loader(path_base_model, /*use_mmap*/ true, /*check_tensors*/ false, /*kv_overrides*/ nullptr));
  12671. ml->init_mappings(/*prefetch*/ false); // no prefetching
  12672. }
  12673. struct tensor_meta {
  12674. std::string name;
  12675. ggml_type type;
  12676. int32_t ne[2];
  12677. size_t offset;
  12678. };
  12679. std::map<std::string, tensor_meta> tensor_meta_map;
  12680. // load all tensor meta
  12681. while (true) {
  12682. if (fin.tell() == fin.size) {
  12683. // eof
  12684. break;
  12685. }
  12686. int32_t n_dims;
  12687. int32_t name_len;
  12688. int32_t ftype;
  12689. fin.read_raw(&n_dims, sizeof(n_dims));
  12690. fin.read_raw(&name_len, sizeof(name_len));
  12691. fin.read_raw(&ftype, sizeof(ftype));
  12692. if (n_dims != 1 && n_dims != 2) {
  12693. LLAMA_LOG_ERROR("%s: unsupported tensor dimension %d\n", __func__, n_dims);
  12694. return 1;
  12695. }
  12696. int32_t ne[2] = { 1, 1 };
  12697. for (int i = 0; i < n_dims; ++i) {
  12698. fin.read_raw(&ne[i], sizeof(ne[i]));
  12699. }
  12700. std::string name;
  12701. {
  12702. GGML_ASSERT(name_len < GGML_MAX_NAME);
  12703. char buf[GGML_MAX_NAME];
  12704. fin.read_raw(buf, name_len);
  12705. name = std::string(buf, name_len);
  12706. }
  12707. // check for lora suffix
  12708. std::string lora_suffix;
  12709. if (name.length() > 6) {
  12710. lora_suffix = name.substr(name.length() - 6);
  12711. }
  12712. if (lora_suffix != ".loraA" && lora_suffix != ".loraB") {
  12713. LLAMA_LOG_ERROR("%s: error: '%s' is not a lora tensor\n", __func__, name.c_str());
  12714. return 1;
  12715. }
  12716. // tensor type
  12717. ggml_type wtype;
  12718. switch (ftype) {
  12719. case 0: wtype = GGML_TYPE_F32; break;
  12720. case 1: wtype = GGML_TYPE_F16; break;
  12721. default:
  12722. {
  12723. LLAMA_LOG_ERROR("%s: invalid tensor data type '%d'\n",
  12724. __func__, ftype);
  12725. return 1;
  12726. }
  12727. }
  12728. // data offset
  12729. size_t offset = fin.tell();
  12730. offset = (offset + 31) & -32;
  12731. // skip tensor data
  12732. fin.seek(offset + ggml_row_size(wtype, ne[0]) * ne[1], SEEK_SET);
  12733. tensor_meta_map.emplace(name, tensor_meta{ name, wtype, { ne[0], ne[1] }, offset });
  12734. }
  12735. bool warned = false;
  12736. int n_tensors = 0;
  12737. // apply
  12738. ggml_backend_t backend_cpu = ggml_backend_cpu_init();
  12739. if (backend_cpu == nullptr) {
  12740. LLAMA_LOG_ERROR("%s: error: failed to initialize cpu backend\n", __func__);
  12741. return 1;
  12742. }
  12743. ggml_backend_cpu_set_n_threads(backend_cpu, n_threads);
  12744. std::vector<no_init<uint8_t>> read_buf;
  12745. for (const auto & it : model.tensors_by_name) {
  12746. const std::string & base_name = it.first;
  12747. ggml_tensor * model_t = it.second;
  12748. if (tensor_meta_map.find(base_name + ".loraA") == tensor_meta_map.end() ||
  12749. tensor_meta_map.find(base_name + ".loraB") == tensor_meta_map.end()) {
  12750. continue;
  12751. }
  12752. tensor_meta & metaA = tensor_meta_map.at(base_name + ".loraA");
  12753. tensor_meta & metaB = tensor_meta_map.at(base_name + ".loraB");
  12754. ggml_init_params lora_init_params = {
  12755. /* .mem_size */ ggml_tensor_overhead()*128 + ggml_graph_overhead(),
  12756. /* .mem_buffer */ nullptr,
  12757. /* .no_alloc */ true,
  12758. };
  12759. ggml_context * lora_ctx = ggml_init(lora_init_params);
  12760. if (lora_ctx == nullptr) {
  12761. LLAMA_LOG_ERROR("%s: error: failed to initialize lora context\n", __func__);
  12762. ggml_backend_free(backend_cpu);
  12763. return 1;
  12764. }
  12765. // create tensors
  12766. ggml_tensor * loraA = ggml_new_tensor_2d(lora_ctx, metaA.type, metaA.ne[0], metaA.ne[1]);
  12767. ggml_tensor * loraB = ggml_new_tensor_2d(lora_ctx, metaB.type, metaB.ne[0], metaB.ne[1]);
  12768. ggml_set_name(loraA, metaA.name.c_str());
  12769. ggml_set_name(loraB, metaB.name.c_str());
  12770. ggml_tensor * base_t;
  12771. if (ml) {
  12772. if (!ml->get_tensor_meta(base_name.c_str())) {
  12773. LLAMA_LOG_ERROR("%s: error: tensor '%s' not found in base model\n", __func__, base_name.c_str());
  12774. return 1;
  12775. }
  12776. base_t = ggml_dup_tensor(lora_ctx, ml->get_tensor_meta(base_name.c_str()));
  12777. } else {
  12778. base_t = ggml_dup_tensor(lora_ctx, model_t);
  12779. }
  12780. ggml_set_name(base_t, base_name.c_str());
  12781. // allocate in backend buffer
  12782. ggml_backend_buffer_t lora_buf = ggml_backend_alloc_ctx_tensors_from_buft(lora_ctx, ggml_backend_cpu_buffer_type());
  12783. if (lora_buf == nullptr) {
  12784. LLAMA_LOG_ERROR("%s: error: failed to allocate lora tensors\n", __func__);
  12785. return 1;
  12786. }
  12787. // load tensor data
  12788. auto load_tensor = [&read_buf, &fin](const tensor_meta & tensor_meta, ggml_tensor * tensor) {
  12789. read_buf.resize(ggml_nbytes(tensor));
  12790. fin.seek(tensor_meta.offset, SEEK_SET);
  12791. fin.read_raw(read_buf.data(), ggml_nbytes(tensor));
  12792. ggml_backend_tensor_set(tensor, read_buf.data(), 0, read_buf.size());
  12793. };
  12794. load_tensor(metaA, loraA);
  12795. load_tensor(metaB, loraB);
  12796. // load base model tensor data
  12797. if (ml) {
  12798. ml->load_data_for(base_t);
  12799. } else {
  12800. ggml_backend_tensor_copy(model_t, base_t);
  12801. }
  12802. if (ggml_is_quantized(base_t->type) && !warned) {
  12803. LLAMA_LOG_WARN("%s: warning: using a lora adapter with a quantized model may result in poor quality, "
  12804. "use a f16 or f32 base model with --lora-base\n", __func__);
  12805. warned = true;
  12806. }
  12807. if (base_t->ne[0] != loraA->ne[1] || base_t->ne[1] != loraB->ne[1]) {
  12808. LLAMA_LOG_ERROR("%s: incompatible tensor dimensions (%" PRId64 " and %" PRId64 ");"
  12809. " are you sure that this adapter is for this model?\n", __func__, base_t->ne[0], loraA->ne[1]);
  12810. ggml_free(lora_ctx);
  12811. ggml_backend_buffer_free(lora_buf);
  12812. ggml_backend_free(backend_cpu);
  12813. return 1;
  12814. }
  12815. auto build_lora_graph = [&]() {
  12816. // w = w + BA*s
  12817. ggml_tensor * BA = ggml_mul_mat(lora_ctx, loraA, loraB);
  12818. ggml_set_name(BA, "BA");
  12819. if (scaling != 1.0f) {
  12820. BA = ggml_scale(lora_ctx, BA, scaling);
  12821. ggml_set_name(BA, "BA_scaled");
  12822. }
  12823. ggml_tensor * r;
  12824. r = ggml_add_inplace(lora_ctx, base_t, BA);
  12825. ggml_set_name(r, "r_add");
  12826. if (base_t->type != model_t->type) {
  12827. // convert the result to the model type
  12828. r = ggml_cast(lora_ctx, r, model_t->type);
  12829. ggml_set_name(r, "r_cast");
  12830. }
  12831. return r;
  12832. };
  12833. ggml_cgraph * gf = ggml_new_graph(lora_ctx);
  12834. ggml_tensor * r = build_lora_graph();
  12835. ggml_build_forward_expand(gf, r);
  12836. ggml_backend_buffer_t graph_buf = ggml_backend_alloc_ctx_tensors_from_buft(lora_ctx, ggml_backend_cpu_buffer_type());
  12837. if (graph_buf == nullptr) {
  12838. LLAMA_LOG_ERROR("%s: error: failed to allocate graph tensors\n", __func__);
  12839. ggml_free(lora_ctx);
  12840. ggml_backend_buffer_free(lora_buf);
  12841. ggml_backend_free(backend_cpu);
  12842. return 1;
  12843. }
  12844. ggml_backend_graph_compute(backend_cpu, gf);
  12845. ggml_backend_tensor_set(model_t, r->data, 0, ggml_nbytes(r));
  12846. #if 0
  12847. // TODO: use scheduler with fallback to CPU for less copies between CPU and GPU
  12848. //ggml_backend_sched_t sched = ggml_backend_sched_new(backends.data(), backends.size(), GGML_DEFAULT_GRAPH_SIZE);
  12849. // sched compute
  12850. ggml_build_forward_expand(gf, build_graph());
  12851. ggml_backend_sched_init_measure(sched, gf);
  12852. // create the graph again, since the previous one was destroyed by the measure
  12853. ggml_graph_clear(gf);
  12854. ggml_build_forward_expand(gf, build_graph());
  12855. ggml_backend_sched_graph_compute(sched, gf);
  12856. ggml_backend_sched_free(sched);
  12857. #endif
  12858. ggml_backend_buffer_free(lora_buf);
  12859. ggml_backend_buffer_free(graph_buf);
  12860. ggml_free(lora_ctx);
  12861. n_tensors++;
  12862. if (n_tensors % 4 == 0) {
  12863. LLAMA_LOG_INFO(".");
  12864. }
  12865. }
  12866. ggml_backend_free(backend_cpu);
  12867. const int64_t t_lora_us = ggml_time_us() - t_start_lora_us;
  12868. LLAMA_LOG_INFO(" done (%.2f ms)\n", t_lora_us / 1000.0);
  12869. return 0;
  12870. }
  12871. //
  12872. // interface implementation
  12873. //
  12874. struct llama_model_params llama_model_default_params() {
  12875. struct llama_model_params result = {
  12876. /*.n_gpu_layers =*/ 0,
  12877. /*.split_mode =*/ LLAMA_SPLIT_MODE_LAYER,
  12878. /*.main_gpu =*/ 0,
  12879. /*.tensor_split =*/ nullptr,
  12880. /*.rpc_servers =*/ nullptr,
  12881. /*.progress_callback =*/ nullptr,
  12882. /*.progress_callback_user_data =*/ nullptr,
  12883. /*.kv_overrides =*/ nullptr,
  12884. /*.vocab_only =*/ false,
  12885. /*.use_mmap =*/ true,
  12886. /*.use_mlock =*/ false,
  12887. /*.check_tensors =*/ false,
  12888. };
  12889. #ifdef GGML_USE_METAL
  12890. // note: we usually have plenty of VRAM, so by default offload all layers to the GPU
  12891. result.n_gpu_layers = 999;
  12892. #endif
  12893. return result;
  12894. }
  12895. struct llama_context_params llama_context_default_params() {
  12896. struct llama_context_params result = {
  12897. /*.seed =*/ LLAMA_DEFAULT_SEED,
  12898. /*.n_ctx =*/ 512,
  12899. /*.n_batch =*/ 2048,
  12900. /*.n_ubatch =*/ 512,
  12901. /*.n_seq_max =*/ 1,
  12902. /*.n_threads =*/ GGML_DEFAULT_N_THREADS, // TODO: better default
  12903. /*.n_threads_batch =*/ GGML_DEFAULT_N_THREADS,
  12904. /*.rope_scaling_type =*/ LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED,
  12905. /*.pooling_type =*/ LLAMA_POOLING_TYPE_UNSPECIFIED,
  12906. /*.rope_freq_base =*/ 0.0f,
  12907. /*.rope_freq_scale =*/ 0.0f,
  12908. /*.yarn_ext_factor =*/ -1.0f,
  12909. /*.yarn_attn_factor =*/ 1.0f,
  12910. /*.yarn_beta_fast =*/ 32.0f,
  12911. /*.yarn_beta_slow =*/ 1.0f,
  12912. /*.yarn_orig_ctx =*/ 0,
  12913. /*.defrag_thold =*/ -1.0f,
  12914. /*.cb_eval =*/ nullptr,
  12915. /*.cb_eval_user_data =*/ nullptr,
  12916. /*.type_k =*/ GGML_TYPE_F16,
  12917. /*.type_v =*/ GGML_TYPE_F16,
  12918. /*.logits_all =*/ false,
  12919. /*.embeddings =*/ false,
  12920. /*.offload_kqv =*/ true,
  12921. /*.flash_attn =*/ false,
  12922. /*.abort_callback =*/ nullptr,
  12923. /*.abort_callback_data =*/ nullptr,
  12924. };
  12925. return result;
  12926. }
  12927. struct llama_model_quantize_params llama_model_quantize_default_params() {
  12928. struct llama_model_quantize_params result = {
  12929. /*.nthread =*/ 0,
  12930. /*.ftype =*/ LLAMA_FTYPE_MOSTLY_Q5_1,
  12931. /*.output_tensor_type =*/ GGML_TYPE_COUNT,
  12932. /*.token_embedding_type =*/ GGML_TYPE_COUNT,
  12933. /*.allow_requantize =*/ false,
  12934. /*.quantize_output_tensor =*/ true,
  12935. /*.only_copy =*/ false,
  12936. /*.pure =*/ false,
  12937. /*.keep_split =*/ false,
  12938. /*.imatrix =*/ nullptr,
  12939. /*.kv_overrides =*/ nullptr,
  12940. };
  12941. return result;
  12942. }
  12943. size_t llama_max_devices(void) {
  12944. #if defined(GGML_USE_RPC)
  12945. return GGML_RPC_MAX_SERVERS;
  12946. #elif defined(GGML_USE_METAL)
  12947. return 1;
  12948. #elif defined(GGML_USE_CUDA)
  12949. return GGML_CUDA_MAX_DEVICES;
  12950. #elif defined(GGML_USE_SYCL)
  12951. return GGML_SYCL_MAX_DEVICES;
  12952. #elif defined(GGML_USE_VULKAN)
  12953. return GGML_VK_MAX_DEVICES;
  12954. #else
  12955. return 1;
  12956. #endif
  12957. }
  12958. bool llama_supports_mmap(void) {
  12959. return llama_mmap::SUPPORTED;
  12960. }
  12961. bool llama_supports_mlock(void) {
  12962. return llama_mlock::SUPPORTED;
  12963. }
  12964. bool llama_supports_gpu_offload(void) {
  12965. #if defined(GGML_USE_CUDA) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_METAL) || defined(GGML_USE_VULKAN) || \
  12966. defined(GGML_USE_SYCL) || defined(GGML_USE_KOMPUTE) || defined(GGML_USE_RPC)
  12967. // Defined when llama.cpp is compiled with support for offloading model layers to GPU.
  12968. return true;
  12969. #else
  12970. return false;
  12971. #endif
  12972. }
  12973. void llama_backend_init(void) {
  12974. ggml_time_init();
  12975. // needed to initialize f16 tables
  12976. {
  12977. struct ggml_init_params params = { 0, NULL, false };
  12978. struct ggml_context * ctx = ggml_init(params);
  12979. ggml_free(ctx);
  12980. }
  12981. #ifdef GGML_USE_MPI
  12982. ggml_mpi_backend_init();
  12983. #endif
  12984. }
  12985. void llama_numa_init(enum ggml_numa_strategy numa) {
  12986. if (numa != GGML_NUMA_STRATEGY_DISABLED) {
  12987. ggml_numa_init(numa);
  12988. }
  12989. }
  12990. void llama_backend_free(void) {
  12991. #ifdef GGML_USE_MPI
  12992. ggml_mpi_backend_free();
  12993. #endif
  12994. ggml_quantize_free();
  12995. }
  12996. int64_t llama_time_us(void) {
  12997. return ggml_time_us();
  12998. }
  12999. struct llama_model * llama_load_model_from_file(
  13000. const char * path_model,
  13001. struct llama_model_params params) {
  13002. ggml_time_init();
  13003. llama_model * model = new llama_model;
  13004. unsigned cur_percentage = 0;
  13005. if (params.progress_callback == NULL) {
  13006. params.progress_callback_user_data = &cur_percentage;
  13007. params.progress_callback = [](float progress, void * ctx) {
  13008. unsigned * cur_percentage_p = (unsigned *) ctx;
  13009. unsigned percentage = (unsigned) (100 * progress);
  13010. while (percentage > *cur_percentage_p) {
  13011. *cur_percentage_p = percentage;
  13012. LLAMA_LOG_INFO(".");
  13013. if (percentage >= 100) {
  13014. LLAMA_LOG_INFO("\n");
  13015. }
  13016. }
  13017. return true;
  13018. };
  13019. }
  13020. if (params.rpc_servers != nullptr) {
  13021. // split the servers set them into model->rpc_servers
  13022. std::string servers(params.rpc_servers);
  13023. size_t pos = 0;
  13024. while ((pos = servers.find(",")) != std::string::npos) {
  13025. std::string server = servers.substr(0, pos);
  13026. model->rpc_servers.push_back(server);
  13027. servers.erase(0, pos + 1);
  13028. }
  13029. model->rpc_servers.push_back(servers);
  13030. }
  13031. int status = llama_model_load(path_model, *model, params);
  13032. GGML_ASSERT(status <= 0);
  13033. if (status < 0) {
  13034. if (status == -1) {
  13035. LLAMA_LOG_ERROR("%s: failed to load model\n", __func__);
  13036. } else if (status == -2) {
  13037. LLAMA_LOG_INFO("%s: cancelled model load\n", __func__);
  13038. }
  13039. delete model;
  13040. return nullptr;
  13041. }
  13042. return model;
  13043. }
  13044. void llama_free_model(struct llama_model * model) {
  13045. delete model;
  13046. }
  13047. struct llama_context * llama_new_context_with_model(
  13048. struct llama_model * model,
  13049. struct llama_context_params params) {
  13050. if (!model) {
  13051. LLAMA_LOG_ERROR("%s: model cannot be NULL\n", __func__);
  13052. return nullptr;
  13053. }
  13054. if (params.n_batch == 0 && params.n_ubatch == 0) {
  13055. LLAMA_LOG_ERROR("%s: n_batch and n_ubatch cannot both be zero\n", __func__);
  13056. return nullptr;
  13057. }
  13058. if (params.n_ctx == 0 && model->hparams.n_ctx_train == 0) {
  13059. LLAMA_LOG_ERROR("%s: n_ctx and model->hparams.n_ctx_train cannot both be zero\n", __func__);
  13060. return nullptr;
  13061. }
  13062. if (params.flash_attn && model->arch == LLM_ARCH_GROK) {
  13063. LLAMA_LOG_WARN("%s: flash_attn is not compatible with Grok - forcing off\n", __func__);
  13064. params.flash_attn = false;
  13065. }
  13066. llama_context * ctx = new llama_context(*model);
  13067. const auto & hparams = model->hparams;
  13068. auto & cparams = ctx->cparams;
  13069. cparams.n_seq_max = std::max(1u, params.n_seq_max);
  13070. cparams.n_threads = params.n_threads;
  13071. cparams.n_threads_batch = params.n_threads_batch;
  13072. cparams.yarn_ext_factor = params.yarn_ext_factor;
  13073. cparams.yarn_attn_factor = params.yarn_attn_factor;
  13074. cparams.yarn_beta_fast = params.yarn_beta_fast;
  13075. cparams.yarn_beta_slow = params.yarn_beta_slow;
  13076. cparams.defrag_thold = params.defrag_thold;
  13077. cparams.embeddings = params.embeddings;
  13078. cparams.offload_kqv = params.offload_kqv;
  13079. cparams.flash_attn = params.flash_attn;
  13080. cparams.pooling_type = params.pooling_type;
  13081. cparams.n_ctx = params.n_ctx == 0 ? hparams.n_ctx_train : params.n_ctx;
  13082. cparams.rope_freq_base = params.rope_freq_base == 0.0f ? hparams.rope_freq_base_train : params.rope_freq_base;
  13083. cparams.rope_freq_scale = params.rope_freq_scale == 0.0f ? hparams.rope_freq_scale_train : params.rope_freq_scale;
  13084. // this is necessary due to kv_self.n being padded later during inference
  13085. cparams.n_ctx = GGML_PAD(cparams.n_ctx, llama_kv_cache_get_padding(cparams));
  13086. // with causal attention, the batch size is limited by the context size
  13087. cparams.n_batch = hparams.causal_attn ? std::min(cparams.n_ctx, params.n_batch) : params.n_batch;
  13088. // the batch has to be at least GGML_KQ_MASK_PAD because we will be padding the KQ_mask
  13089. // this is required by GPU kernels in order to avoid out-of-bounds accesses (e.g. ggml_flash_attn_ext)
  13090. // ref: https://github.com/ggerganov/llama.cpp/pull/5021
  13091. if (cparams.n_batch < GGML_KQ_MASK_PAD) {
  13092. LLAMA_LOG_WARN("%s: n_batch is less than GGML_KQ_MASK_PAD - increasing to %d\n", __func__, GGML_KQ_MASK_PAD);
  13093. cparams.n_batch = GGML_KQ_MASK_PAD;
  13094. }
  13095. cparams.n_ubatch = std::min(cparams.n_batch, params.n_ubatch == 0 ? params.n_batch : params.n_ubatch);
  13096. cparams.n_yarn_orig_ctx = params.yarn_orig_ctx != 0 ? params.yarn_orig_ctx :
  13097. hparams.n_yarn_orig_ctx != 0 ? hparams.n_yarn_orig_ctx :
  13098. hparams.n_ctx_train;
  13099. cparams.cb_eval = params.cb_eval;
  13100. cparams.cb_eval_user_data = params.cb_eval_user_data;
  13101. auto rope_scaling_type = params.rope_scaling_type;
  13102. if (rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED) {
  13103. rope_scaling_type = hparams.rope_scaling_type_train;
  13104. }
  13105. if (rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_NONE) {
  13106. cparams.rope_freq_scale = 1.0f; // never scale if scaling type is none
  13107. }
  13108. if (cparams.yarn_ext_factor < 0.0f) { // negative indicates 'not set'
  13109. cparams.yarn_ext_factor = rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_YARN ? 1.0f : 0.0f;
  13110. }
  13111. cparams.causal_attn = hparams.causal_attn;
  13112. if (cparams.pooling_type == LLAMA_POOLING_TYPE_UNSPECIFIED) {
  13113. if (hparams.pooling_type == LLAMA_POOLING_TYPE_UNSPECIFIED) {
  13114. cparams.pooling_type = LLAMA_POOLING_TYPE_NONE;
  13115. } else {
  13116. cparams.pooling_type = hparams.pooling_type;
  13117. }
  13118. }
  13119. if (params.seed == LLAMA_DEFAULT_SEED) {
  13120. params.seed = time(NULL);
  13121. }
  13122. LLAMA_LOG_INFO("%s: n_ctx = %u\n", __func__, cparams.n_ctx);
  13123. LLAMA_LOG_INFO("%s: n_batch = %u\n", __func__, cparams.n_batch);
  13124. LLAMA_LOG_INFO("%s: n_ubatch = %u\n", __func__, cparams.n_ubatch);
  13125. LLAMA_LOG_INFO("%s: flash_attn = %d\n", __func__, cparams.flash_attn);
  13126. LLAMA_LOG_INFO("%s: freq_base = %.1f\n", __func__, cparams.rope_freq_base);
  13127. LLAMA_LOG_INFO("%s: freq_scale = %g\n", __func__, cparams.rope_freq_scale);
  13128. ctx->abort_callback = params.abort_callback;
  13129. ctx->abort_callback_data = params.abort_callback_data;
  13130. ctx->rng = std::mt19937(params.seed);
  13131. ctx->logits_all = params.logits_all;
  13132. uint32_t kv_size = cparams.n_ctx;
  13133. ggml_type type_k = params.type_k;
  13134. ggml_type type_v = params.type_v;
  13135. // Mamba only needs a constant number of KV cache cells per sequence
  13136. if (model->arch == LLM_ARCH_MAMBA) {
  13137. // Mamba needs at least as many KV cells as there are sequences kept at any time
  13138. kv_size = std::max((uint32_t) 1, params.n_seq_max);
  13139. // it's probably best to keep as much precision as possible for the states
  13140. type_k = GGML_TYPE_F32; // required by ggml_ssm_conv for Mamba's conv_states
  13141. type_v = GGML_TYPE_F32; // required by ggml_ssm_scan for Mamba's ssm_states
  13142. }
  13143. GGML_ASSERT(hparams.n_embd_head_k % ggml_blck_size(type_k) == 0);
  13144. GGML_ASSERT(hparams.n_embd_head_v % ggml_blck_size(type_v) == 0);
  13145. if (!hparams.vocab_only) {
  13146. // initialize backends
  13147. #if defined(GGML_USE_RPC)
  13148. for (auto & server : model->rpc_servers) {
  13149. ggml_backend_t backend = ggml_backend_rpc_init(server.c_str());
  13150. if (backend == nullptr) {
  13151. LLAMA_LOG_ERROR("%s: failed to connect RPC backend to %s\n", __func__, server.c_str());
  13152. llama_free(ctx);
  13153. return nullptr;
  13154. }
  13155. ctx->backends.push_back(backend);
  13156. }
  13157. #elif defined(GGML_USE_METAL)
  13158. if (model->n_gpu_layers > 0) {
  13159. ctx->backend_metal = ggml_backend_metal_init();
  13160. if (ctx->backend_metal == nullptr) {
  13161. LLAMA_LOG_ERROR("%s: failed to initialize Metal backend\n", __func__);
  13162. llama_free(ctx);
  13163. return nullptr;
  13164. }
  13165. ctx->backends.push_back(ctx->backend_metal);
  13166. }
  13167. #elif defined(GGML_USE_CUDA)
  13168. if (model->split_mode == LLAMA_SPLIT_MODE_NONE || model->split_mode == LLAMA_SPLIT_MODE_ROW) {
  13169. // with split_mode LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_ROW, only the main GPU backend is used
  13170. ggml_backend_t backend = ggml_backend_cuda_init(model->main_gpu);
  13171. if (backend == nullptr) {
  13172. LLAMA_LOG_ERROR("%s: failed to initialize CUDA%d backend\n", __func__, model->main_gpu);
  13173. llama_free(ctx);
  13174. return nullptr;
  13175. }
  13176. ctx->backends.push_back(backend);
  13177. } else {
  13178. // LLAMA_SPLIT_MODE_LAYER requires a backend for each GPU
  13179. for (int device = 0; device < ggml_backend_cuda_get_device_count(); ++device) {
  13180. ggml_backend_t backend = ggml_backend_cuda_init(device);
  13181. if (backend == nullptr) {
  13182. LLAMA_LOG_ERROR("%s: failed to initialize CUDA%d backend\n", __func__, device);
  13183. llama_free(ctx);
  13184. return nullptr;
  13185. }
  13186. ctx->backends.push_back(backend);
  13187. }
  13188. }
  13189. #elif defined(GGML_USE_VULKAN)
  13190. if (model->split_mode == LLAMA_SPLIT_MODE_ROW) {
  13191. LLAMA_LOG_ERROR("%s: Row split not supported. Failed to initialize Vulkan backend\n", __func__);
  13192. llama_free(ctx);
  13193. return nullptr;
  13194. }
  13195. if (model->split_mode == LLAMA_SPLIT_MODE_NONE) {
  13196. ggml_backend_t backend = ggml_backend_vk_init(0);
  13197. if (backend == nullptr) {
  13198. LLAMA_LOG_ERROR("%s: failed to initialize Vulkan backend\n", __func__);
  13199. llama_free(ctx);
  13200. return nullptr;
  13201. }
  13202. ctx->backends.push_back(backend);
  13203. } else {
  13204. for (int device = 0; device < ggml_backend_vk_get_device_count(); ++device) {
  13205. ggml_backend_t backend = ggml_backend_vk_init(device);
  13206. if (backend == nullptr) {
  13207. LLAMA_LOG_ERROR("%s: failed to initialize Vulkan%d backend\n", __func__, device);
  13208. llama_free(ctx);
  13209. return nullptr;
  13210. }
  13211. ctx->backends.push_back(backend);
  13212. }
  13213. }
  13214. #elif defined(GGML_USE_SYCL)
  13215. // with split_mode LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_ROW, only the main GPU backend is used
  13216. if (model->split_mode == LLAMA_SPLIT_MODE_NONE || model->split_mode == LLAMA_SPLIT_MODE_ROW) {
  13217. ggml_backend_t backend = ggml_backend_sycl_init(model->main_gpu);
  13218. if (backend == nullptr) {
  13219. int main_gpu_id = ggml_backend_sycl_get_device_id(model->main_gpu);
  13220. LLAMA_LOG_ERROR("%s: failed to initialize SYCL%d (index %d) backend\n", __func__, main_gpu_id, model->main_gpu);
  13221. llama_free(ctx);
  13222. return nullptr;
  13223. }
  13224. ctx->backends.push_back(backend);
  13225. } else {
  13226. // LLAMA_SPLIT_LAYER requires a backend for each GPU
  13227. for (int i = 0; i < ggml_backend_sycl_get_device_count(); ++i) {
  13228. ggml_backend_t backend = ggml_backend_sycl_init(i);
  13229. if (backend == nullptr) {
  13230. int id_list[GGML_SYCL_MAX_DEVICES];
  13231. ggml_sycl_get_gpu_list(id_list, GGML_SYCL_MAX_DEVICES);
  13232. LLAMA_LOG_ERROR("%s: failed to initialize SYCL%d (index %d) backend\n", __func__, id_list[i], i);
  13233. llama_free(ctx);
  13234. return nullptr;
  13235. }
  13236. ctx->backends.push_back(backend);
  13237. }
  13238. }
  13239. #elif defined(GGML_USE_KOMPUTE)
  13240. if (model->n_gpu_layers > 0) {
  13241. auto * backend = ggml_backend_kompute_init(model->main_gpu);
  13242. if (backend == nullptr) {
  13243. LLAMA_LOG_ERROR("%s: failed to initialize Kompute backend\n", __func__);
  13244. llama_free(ctx);
  13245. return nullptr;
  13246. }
  13247. ctx->backends.push_back(backend);
  13248. }
  13249. #endif
  13250. ctx->backend_cpu = ggml_backend_cpu_init();
  13251. if (ctx->backend_cpu == nullptr) {
  13252. LLAMA_LOG_ERROR("%s: failed to initialize CPU backend\n", __func__);
  13253. llama_free(ctx);
  13254. return nullptr;
  13255. }
  13256. ctx->backends.push_back(ctx->backend_cpu);
  13257. if (!llama_kv_cache_init(ctx->kv_self, ctx, type_k, type_v, kv_size, cparams.offload_kqv)) {
  13258. LLAMA_LOG_ERROR("%s: llama_kv_cache_init() failed for self-attention cache\n", __func__);
  13259. llama_free(ctx);
  13260. return nullptr;
  13261. }
  13262. {
  13263. size_t memory_size_k = 0;
  13264. size_t memory_size_v = 0;
  13265. for (auto & k : ctx->kv_self.k_l) {
  13266. memory_size_k += ggml_nbytes(k);
  13267. }
  13268. for (auto & v : ctx->kv_self.v_l) {
  13269. memory_size_v += ggml_nbytes(v);
  13270. }
  13271. LLAMA_LOG_INFO("%s: KV self size = %7.2f MiB, K (%s): %7.2f MiB, V (%s): %7.2f MiB\n", __func__,
  13272. (float)(memory_size_k + memory_size_v) / (1024.0f * 1024.0f),
  13273. ggml_type_name(type_k), (float)memory_size_k / (1024.0f * 1024.0f),
  13274. ggml_type_name(type_v), (float)memory_size_v / (1024.0f * 1024.0f));
  13275. }
  13276. // graph outputs buffer
  13277. {
  13278. // resized during inference when a batch uses more outputs
  13279. if (llama_output_reserve(*ctx, params.n_seq_max) < params.n_seq_max) {
  13280. LLAMA_LOG_ERROR("%s: failed to reserve initial output buffer\n", __func__);
  13281. llama_free(ctx);
  13282. return nullptr;
  13283. }
  13284. LLAMA_LOG_INFO("%s: %10s output buffer size = %8.2f MiB\n", __func__,
  13285. ggml_backend_buffer_name(ctx->buf_output),
  13286. ggml_backend_buffer_get_size(ctx->buf_output) / 1024.0 / 1024.0);
  13287. }
  13288. // scheduler and compute buffers
  13289. {
  13290. // buffer types used for the compute buffer of each backend
  13291. std::vector<ggml_backend_buffer_type_t> backend_buft;
  13292. for (auto * backend : ctx->backends) {
  13293. if (ggml_backend_is_cpu(backend)) {
  13294. // use host buffers for the CPU backend compute buffer
  13295. backend_buft.push_back(llama_default_buffer_type_cpu(true));
  13296. } else {
  13297. backend_buft.push_back(ggml_backend_get_default_buffer_type(backend));
  13298. }
  13299. }
  13300. // buffer used to store the computation graph and the tensor meta data
  13301. ctx->buf_compute_meta.resize(ggml_tensor_overhead()*LLAMA_MAX_NODES + ggml_graph_overhead_custom(LLAMA_MAX_NODES, false));
  13302. // enabling pipeline parallelism in the scheduler increases memory usage, so it is only done when necessary
  13303. bool pipeline_parallel =
  13304. llama_get_device_count(*model) > 1 &&
  13305. model->n_gpu_layers > (int)model->hparams.n_layer &&
  13306. model->split_mode == LLAMA_SPLIT_MODE_LAYER &&
  13307. params.offload_kqv;
  13308. #ifndef GGML_USE_CUDA
  13309. // pipeline parallelism requires support for async compute and events
  13310. // currently this is only implemented in the CUDA backend
  13311. pipeline_parallel = false;
  13312. #endif
  13313. ctx->sched = ggml_backend_sched_new(ctx->backends.data(), backend_buft.data(), ctx->backends.size(), LLAMA_MAX_NODES, pipeline_parallel);
  13314. if (pipeline_parallel) {
  13315. LLAMA_LOG_INFO("%s: pipeline parallelism enabled (n_copies=%d)\n", __func__, ggml_backend_sched_get_n_copies(ctx->sched));
  13316. }
  13317. // build worst-case graph
  13318. int n_tokens = (int)std::min(cparams.n_ctx, cparams.n_ubatch);
  13319. int n_past = cparams.n_ctx - n_tokens;
  13320. llama_token token = llama_token_bos(&ctx->model); // not actually used by llama_build_graph, but required to choose between token and embedding inputs graph
  13321. ggml_cgraph * gf = llama_build_graph(*ctx, llama_batch_get_one(&token, n_tokens, n_past, 0), true);
  13322. // initialize scheduler with the worst-case graph
  13323. if (!ggml_backend_sched_reserve(ctx->sched, gf)) {
  13324. LLAMA_LOG_ERROR("%s: failed to allocate compute buffers\n", __func__);
  13325. llama_free(ctx);
  13326. return nullptr;
  13327. }
  13328. for (size_t i = 0; i < ctx->backends.size(); i++) {
  13329. ggml_backend_t backend = ctx->backends[i];
  13330. ggml_backend_buffer_type_t buft = backend_buft[i];
  13331. size_t size = ggml_backend_sched_get_buffer_size(ctx->sched, backend);
  13332. if (size > 1) {
  13333. LLAMA_LOG_INFO("%s: %10s compute buffer size = %8.2f MiB\n", __func__,
  13334. ggml_backend_buft_name(buft),
  13335. size / 1024.0 / 1024.0);
  13336. }
  13337. }
  13338. // note: the number of splits during measure is higher than during inference due to the kv shift
  13339. int n_splits = ggml_backend_sched_get_n_splits(ctx->sched);
  13340. LLAMA_LOG_INFO("%s: graph nodes = %d\n", __func__, gf->n_nodes);
  13341. LLAMA_LOG_INFO("%s: graph splits = %d\n", __func__, n_splits);
  13342. }
  13343. }
  13344. #ifdef GGML_USE_MPI
  13345. ctx->ctx_mpi = ggml_mpi_init();
  13346. if (ggml_mpi_rank(ctx->ctx_mpi) > 0) {
  13347. // Enter a blocking eval loop with dummy input, letting rank=0 drive the process
  13348. // TODO: needs fix after #3228
  13349. GGML_ASSERT(false && "not implemented");
  13350. //const std::vector<llama_token> tmp(ctx->model.hparams.n_ctx, llama_token_bos(ctx));
  13351. //while (!llama_eval(ctx, tmp.data(), tmp.size(), 0, 0)) {};
  13352. llama_backend_free();
  13353. exit(1);
  13354. }
  13355. #endif
  13356. return ctx;
  13357. }
  13358. void llama_free(struct llama_context * ctx) {
  13359. delete ctx;
  13360. }
  13361. const llama_model * llama_get_model(const struct llama_context * ctx) {
  13362. return &ctx->model;
  13363. }
  13364. uint32_t llama_n_ctx(const struct llama_context * ctx) {
  13365. return ctx->cparams.n_ctx;
  13366. }
  13367. uint32_t llama_n_batch(const struct llama_context * ctx) {
  13368. return ctx->cparams.n_batch;
  13369. }
  13370. uint32_t llama_n_ubatch(const struct llama_context * ctx) {
  13371. return ctx->cparams.n_ubatch;
  13372. }
  13373. uint32_t llama_n_seq_max(const struct llama_context * ctx) {
  13374. return ctx->kv_self.size;
  13375. }
  13376. enum llama_vocab_type llama_vocab_type(const struct llama_model * model) {
  13377. return model->vocab.type;
  13378. }
  13379. enum llama_rope_type llama_rope_type(const struct llama_model * model) {
  13380. switch (model->arch) {
  13381. // these models do not use RoPE
  13382. case LLM_ARCH_GPT2:
  13383. case LLM_ARCH_GPTJ:
  13384. case LLM_ARCH_GPTNEOX:
  13385. case LLM_ARCH_MPT:
  13386. case LLM_ARCH_REFACT:
  13387. case LLM_ARCH_BLOOM:
  13388. case LLM_ARCH_MAMBA:
  13389. case LLM_ARCH_JINA_BERT_V2:
  13390. return LLAMA_ROPE_TYPE_NONE;
  13391. // use what we call a normal RoPE, operating on pairs of consecutive head values
  13392. case LLM_ARCH_LLAMA:
  13393. case LLM_ARCH_BAICHUAN:
  13394. case LLM_ARCH_STARCODER:
  13395. case LLM_ARCH_PLAMO:
  13396. case LLM_ARCH_CODESHELL:
  13397. case LLM_ARCH_ORION:
  13398. case LLM_ARCH_INTERNLM2:
  13399. case LLM_ARCH_MINICPM:
  13400. case LLM_ARCH_XVERSE:
  13401. case LLM_ARCH_COMMAND_R:
  13402. case LLM_ARCH_OLMO:
  13403. return LLAMA_ROPE_TYPE_NORM;
  13404. // the pairs of head values are offset by n_rot/2
  13405. case LLM_ARCH_FALCON:
  13406. case LLM_ARCH_GROK:
  13407. case LLM_ARCH_DBRX:
  13408. case LLM_ARCH_PERSIMMON:
  13409. case LLM_ARCH_BERT:
  13410. case LLM_ARCH_NOMIC_BERT:
  13411. case LLM_ARCH_STABLELM:
  13412. case LLM_ARCH_QWEN:
  13413. case LLM_ARCH_QWEN2:
  13414. case LLM_ARCH_QWEN2MOE:
  13415. case LLM_ARCH_PHI2:
  13416. case LLM_ARCH_PHI3:
  13417. case LLM_ARCH_GEMMA:
  13418. case LLM_ARCH_STARCODER2:
  13419. return LLAMA_ROPE_TYPE_NEOX;
  13420. // all model arches should be listed explicitly here
  13421. case LLM_ARCH_UNKNOWN:
  13422. GGML_ASSERT(false && "unknown architecture");
  13423. break;
  13424. }
  13425. return LLAMA_ROPE_TYPE_NONE;
  13426. }
  13427. enum llama_pooling_type llama_pooling_type(const struct llama_context * ctx) {
  13428. return ctx->cparams.pooling_type;
  13429. }
  13430. int32_t llama_n_vocab(const struct llama_model * model) {
  13431. return model->hparams.n_vocab;
  13432. }
  13433. int32_t llama_n_ctx_train(const struct llama_model * model) {
  13434. return model->hparams.n_ctx_train;
  13435. }
  13436. int32_t llama_n_embd(const struct llama_model * model) {
  13437. return model->hparams.n_embd;
  13438. }
  13439. int32_t llama_n_layer(const struct llama_model * model) {
  13440. return model->hparams.n_layer;
  13441. }
  13442. float llama_rope_freq_scale_train(const struct llama_model * model) {
  13443. return model->hparams.rope_freq_scale_train;
  13444. }
  13445. int32_t llama_model_meta_val_str(const struct llama_model * model, const char * key, char * buf, size_t buf_size) {
  13446. const auto & it = model->gguf_kv.find(key);
  13447. if (it == model->gguf_kv.end()) {
  13448. if (buf_size > 0) {
  13449. buf[0] = '\0';
  13450. }
  13451. return -1;
  13452. }
  13453. return snprintf(buf, buf_size, "%s", it->second.c_str());
  13454. }
  13455. int32_t llama_model_meta_count(const struct llama_model * model) {
  13456. return (int)model->gguf_kv.size();
  13457. }
  13458. int32_t llama_model_meta_key_by_index(const struct llama_model * model, int i, char * buf, size_t buf_size) {
  13459. if (i < 0 || i >= (int)model->gguf_kv.size()) {
  13460. if (buf_size > 0) {
  13461. buf[0] = '\0';
  13462. }
  13463. return -1;
  13464. }
  13465. auto it = model->gguf_kv.begin();
  13466. std::advance(it, i);
  13467. return snprintf(buf, buf_size, "%s", it->first.c_str());
  13468. }
  13469. int32_t llama_model_meta_val_str_by_index(const struct llama_model * model, int32_t i, char * buf, size_t buf_size) {
  13470. if (i < 0 || i >= (int)model->gguf_kv.size()) {
  13471. if (buf_size > 0) {
  13472. buf[0] = '\0';
  13473. }
  13474. return -1;
  13475. }
  13476. auto it = model->gguf_kv.begin();
  13477. std::advance(it, i);
  13478. return snprintf(buf, buf_size, "%s", it->second.c_str());
  13479. }
  13480. int32_t llama_model_desc(const struct llama_model * model, char * buf, size_t buf_size) {
  13481. return snprintf(buf, buf_size, "%s %s %s",
  13482. llama_model_arch_name(model->arch),
  13483. llama_model_type_name(model->type),
  13484. llama_model_ftype_name(model->ftype).c_str());
  13485. }
  13486. uint64_t llama_model_size(const struct llama_model * model) {
  13487. uint64_t size = 0;
  13488. for (const auto & it : model->tensors_by_name) {
  13489. size += ggml_nbytes(it.second);
  13490. }
  13491. return size;
  13492. }
  13493. uint64_t llama_model_n_params(const struct llama_model * model) {
  13494. uint64_t nparams = 0;
  13495. for (const auto & it : model->tensors_by_name) {
  13496. nparams += ggml_nelements(it.second);
  13497. }
  13498. return nparams;
  13499. }
  13500. struct ggml_tensor * llama_get_model_tensor(struct llama_model * model, const char * name) {
  13501. auto it = std::find_if(model->tensors_by_name.begin(), model->tensors_by_name.end(),
  13502. [name](const std::pair<std::string, struct ggml_tensor *> & it) {
  13503. return it.first == name;
  13504. });
  13505. if (it == model->tensors_by_name.end()) {
  13506. return nullptr;
  13507. }
  13508. return it->second;
  13509. }
  13510. uint32_t llama_model_quantize(
  13511. const char * fname_inp,
  13512. const char * fname_out,
  13513. const llama_model_quantize_params * params) {
  13514. try {
  13515. llama_model_quantize_internal(fname_inp, fname_out, params);
  13516. return 0;
  13517. } catch (const std::exception & err) {
  13518. LLAMA_LOG_ERROR("%s: failed to quantize: %s\n", __func__, err.what());
  13519. return 1;
  13520. }
  13521. }
  13522. int32_t llama_model_apply_lora_from_file(const struct llama_model * model, const char * path_lora, float scale, const char * path_base_model, int32_t n_threads) {
  13523. try {
  13524. return llama_apply_lora_from_file_internal(*model, path_lora, scale, path_base_model, n_threads);
  13525. } catch (const std::exception & err) {
  13526. LLAMA_LOG_ERROR("%s: failed to apply lora adapter: %s\n", __func__, err.what());
  13527. return 1;
  13528. }
  13529. }
  13530. static bool llama_control_vector_init(struct llama_control_vector & cvec, const llama_model & model) {
  13531. GGML_ASSERT(cvec.tensors.empty());
  13532. GGML_ASSERT(cvec.ctxs.empty());
  13533. GGML_ASSERT(cvec.bufs.empty());
  13534. // count layer buffer types
  13535. std::map<ggml_backend_buffer_type_t, int> buft_layer_count;
  13536. for (int64_t i = 0; i < model.hparams.n_layer; i++) {
  13537. buft_layer_count[model.buft_layer[i].buft]++;
  13538. }
  13539. // allocate contexts
  13540. std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
  13541. for (auto & it : buft_layer_count) {
  13542. int n_layers = it.second;
  13543. struct ggml_init_params params = {
  13544. /*.mem_size =*/ n_layers * ggml_tensor_overhead(),
  13545. /*.mem_buffer =*/ NULL,
  13546. /*.no_alloc =*/ true,
  13547. };
  13548. ggml_context * ctx = ggml_init(params);
  13549. if (!ctx) {
  13550. LLAMA_LOG_ERROR("%s: failed to allocate context for control vector\n", __func__);
  13551. return 1;
  13552. }
  13553. ctx_map[it.first] = ctx;
  13554. }
  13555. // make tensors
  13556. cvec.tensors.push_back(nullptr); // there's never a tensor for layer 0
  13557. for (size_t il = 1; il < model.hparams.n_layer; il++) {
  13558. struct ggml_context * ctx = ctx_map.at(model.buft_layer[il].buft);
  13559. ggml_tensor * tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, model.hparams.n_embd);
  13560. cvec.tensors.push_back(tensor);
  13561. }
  13562. // allocate tensors / buffers and zero
  13563. for (auto it : ctx_map) {
  13564. ggml_backend_buffer_type_t buft = it.first;
  13565. ggml_context * ctx = it.second;
  13566. ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
  13567. if (!buf) {
  13568. LLAMA_LOG_ERROR("%s: failed to allocate buffer for control vector\n", __func__);
  13569. return false;
  13570. }
  13571. ggml_backend_buffer_clear(buf, 0);
  13572. cvec.ctxs.push_back(ctx);
  13573. cvec.bufs.push_back(buf);
  13574. }
  13575. return true;
  13576. }
  13577. int32_t llama_control_vector_apply(struct llama_context * lctx, const float * data, size_t len, int32_t n_embd, int32_t il_start, int32_t il_end) {
  13578. const llama_model & model = lctx->model;
  13579. llama_control_vector & cvec = lctx->cvec;
  13580. if (data == nullptr) {
  13581. // disable the current control vector (but leave allocated for later)
  13582. cvec.layer_start = -1;
  13583. cvec.layer_end = -1;
  13584. return 0;
  13585. }
  13586. if (n_embd != (int) model.hparams.n_embd) {
  13587. LLAMA_LOG_ERROR("%s: control vector n_embd does not match model\n", __func__);
  13588. return 1;
  13589. }
  13590. if (cvec.tensors.empty()) {
  13591. if (!llama_control_vector_init(cvec, model)) {
  13592. return 1;
  13593. }
  13594. }
  13595. cvec.layer_start = il_start;
  13596. cvec.layer_end = il_end;
  13597. for (size_t il = 1; il < model.hparams.n_layer; il++) {
  13598. assert(cvec.tensors[il] != nullptr);
  13599. const size_t off = n_embd * (il - 1); // buffer doesn't have data for layer 0, since it's never present
  13600. if (off + n_embd <= len) {
  13601. ggml_backend_tensor_set(cvec.tensors[il], data + off, 0, n_embd * ggml_element_size(cvec.tensors[il]));
  13602. }
  13603. }
  13604. return 0;
  13605. }
  13606. struct llama_kv_cache_view llama_kv_cache_view_init(const struct llama_context * ctx, int32_t n_seq_max) {
  13607. struct llama_kv_cache_view result = {
  13608. /*.n_cells = */ 0,
  13609. /*.n_seq_max = */ n_seq_max,
  13610. /*.token_count = */ 0,
  13611. /*.used_cells = */ llama_get_kv_cache_used_cells(ctx),
  13612. /*.max_contiguous = */ 0,
  13613. /*.max_contiguous_idx = */ -1,
  13614. /*.cells = */ nullptr,
  13615. /*.cells_sequences = */ nullptr,
  13616. };
  13617. return result;
  13618. }
  13619. void llama_kv_cache_view_free(struct llama_kv_cache_view * view) {
  13620. if (view->cells != nullptr) {
  13621. free(view->cells);
  13622. view->cells = nullptr;
  13623. }
  13624. if (view->cells_sequences != nullptr) {
  13625. free(view->cells_sequences);
  13626. view->cells_sequences = nullptr;
  13627. }
  13628. }
  13629. void llama_kv_cache_view_update(const struct llama_context * ctx, struct llama_kv_cache_view * view) {
  13630. if (uint32_t(view->n_cells) < ctx->kv_self.size || view->cells == nullptr) {
  13631. view->n_cells = int32_t(ctx->kv_self.size);
  13632. void * p = realloc(view->cells, sizeof(struct llama_kv_cache_view_cell) * view->n_cells);
  13633. GGML_ASSERT(p != nullptr && "Failed to alloc kv_cache_view cells");
  13634. view->cells = (struct llama_kv_cache_view_cell *)p;
  13635. p = realloc(view->cells_sequences, sizeof(llama_seq_id) * view->n_seq_max * view->n_cells);
  13636. GGML_ASSERT(p != nullptr && "Failed to alloc kv_cache_view cells sequences");
  13637. view->cells_sequences = (llama_seq_id *)p;
  13638. }
  13639. const std::vector<llama_kv_cell> & kv_cells = ctx->kv_self.cells;
  13640. llama_kv_cache_view_cell * c_curr = view->cells;
  13641. llama_seq_id * cs_curr = view->cells_sequences;
  13642. int32_t used_cells = 0;
  13643. int32_t token_count = 0;
  13644. int32_t curr_contig_idx = -1;
  13645. uint32_t max_contig = 0;
  13646. int32_t max_contig_idx = -1;
  13647. for (int32_t i = 0; i < int32_t(ctx->kv_self.size); i++, c_curr++, cs_curr += view->n_seq_max) {
  13648. const size_t curr_size = kv_cells[i].seq_id.size();
  13649. token_count += curr_size;
  13650. c_curr->pos = kv_cells[i].pos + kv_cells[i].delta;
  13651. if (curr_size > 0) {
  13652. if (curr_contig_idx >= 0 && uint32_t(i - curr_contig_idx) > max_contig) {
  13653. max_contig = i - curr_contig_idx;
  13654. max_contig_idx = curr_contig_idx;
  13655. }
  13656. curr_contig_idx = -1;
  13657. } else if (curr_contig_idx < 0) {
  13658. curr_contig_idx = i;
  13659. }
  13660. int seq_idx = 0;
  13661. for (const llama_seq_id it : kv_cells[i].seq_id) {
  13662. if (seq_idx >= view->n_seq_max) {
  13663. break;
  13664. }
  13665. cs_curr[seq_idx] = it;
  13666. seq_idx++;
  13667. }
  13668. if (seq_idx != 0) {
  13669. used_cells++;
  13670. }
  13671. for (; seq_idx < view->n_seq_max; seq_idx++) {
  13672. cs_curr[seq_idx] = -1;
  13673. }
  13674. }
  13675. if (curr_contig_idx >= 0 && kv_cells.size() - curr_contig_idx > max_contig) {
  13676. max_contig_idx = curr_contig_idx;
  13677. max_contig = kv_cells.size() - curr_contig_idx;
  13678. }
  13679. view->max_contiguous = max_contig;
  13680. view->max_contiguous_idx = max_contig_idx;
  13681. view->token_count = token_count;
  13682. view->used_cells = used_cells;
  13683. if (uint32_t(used_cells) != ctx->kv_self.used) {
  13684. LLAMA_LOG_ERROR("%s: used cells mismatch. kv_cache says %d but we calculated %d\n",
  13685. __func__, ctx->kv_self.used, used_cells);
  13686. }
  13687. }
  13688. int32_t llama_get_kv_cache_token_count(const struct llama_context * ctx) {
  13689. int result = 0;
  13690. for (uint32_t i = 0; i < ctx->kv_self.size; i++) {
  13691. result += ctx->kv_self.cells[i].seq_id.size();
  13692. }
  13693. return result;
  13694. }
  13695. int32_t llama_get_kv_cache_used_cells(const struct llama_context * ctx) {
  13696. return ctx->kv_self.used;
  13697. }
  13698. void llama_kv_cache_clear(struct llama_context * ctx) {
  13699. llama_kv_cache_clear(ctx->kv_self);
  13700. }
  13701. bool llama_kv_cache_seq_rm(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1) {
  13702. return llama_kv_cache_seq_rm(ctx->kv_self, seq_id, p0, p1);
  13703. }
  13704. void llama_kv_cache_seq_cp(struct llama_context * ctx, llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) {
  13705. if (seq_id_src == seq_id_dst) {
  13706. return;
  13707. }
  13708. llama_kv_cache_seq_cp(ctx->kv_self, seq_id_src, seq_id_dst, p0, p1);
  13709. }
  13710. void llama_kv_cache_seq_keep(struct llama_context * ctx, llama_seq_id seq_id) {
  13711. llama_kv_cache_seq_keep(ctx->kv_self, seq_id);
  13712. }
  13713. void llama_kv_cache_seq_add(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos delta) {
  13714. if (delta == 0) {
  13715. return;
  13716. }
  13717. llama_kv_cache_seq_add(ctx->kv_self, seq_id, p0, p1, delta);
  13718. }
  13719. void llama_kv_cache_seq_div(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1, int d) {
  13720. if (d == 1) {
  13721. return;
  13722. }
  13723. llama_kv_cache_seq_div(ctx->kv_self, seq_id, p0, p1, d);
  13724. }
  13725. llama_pos llama_kv_cache_seq_pos_max(struct llama_context * ctx, llama_seq_id seq_id) {
  13726. return llama_kv_cache_seq_pos_max(ctx->kv_self, seq_id);
  13727. }
  13728. void llama_kv_cache_defrag(struct llama_context * ctx) {
  13729. llama_kv_cache_defrag(ctx->kv_self);
  13730. }
  13731. void llama_kv_cache_update(struct llama_context * ctx) {
  13732. llama_kv_cache_update_internal(*ctx);
  13733. }
  13734. // deprecated
  13735. size_t llama_get_state_size(const struct llama_context * ctx) {
  13736. return llama_state_get_size(ctx);
  13737. }
  13738. // deprecated
  13739. size_t llama_copy_state_data(struct llama_context * ctx, uint8_t * dst) {
  13740. return llama_state_get_data(ctx, dst);
  13741. }
  13742. // deprecated
  13743. size_t llama_set_state_data(struct llama_context * ctx, const uint8_t * src) {
  13744. return llama_state_set_data(ctx, src);
  13745. }
  13746. // deprecated
  13747. bool llama_load_session_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  13748. return llama_state_load_file(ctx, path_session, tokens_out, n_token_capacity, n_token_count_out);
  13749. }
  13750. // deprecated
  13751. bool llama_save_session_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) {
  13752. return llama_state_save_file(ctx, path_session, tokens, n_token_count);
  13753. }
  13754. // Returns the *maximum* size of the state
  13755. size_t llama_state_get_size(const struct llama_context * ctx) {
  13756. const auto & cparams = ctx->cparams;
  13757. const auto & hparams = ctx->model.hparams;
  13758. // we don't know size of rng until we actually serialize it. so reserve more than enough memory for its serialized state.
  13759. // for reference, std::mt19937(1337) serializes to 6701 bytes.
  13760. const size_t s_rng_size = sizeof(size_t);
  13761. const size_t s_rng = LLAMA_MAX_RNG_STATE;
  13762. const size_t s_n_outputs = sizeof(size_t);
  13763. // assume worst case for outputs although only currently set ones are serialized
  13764. const size_t s_output_pos = ctx->cparams.n_batch * sizeof(int32_t);
  13765. const size_t s_logits_size = sizeof(size_t);
  13766. const size_t s_logits = ctx->logits_size ? cparams.n_batch * hparams.n_vocab * sizeof(float) : 0;
  13767. const size_t s_embedding_size = sizeof(size_t);
  13768. const size_t s_embedding = ctx->embd_size ? cparams.n_batch * hparams.n_embd * sizeof(float) : 0;
  13769. const size_t s_kv_buf_size = sizeof(size_t);
  13770. const size_t s_kv_head = sizeof(uint32_t);
  13771. const size_t s_kv_size = sizeof(uint32_t);
  13772. const size_t s_kv_used = sizeof(uint32_t);
  13773. const size_t s_v_trans = sizeof(uint32_t);
  13774. const size_t s_kv = ctx->kv_self.total_size();
  13775. const size_t s_kv_cell = sizeof(llama_pos) + sizeof(size_t) + cparams.n_seq_max*sizeof(llama_seq_id);
  13776. const size_t s_kv_cells = ctx->kv_self.size * s_kv_cell;
  13777. const size_t s_total = (
  13778. + s_rng_size
  13779. + s_rng
  13780. + s_n_outputs
  13781. + s_output_pos
  13782. + s_logits_size
  13783. + s_logits
  13784. + s_embedding_size
  13785. + s_embedding
  13786. + s_kv_buf_size
  13787. + s_kv_head
  13788. + s_kv_size
  13789. + s_kv_used
  13790. + s_v_trans
  13791. + s_kv
  13792. + s_kv_cells
  13793. );
  13794. // on session change it is very likely that the state size has changed - so we need to update this function
  13795. static_assert(LLAMA_SESSION_VERSION == 6, "So you just bumped the session version - good. But did you remember to update llama_state_get_size?");
  13796. return s_total;
  13797. }
  13798. // llama_context_data
  13799. struct llama_data_context {
  13800. virtual void write(const void * src, size_t size) = 0;
  13801. virtual size_t get_size_written() = 0;
  13802. virtual ~llama_data_context() = default;
  13803. };
  13804. struct llama_data_buffer_context : llama_data_context {
  13805. uint8_t * ptr;
  13806. size_t size_written = 0;
  13807. llama_data_buffer_context(uint8_t * p) : ptr(p) {}
  13808. void write(const void * src, size_t size) override {
  13809. memcpy(ptr, src, size);
  13810. ptr += size;
  13811. size_written += size;
  13812. }
  13813. size_t get_size_written() override {
  13814. return size_written;
  13815. }
  13816. };
  13817. struct llama_data_file_context : llama_data_context {
  13818. llama_file * file;
  13819. size_t size_written = 0;
  13820. llama_data_file_context(llama_file * f) : file(f) {}
  13821. void write(const void * src, size_t size) override {
  13822. file->write_raw(src, size);
  13823. size_written += size;
  13824. }
  13825. size_t get_size_written() override {
  13826. return size_written;
  13827. }
  13828. };
  13829. /** copy state data into either a buffer or file depending on the passed in context
  13830. *
  13831. * file context:
  13832. * llama_file file("/path", "wb");
  13833. * llama_data_file_context data_ctx(&file);
  13834. * llama_state_get_data(ctx, &data_ctx);
  13835. *
  13836. * buffer context:
  13837. * std::vector<uint8_t> buf(max_size, 0);
  13838. * llama_data_buffer_context data_ctx(&buf.data());
  13839. * llama_state_get_data(ctx, &data_ctx);
  13840. *
  13841. */
  13842. static void llama_state_get_data_internal(struct llama_context * ctx, llama_data_context * data_ctx) {
  13843. llama_synchronize(ctx);
  13844. // copy rng
  13845. {
  13846. std::ostringstream rng_ss;
  13847. rng_ss << ctx->rng;
  13848. const std::string & rng_str = rng_ss.str();
  13849. const size_t rng_size = rng_str.size();
  13850. GGML_ASSERT(rng_size <= LLAMA_MAX_RNG_STATE);
  13851. data_ctx->write(&rng_size, sizeof(rng_size));
  13852. data_ctx->write(rng_str.data(), rng_size);
  13853. }
  13854. // copy outputs
  13855. {
  13856. // Can't use ctx->n_outputs because it's not for the
  13857. // entire last batch when n_ubatch is smaller than n_batch
  13858. size_t n_outputs = 0;
  13859. // copy output ids
  13860. {
  13861. std::vector<int32_t> output_pos;
  13862. const size_t n_batch = ctx->cparams.n_batch;
  13863. const auto & output_ids = ctx->output_ids;
  13864. output_pos.resize(ctx->output_size);
  13865. // build a more compact representation of the output ids
  13866. for (size_t i = 0; i < n_batch; ++i) {
  13867. // map an output id to a position in the batch
  13868. int32_t pos = output_ids[i];
  13869. if (pos >= 0) {
  13870. if ((size_t) pos >= n_outputs) {
  13871. n_outputs = pos + 1;
  13872. }
  13873. GGML_ASSERT((size_t) pos < ctx->output_size);
  13874. output_pos[pos] = i;
  13875. }
  13876. }
  13877. data_ctx->write(&n_outputs, sizeof(n_outputs));
  13878. if (n_outputs) {
  13879. data_ctx->write(output_pos.data(), n_outputs * sizeof(int32_t));
  13880. }
  13881. }
  13882. // copy logits
  13883. {
  13884. const size_t logits_size = std::min(ctx->logits_size, n_outputs * ctx->model.hparams.n_vocab);
  13885. data_ctx->write(&logits_size, sizeof(logits_size));
  13886. if (logits_size) {
  13887. data_ctx->write(ctx->logits, logits_size * sizeof(float));
  13888. }
  13889. }
  13890. // copy embeddings
  13891. {
  13892. const size_t embeddings_size = std::min(ctx->embd_size, n_outputs * ctx->model.hparams.n_embd);
  13893. data_ctx->write(&embeddings_size, sizeof(embeddings_size));
  13894. if (embeddings_size) {
  13895. data_ctx->write(ctx->embd, embeddings_size * sizeof(float));
  13896. }
  13897. }
  13898. }
  13899. // copy kv cache
  13900. {
  13901. const auto & kv_self = ctx->kv_self;
  13902. const auto & hparams = ctx->model.hparams;
  13903. const uint32_t n_layer = hparams.n_layer;
  13904. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  13905. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  13906. // NOTE: kv_size and kv_buf_size are mostly used for sanity checks
  13907. const uint32_t kv_head = llama_kv_cache_cell_max(kv_self);
  13908. const uint32_t kv_size = kv_self.size;
  13909. const size_t kv_buf_size = kv_self.total_size() / (kv_size ? kv_size : 1) * kv_head;
  13910. const uint32_t kv_used = kv_self.used;
  13911. const uint32_t v_trans = kv_self.v_trans ? 1 : 0;
  13912. data_ctx->write(&kv_buf_size, sizeof(kv_buf_size));
  13913. data_ctx->write(&kv_head, sizeof(kv_head));
  13914. data_ctx->write(&kv_size, sizeof(kv_size));
  13915. data_ctx->write(&kv_used, sizeof(kv_used));
  13916. data_ctx->write(&v_trans, sizeof(v_trans));
  13917. if (kv_buf_size) {
  13918. const size_t pre_kv_buf_size = data_ctx->get_size_written();
  13919. std::vector<uint8_t> tmp_buf;
  13920. for (int il = 0; il < (int) n_layer; ++il) {
  13921. const size_t k_size = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*kv_head);
  13922. tmp_buf.resize(k_size);
  13923. ggml_backend_tensor_get(kv_self.k_l[il], tmp_buf.data(), 0, tmp_buf.size());
  13924. data_ctx->write(tmp_buf.data(), tmp_buf.size());
  13925. if (kv_self.recurrent || !kv_self.v_trans) {
  13926. // v is contiguous for recurrent models
  13927. // TODO: use other tensors for state models than k and v
  13928. const size_t v_size = ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa*kv_head);
  13929. tmp_buf.resize(v_size);
  13930. ggml_backend_tensor_get(kv_self.v_l[il], tmp_buf.data(), 0, tmp_buf.size());
  13931. data_ctx->write(tmp_buf.data(), tmp_buf.size());
  13932. continue;
  13933. }
  13934. // v is not contiguous, copy row by row
  13935. const size_t v_row_size = ggml_row_size(kv_self.v_l[il]->type, kv_head);
  13936. const size_t v_row_stride = ggml_row_size(kv_self.v_l[il]->type, kv_size);
  13937. tmp_buf.resize(v_row_size);
  13938. for (int ir = 0; ir < (int) n_embd_v_gqa; ++ir) {
  13939. ggml_backend_tensor_get(kv_self.v_l[il], tmp_buf.data(), ir*v_row_stride, tmp_buf.size());
  13940. data_ctx->write(tmp_buf.data(), tmp_buf.size());
  13941. }
  13942. }
  13943. GGML_ASSERT(kv_buf_size == data_ctx->get_size_written() - pre_kv_buf_size);
  13944. }
  13945. for (uint32_t i = 0; i < kv_head; ++i) {
  13946. const auto & cell = kv_self.cells[i];
  13947. const llama_pos pos = cell.pos;
  13948. const size_t seq_id_size = cell.seq_id.size();
  13949. data_ctx->write(&pos, sizeof(pos));
  13950. data_ctx->write(&seq_id_size, sizeof(seq_id_size));
  13951. for (auto seq_id : cell.seq_id) {
  13952. data_ctx->write(&seq_id, sizeof(seq_id));
  13953. }
  13954. }
  13955. }
  13956. }
  13957. size_t llama_state_get_data(struct llama_context * ctx, uint8_t * dst) {
  13958. llama_data_buffer_context data_ctx(dst);
  13959. llama_state_get_data_internal(ctx, &data_ctx);
  13960. return data_ctx.get_size_written();
  13961. }
  13962. // Sets the state reading from the specified source address
  13963. size_t llama_state_set_data(struct llama_context * ctx, const uint8_t * src) {
  13964. llama_synchronize(ctx);
  13965. const uint8_t * inp = src;
  13966. // set rng
  13967. {
  13968. size_t rng_size;
  13969. memcpy(&rng_size, inp, sizeof(rng_size)); inp += sizeof(rng_size);
  13970. GGML_ASSERT(rng_size <= LLAMA_MAX_RNG_STATE);
  13971. std::string rng_str((const char *)inp, rng_size); inp += rng_size;
  13972. std::istringstream rng_ss(rng_str);
  13973. rng_ss >> ctx->rng;
  13974. GGML_ASSERT(!rng_ss.fail());
  13975. }
  13976. // set output ids
  13977. {
  13978. size_t n_outputs;
  13979. std::vector<int32_t> output_pos;
  13980. memcpy(&n_outputs, inp, sizeof(n_outputs)); inp += sizeof(n_outputs);
  13981. GGML_ASSERT(n_outputs <= llama_output_reserve(*ctx, n_outputs));
  13982. if (n_outputs) {
  13983. output_pos.resize(n_outputs);
  13984. memcpy(output_pos.data(), inp, n_outputs * sizeof(int32_t));
  13985. inp += n_outputs * sizeof(int32_t);
  13986. for (int32_t i = 0; i < (int32_t) output_pos.size(); ++i) {
  13987. int32_t id = output_pos[i];
  13988. GGML_ASSERT((uint32_t) id < ctx->cparams.n_batch);
  13989. ctx->output_ids[id] = i;
  13990. }
  13991. ctx->n_outputs = n_outputs;
  13992. }
  13993. }
  13994. // set logits
  13995. {
  13996. size_t logits_size;
  13997. memcpy(&logits_size, inp, sizeof(logits_size)); inp += sizeof(logits_size);
  13998. GGML_ASSERT(ctx->logits_size >= logits_size);
  13999. if (logits_size) {
  14000. memcpy(ctx->logits, inp, logits_size * sizeof(float));
  14001. inp += logits_size * sizeof(float);
  14002. }
  14003. }
  14004. // set embeddings
  14005. {
  14006. size_t embeddings_size;
  14007. memcpy(&embeddings_size, inp, sizeof(embeddings_size)); inp += sizeof(embeddings_size);
  14008. GGML_ASSERT(ctx->embd_size >= embeddings_size);
  14009. if (embeddings_size) {
  14010. memcpy(ctx->embd, inp, embeddings_size * sizeof(float));
  14011. inp += embeddings_size * sizeof(float);
  14012. }
  14013. }
  14014. // set kv cache
  14015. {
  14016. const auto & kv_self = ctx->kv_self;
  14017. const auto & hparams = ctx->model.hparams;
  14018. const uint32_t n_layer = hparams.n_layer;
  14019. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  14020. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  14021. size_t kv_buf_size;
  14022. uint32_t kv_head;
  14023. uint32_t kv_size;
  14024. uint32_t kv_used;
  14025. uint32_t v_trans;
  14026. memcpy(&kv_buf_size, inp, sizeof(kv_buf_size)); inp += sizeof(kv_buf_size);
  14027. memcpy(&kv_head, inp, sizeof(kv_head)); inp += sizeof(kv_head);
  14028. memcpy(&kv_size, inp, sizeof(kv_size)); inp += sizeof(kv_size);
  14029. memcpy(&kv_used, inp, sizeof(kv_used)); inp += sizeof(kv_used);
  14030. memcpy(&v_trans, inp, sizeof(v_trans)); inp += sizeof(v_trans);
  14031. GGML_ASSERT(kv_self.v_trans == (bool) v_trans); // incompatible V transposition
  14032. if (kv_self.size != kv_size) {
  14033. // the KV cache needs to be big enough to load all the KV cells from the saved state
  14034. GGML_ASSERT(kv_self.size >= kv_head);
  14035. LLAMA_LOG_INFO("%s: state contains %d KV cells, was saved with kv_size=%d, but is loaded with kv_size=%d (fine, but different)\n",
  14036. __func__, kv_head, kv_size, kv_self.size);
  14037. }
  14038. llama_kv_cache_clear(ctx);
  14039. if (kv_buf_size) {
  14040. const size_t pre_kv_buf_size = inp - src;
  14041. GGML_ASSERT(kv_self.total_size() >= kv_buf_size);
  14042. for (int il = 0; il < (int) n_layer; ++il) {
  14043. const size_t k_size = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*kv_head);
  14044. ggml_backend_tensor_set(kv_self.k_l[il], inp, 0, k_size);
  14045. inp += k_size;
  14046. if (kv_self.recurrent || !kv_self.v_trans) {
  14047. // v is contiguous for recurrent models
  14048. // TODO: use other tensors for state models than k and v
  14049. const size_t v_size = ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa*kv_head);
  14050. ggml_backend_tensor_set(kv_self.v_l[il], inp, 0, v_size);
  14051. inp += v_size;
  14052. continue;
  14053. }
  14054. // v is not contiguous, copy row by row
  14055. const size_t v_row_size = ggml_row_size(kv_self.v_l[il]->type, kv_head);
  14056. const size_t v_row_stride = ggml_row_size(kv_self.v_l[il]->type, kv_self.size);
  14057. for (int ir = 0; ir < (int) n_embd_v_gqa; ++ir) {
  14058. ggml_backend_tensor_set(kv_self.v_l[il], inp, ir*v_row_stride, v_row_size);
  14059. inp += v_row_size;
  14060. }
  14061. }
  14062. GGML_ASSERT(kv_buf_size == inp - src - pre_kv_buf_size);
  14063. }
  14064. ctx->kv_self.head = kv_head;
  14065. ctx->kv_self.used = kv_used;
  14066. for (uint32_t i = 0; i < kv_head; ++i) {
  14067. llama_pos pos;
  14068. size_t seq_id_size;
  14069. memcpy(&pos, inp, sizeof(pos)); inp += sizeof(pos);
  14070. memcpy(&seq_id_size, inp, sizeof(seq_id_size)); inp += sizeof(seq_id_size);
  14071. ctx->kv_self.cells[i].pos = pos;
  14072. llama_seq_id seq_id;
  14073. for (size_t j = 0; j < seq_id_size; ++j) {
  14074. memcpy(&seq_id, inp, sizeof(seq_id)); inp += sizeof(seq_id);
  14075. ctx->kv_self.cells[i].seq_id.insert(seq_id);
  14076. }
  14077. }
  14078. }
  14079. const size_t nread = inp - src;
  14080. const size_t max_size = llama_state_get_size(ctx);
  14081. GGML_ASSERT(nread <= max_size);
  14082. return nread;
  14083. }
  14084. static bool llama_state_load_file_internal(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  14085. llama_file file(path_session, "rb");
  14086. // sanity checks
  14087. {
  14088. const uint32_t magic = file.read_u32();
  14089. const uint32_t version = file.read_u32();
  14090. if (magic != LLAMA_SESSION_MAGIC || version != LLAMA_SESSION_VERSION) {
  14091. LLAMA_LOG_ERROR("%s : unknown (magic, version) for session file: %08x, %08x\n", __func__, magic, version);
  14092. return false;
  14093. }
  14094. llama_hparams session_hparams;
  14095. file.read_raw(&session_hparams, sizeof(llama_hparams));
  14096. if (session_hparams != ctx->model.hparams) {
  14097. LLAMA_LOG_INFO("%s : model hparams didn't match from session file!\n", __func__);
  14098. return false;
  14099. }
  14100. }
  14101. // load the prompt
  14102. {
  14103. const uint32_t n_token_count = file.read_u32();
  14104. if (n_token_count > n_token_capacity) {
  14105. LLAMA_LOG_ERROR("%s : token count in session file exceeded capacity! %u > %zu\n", __func__, n_token_count, n_token_capacity);
  14106. return false;
  14107. }
  14108. file.read_raw(tokens_out, sizeof(llama_token) * n_token_count);
  14109. *n_token_count_out = n_token_count;
  14110. }
  14111. // restore the context state
  14112. {
  14113. const size_t n_state_size_cur = file.size - file.tell();
  14114. const size_t n_state_size_max = llama_state_get_size(ctx);
  14115. if (n_state_size_cur > n_state_size_max) {
  14116. LLAMA_LOG_ERROR("%s : the state size in session file is too big! max %zu, got %zu\n", __func__, n_state_size_max, n_state_size_cur);
  14117. return false;
  14118. }
  14119. std::vector<uint8_t> state_data(n_state_size_max);
  14120. file.read_raw(state_data.data(), n_state_size_cur);
  14121. llama_state_set_data(ctx, state_data.data());
  14122. }
  14123. return true;
  14124. }
  14125. bool llama_state_load_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  14126. try {
  14127. return llama_state_load_file_internal(ctx, path_session, tokens_out, n_token_capacity, n_token_count_out);
  14128. } catch (const std::exception & err) {
  14129. LLAMA_LOG_ERROR("error loading session file: %s\n", err.what());
  14130. return false;
  14131. }
  14132. }
  14133. static bool llama_state_save_file_internal(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) {
  14134. llama_file file(path_session, "wb");
  14135. file.write_u32(LLAMA_SESSION_MAGIC);
  14136. file.write_u32(LLAMA_SESSION_VERSION);
  14137. file.write_raw(&ctx->model.hparams, sizeof(llama_hparams));
  14138. // save the prompt
  14139. file.write_u32((uint32_t) n_token_count);
  14140. file.write_raw(tokens, sizeof(llama_token) * n_token_count);
  14141. // save the context state using stream saving
  14142. llama_data_file_context data_ctx(&file);
  14143. llama_state_get_data_internal(ctx, &data_ctx);
  14144. return true;
  14145. }
  14146. bool llama_state_save_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) {
  14147. try {
  14148. return llama_state_save_file_internal(ctx, path_session, tokens, n_token_count);
  14149. } catch (const std::exception & err) {
  14150. LLAMA_LOG_ERROR("error saving session file: %s\n", err.what());
  14151. return false;
  14152. }
  14153. }
  14154. size_t llama_state_seq_get_size(struct llama_context* ctx, llama_seq_id seq_id) {
  14155. // save the size of size_t as a uint32_t for safety check
  14156. const size_t size_t_size_size = sizeof(uint32_t);
  14157. // other values
  14158. const size_t s_cell_count_size = sizeof(uint32_t);
  14159. const size_t s_layer_count_size = sizeof(uint32_t);
  14160. const size_t n_embd_v_gqa_size = sizeof(uint32_t);
  14161. size_t s_cell_count = 0;
  14162. size_t s_cell_data_size = 0;
  14163. const auto & kv_self = ctx->kv_self;
  14164. const auto & hparams = ctx->model.hparams;
  14165. const uint32_t n_layer = hparams.n_layer;
  14166. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  14167. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  14168. for (uint32_t i = 0; i < kv_self.size; ++i) {
  14169. const auto & cell = kv_self.cells[i];
  14170. if (cell.seq_id.count(seq_id) > 0) {
  14171. ++s_cell_count;
  14172. s_cell_data_size += sizeof(llama_pos);
  14173. }
  14174. }
  14175. for (int il = 0; il < (int)n_layer; ++il) {
  14176. // types of keys and values
  14177. s_cell_data_size += sizeof(int32_t) * 2;
  14178. // k_size_row and v_size_el values of layer
  14179. s_cell_data_size += sizeof(size_t) * 2;
  14180. // keys
  14181. const size_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa);
  14182. s_cell_data_size += k_size_row * s_cell_count;
  14183. // values (transposed)
  14184. const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type);
  14185. s_cell_data_size += v_size_el * s_cell_count * n_embd_v_gqa;
  14186. }
  14187. const size_t s_total = (
  14188. size_t_size_size +
  14189. s_cell_count_size +
  14190. s_layer_count_size +
  14191. n_embd_v_gqa_size +
  14192. s_cell_data_size
  14193. );
  14194. return s_total;
  14195. }
  14196. static size_t llama_state_seq_get_data_internal(struct llama_context * ctx, llama_data_context & data_ctx, llama_seq_id seq_id) {
  14197. llama_synchronize(ctx);
  14198. const auto & kv_self = ctx->kv_self;
  14199. GGML_ASSERT(!kv_self.recurrent); // not implemented
  14200. // Save the size of size_t as a uint32_t for safety check
  14201. const uint32_t size_t_size = sizeof(size_t);
  14202. data_ctx.write(&size_t_size, sizeof(size_t_size));
  14203. std::vector<std::pair<uint32_t, uint32_t>> cell_ranges; // ranges, from inclusive, to exclusive
  14204. uint32_t cell_count = 0;
  14205. // Count the number of cells with the specified seq_id
  14206. // Find all the ranges of cells with this seq id
  14207. {
  14208. uint32_t cell_range_begin = kv_self.size;
  14209. for (uint32_t i = 0; i < kv_self.size; ++i) {
  14210. const auto & cell = kv_self.cells[i];
  14211. if (cell.has_seq_id(seq_id)) {
  14212. ++cell_count;
  14213. if (cell_range_begin == kv_self.size) {
  14214. cell_range_begin = i;
  14215. }
  14216. }
  14217. else {
  14218. if (cell_range_begin != kv_self.size) {
  14219. cell_ranges.emplace_back(cell_range_begin, i);
  14220. cell_range_begin = kv_self.size;
  14221. }
  14222. }
  14223. }
  14224. if (cell_range_begin != kv_self.size) {
  14225. cell_ranges.emplace_back(cell_range_begin, kv_self.size);
  14226. }
  14227. // DEBUG CHECK: Sum of cell counts in ranges should equal the total cell count
  14228. uint32_t cell_count_check = 0;
  14229. for (const auto & range : cell_ranges) {
  14230. cell_count_check += range.second - range.first;
  14231. }
  14232. GGML_ASSERT(cell_count == cell_count_check);
  14233. }
  14234. // Write the cell count
  14235. data_ctx.write(&cell_count, sizeof(cell_count));
  14236. const auto & hparams = ctx->model.hparams;
  14237. const uint32_t n_layer = hparams.n_layer;
  14238. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  14239. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  14240. // Write the layer count
  14241. data_ctx.write(&n_layer, sizeof(n_layer));
  14242. // Write n_embd_v_gqa
  14243. data_ctx.write(&n_embd_v_gqa, sizeof(n_embd_v_gqa));
  14244. // Iterate the ranges and write all the pos (this is the token position in the prompt)
  14245. for (const auto & range : cell_ranges) {
  14246. for (uint32_t i = range.first; i < range.second; ++i) {
  14247. const auto & cell = kv_self.cells[i];
  14248. data_ctx.write(&cell.pos, sizeof(cell.pos));
  14249. }
  14250. }
  14251. // Iterate and write all the keys first, each row is a cell
  14252. // Get whole range at a time
  14253. std::vector<uint8_t> tmp_buf;
  14254. for (int il = 0; il < (int)n_layer; ++il) {
  14255. // Write key type
  14256. const int32_t k_type_i = (int32_t)kv_self.k_l[il]->type;
  14257. data_ctx.write(&k_type_i, sizeof(k_type_i));
  14258. // Write row size of key
  14259. const size_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa);
  14260. data_ctx.write(&k_size_row, sizeof(k_size_row));
  14261. // Read each range of cells of k_size length each into tmp_buf and write out
  14262. for (const auto & range : cell_ranges) {
  14263. const size_t range_size = range.second - range.first;
  14264. tmp_buf.resize(range_size * k_size_row);
  14265. ggml_backend_tensor_get(kv_self.k_l[il], tmp_buf.data(), range.first * k_size_row, range_size * k_size_row);
  14266. data_ctx.write(tmp_buf.data(), tmp_buf.size());
  14267. }
  14268. }
  14269. // TODO: simplify, reduce copy-paste
  14270. if (!kv_self.v_trans) {
  14271. for (int il = 0; il < (int)n_layer; ++il) {
  14272. // Write value type
  14273. const int32_t v_type_i = (int32_t)kv_self.v_l[il]->type;
  14274. data_ctx.write(&v_type_i, sizeof(v_type_i));
  14275. // Write row size of value
  14276. const size_t v_size_row = ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa);
  14277. data_ctx.write(&v_size_row, sizeof(v_size_row));
  14278. // Read each range of cells of v_size length each into tmp_buf and write out
  14279. for (const auto & range : cell_ranges) {
  14280. const size_t range_size = range.second - range.first;
  14281. tmp_buf.resize(range_size * v_size_row);
  14282. ggml_backend_tensor_get(kv_self.v_l[il], tmp_buf.data(), range.first * v_size_row, range_size * v_size_row);
  14283. data_ctx.write(tmp_buf.data(), tmp_buf.size());
  14284. }
  14285. }
  14286. } else {
  14287. // For the values, they are transposed, so we also need the element size and get the element ranges from each row
  14288. const uint32_t kv_size = kv_self.size;
  14289. for (int il = 0; il < (int)n_layer; ++il) {
  14290. // Write value type
  14291. const int32_t v_type_i = (int32_t)kv_self.v_l[il]->type;
  14292. data_ctx.write(&v_type_i, sizeof(v_type_i));
  14293. // Write element size
  14294. const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type);
  14295. data_ctx.write(&v_size_el, sizeof(v_size_el));
  14296. // For each row, we get the element values of each cell
  14297. for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
  14298. // Read each range of cells of v_size_el length each into tmp_buf and write out
  14299. for (const auto & range : cell_ranges) {
  14300. const size_t range_size = range.second - range.first;
  14301. const size_t src_offset = (range.first + j * kv_size) * v_size_el;
  14302. tmp_buf.resize(range_size * v_size_el);
  14303. ggml_backend_tensor_get(kv_self.v_l[il], tmp_buf.data(), src_offset, tmp_buf.size());
  14304. data_ctx.write(tmp_buf.data(), tmp_buf.size());
  14305. }
  14306. }
  14307. }
  14308. }
  14309. return data_ctx.get_size_written();
  14310. }
  14311. size_t llama_state_seq_get_data(struct llama_context* ctx, uint8_t* dst, llama_seq_id seq_id) {
  14312. llama_data_buffer_context data_ctx(dst);
  14313. return llama_state_seq_get_data_internal(ctx, data_ctx, seq_id);
  14314. }
  14315. size_t llama_state_seq_set_data(struct llama_context * ctx, const uint8_t * src, llama_seq_id dest_seq_id) {
  14316. llama_synchronize(ctx);
  14317. auto & kv_self = ctx->kv_self;
  14318. GGML_ASSERT(!kv_self.recurrent); // not implemented
  14319. // Wipe the slot
  14320. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  14321. const uint8_t * inp = src;
  14322. // Read size of size_t
  14323. uint32_t size_t_size;
  14324. memcpy(&size_t_size, inp, sizeof(size_t_size));
  14325. inp += sizeof(size_t_size);
  14326. if (size_t_size != sizeof(size_t)) {
  14327. LLAMA_LOG_ERROR("%s: size_t size mismatch\n", __func__);
  14328. return 0;
  14329. }
  14330. // Read the cell count
  14331. uint32_t cell_count;
  14332. memcpy(&cell_count, inp, sizeof(cell_count));
  14333. inp += sizeof(cell_count);
  14334. // Read the layer count
  14335. uint32_t n_layer_ref;
  14336. memcpy(&n_layer_ref, inp, sizeof(n_layer_ref));
  14337. inp += sizeof(n_layer_ref);
  14338. // Read n_embd_v_gqa
  14339. uint32_t n_embd_v_gqa_ref;
  14340. memcpy(&n_embd_v_gqa_ref, inp, sizeof(n_embd_v_gqa_ref));
  14341. inp += sizeof(n_embd_v_gqa_ref);
  14342. // Sanity check model compatibility
  14343. const auto & hparams = ctx->model.hparams;
  14344. const uint32_t n_layer = hparams.n_layer;
  14345. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  14346. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  14347. if (n_layer != n_layer_ref) {
  14348. LLAMA_LOG_ERROR("%s: mismatched n_layer (%d != %d)\n", __func__, n_layer, n_layer_ref);
  14349. return 0;
  14350. }
  14351. if (n_embd_v_gqa != n_embd_v_gqa_ref) {
  14352. LLAMA_LOG_ERROR("%s: mismatched n_embd_v_gqa (%d != %d)\n", __func__, n_embd_v_gqa, n_embd_v_gqa_ref);
  14353. return 0;
  14354. }
  14355. // Allocate the new cells for the slot
  14356. if (cell_count) {
  14357. llama_batch batch = llama_batch_init(cell_count, 0, 1);
  14358. batch.n_tokens = cell_count;
  14359. for (uint32_t i = 0; i < cell_count; ++i) {
  14360. llama_pos pos;
  14361. memcpy(&pos, inp, sizeof(pos));
  14362. inp += sizeof(pos);
  14363. batch.pos[i] = pos;
  14364. batch.n_seq_id[i] = 1;
  14365. batch.seq_id[i][0] = dest_seq_id;
  14366. }
  14367. if (!llama_kv_cache_find_slot(kv_self, batch)) {
  14368. llama_batch_free(batch);
  14369. LLAMA_LOG_ERROR("%s: failed to find available cells in kv cache\n", __func__);
  14370. return 0;
  14371. }
  14372. // DEBUG CHECK: kv_self.head should be our first cell, kv_self.head + cell_count - 1 should be our last cell (verify seq_id and pos values)
  14373. // Assume that this is one contiguous block of cells
  14374. GGML_ASSERT(kv_self.head + cell_count <= kv_self.size);
  14375. GGML_ASSERT(kv_self.cells[kv_self.head].pos == batch.pos[0]);
  14376. GGML_ASSERT(kv_self.cells[kv_self.head + cell_count - 1].pos == batch.pos[cell_count - 1]);
  14377. GGML_ASSERT(kv_self.cells[kv_self.head].has_seq_id(dest_seq_id));
  14378. GGML_ASSERT(kv_self.cells[kv_self.head + cell_count - 1].has_seq_id(dest_seq_id));
  14379. // Cleanup
  14380. llama_batch_free(batch);
  14381. }
  14382. const uint32_t kv_size = kv_self.size;
  14383. const uint32_t kv_head = kv_self.head;
  14384. // For each layer, read the keys for each cell, one row is one cell, read as one contiguous blo
  14385. for (int il = 0; il < (int)n_layer; ++il) {
  14386. // Read type of key
  14387. int32_t k_type_i_ref;
  14388. memcpy(&k_type_i_ref, inp, sizeof(k_type_i_ref));
  14389. inp += sizeof(k_type_i_ref);
  14390. const int32_t k_type_i = (int32_t)kv_self.k_l[il]->type;
  14391. if (k_type_i != k_type_i_ref) {
  14392. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  14393. LLAMA_LOG_ERROR("%s: mismatched key type (%d != %d, layer %d)\n", __func__, k_type_i, k_type_i_ref, il);
  14394. return 0;
  14395. }
  14396. // Read row size of key
  14397. size_t k_size_row_ref;
  14398. memcpy(&k_size_row_ref, inp, sizeof(k_size_row_ref));
  14399. inp += sizeof(k_size_row_ref);
  14400. const size_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa);
  14401. if (k_size_row != k_size_row_ref) {
  14402. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  14403. LLAMA_LOG_ERROR("%s: mismatched key row size (%zu != %zu, layer %d)\n", __func__, k_size_row, k_size_row_ref, il);
  14404. return 0;
  14405. }
  14406. if (cell_count) {
  14407. // Read and set the keys for the whole cell range
  14408. ggml_backend_tensor_set(kv_self.k_l[il], inp, kv_head * k_size_row, cell_count * k_size_row);
  14409. inp += cell_count * k_size_row;
  14410. }
  14411. }
  14412. // TODO: simplify, reduce copy-paste
  14413. if (!kv_self.v_trans) {
  14414. for (int il = 0; il < (int)n_layer; ++il) {
  14415. // Read type of value
  14416. int32_t v_type_i_ref;
  14417. memcpy(&v_type_i_ref, inp, sizeof(v_type_i_ref));
  14418. inp += sizeof(v_type_i_ref);
  14419. const int32_t v_type_i = (int32_t)kv_self.v_l[il]->type;
  14420. if (v_type_i != v_type_i_ref) {
  14421. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  14422. LLAMA_LOG_ERROR("%s: mismatched value type (%d != %d, layer %d)\n", __func__, v_type_i, v_type_i_ref, il);
  14423. return 0;
  14424. }
  14425. // Read row size of value
  14426. size_t v_size_row_ref;
  14427. memcpy(&v_size_row_ref, inp, sizeof(v_size_row_ref));
  14428. inp += sizeof(v_size_row_ref);
  14429. const size_t v_size_row = ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa);
  14430. if (v_size_row != v_size_row_ref) {
  14431. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  14432. LLAMA_LOG_ERROR("%s: mismatched value row size (%zu != %zu, layer %d)\n", __func__, v_size_row, v_size_row_ref, il);
  14433. return 0;
  14434. }
  14435. if (cell_count) {
  14436. // Read and set the values for the whole cell range
  14437. ggml_backend_tensor_set(kv_self.v_l[il], inp, kv_head * v_size_row, cell_count * v_size_row);
  14438. inp += cell_count * v_size_row;
  14439. }
  14440. }
  14441. } else {
  14442. // For each layer, read the values for each cell (transposed)
  14443. for (int il = 0; il < (int)n_layer; ++il) {
  14444. // Read type of value
  14445. int32_t v_type_i_ref;
  14446. memcpy(&v_type_i_ref, inp, sizeof(v_type_i_ref));
  14447. inp += sizeof(v_type_i_ref);
  14448. const int32_t v_type_i = (int32_t)kv_self.v_l[il]->type;
  14449. if (v_type_i != v_type_i_ref) {
  14450. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  14451. LLAMA_LOG_ERROR("%s: mismatched value type (%d != %d, layer %d)\n", __func__, v_type_i, v_type_i_ref, il);
  14452. return 0;
  14453. }
  14454. // Read element size of value
  14455. size_t v_size_el_ref;
  14456. memcpy(&v_size_el_ref, inp, sizeof(v_size_el_ref));
  14457. inp += sizeof(v_size_el_ref);
  14458. const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type);
  14459. if (v_size_el != v_size_el_ref) {
  14460. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  14461. LLAMA_LOG_ERROR("%s: mismatched value element size (%zu != %zu, layer %d)\n", __func__, v_size_el, v_size_el_ref, il);
  14462. return 0;
  14463. }
  14464. if (cell_count) {
  14465. // For each row in the transposed matrix, read the values for the whole cell range
  14466. for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
  14467. const size_t dst_offset = (kv_head + j * kv_size) * v_size_el;
  14468. ggml_backend_tensor_set(kv_self.v_l[il], inp, dst_offset, cell_count * v_size_el);
  14469. inp += cell_count * v_size_el;
  14470. }
  14471. }
  14472. }
  14473. }
  14474. const size_t nread = inp - src;
  14475. return nread;
  14476. }
  14477. static size_t llama_state_seq_save_file_internal(struct llama_context * ctx, const char * filepath, llama_seq_id seq_id, const llama_token * tokens, size_t n_token_count) {
  14478. llama_file file(filepath, "wb");
  14479. file.write_u32(LLAMA_STATE_SEQ_MAGIC);
  14480. file.write_u32(LLAMA_STATE_SEQ_VERSION);
  14481. // save the prompt
  14482. file.write_u32((uint32_t)n_token_count);
  14483. file.write_raw(tokens, sizeof(llama_token) * n_token_count);
  14484. // save the context state using stream saving
  14485. llama_data_file_context data_ctx(&file);
  14486. llama_state_seq_get_data_internal(ctx, data_ctx, seq_id);
  14487. const size_t res = file.tell();
  14488. GGML_ASSERT(res == sizeof(uint32_t) * 3 + sizeof(llama_token) * n_token_count + data_ctx.get_size_written());
  14489. return res;
  14490. }
  14491. static size_t llama_state_seq_load_file_internal(struct llama_context * ctx, const char * filepath, llama_seq_id dest_seq_id, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  14492. llama_file file(filepath, "rb");
  14493. // version checks
  14494. {
  14495. const uint32_t magic = file.read_u32();
  14496. const uint32_t version = file.read_u32();
  14497. if (magic != LLAMA_STATE_SEQ_MAGIC || version != LLAMA_STATE_SEQ_VERSION) {
  14498. LLAMA_LOG_ERROR("%s: unknown (magic, version) for sequence state file: %08x, %08x\n", __func__, magic, version);
  14499. return 0;
  14500. }
  14501. }
  14502. // load the prompt
  14503. {
  14504. const uint32_t n_token_count = file.read_u32();
  14505. if (n_token_count > n_token_capacity) {
  14506. LLAMA_LOG_ERROR("%s: token count in sequence state file exceeded capacity! %u > %zu\n", __func__, n_token_count, n_token_capacity);
  14507. return 0;
  14508. }
  14509. file.read_raw(tokens_out, sizeof(llama_token) * n_token_count);
  14510. *n_token_count_out = n_token_count;
  14511. }
  14512. // restore the context state
  14513. {
  14514. const size_t state_size = file.size - file.tell();
  14515. std::vector<uint8_t> state_data(state_size);
  14516. file.read_raw(state_data.data(), state_size);
  14517. const size_t nread = llama_state_seq_set_data(ctx, state_data.data(), dest_seq_id);
  14518. if (!nread) {
  14519. LLAMA_LOG_ERROR("%s: failed to restore sequence state\n", __func__);
  14520. return 0;
  14521. }
  14522. GGML_ASSERT(nread <= state_size);
  14523. GGML_ASSERT(nread + sizeof(uint32_t) * 3 + sizeof(llama_token) * *n_token_count_out == file.tell());
  14524. }
  14525. return file.tell();
  14526. }
  14527. size_t llama_state_seq_save_file(struct llama_context * ctx, const char * filepath, llama_seq_id seq_id, const llama_token * tokens, size_t n_token_count) {
  14528. try {
  14529. return llama_state_seq_save_file_internal(ctx, filepath, seq_id, tokens, n_token_count);
  14530. } catch (const std::exception & err) {
  14531. LLAMA_LOG_ERROR("error saving sequence state file: %s\n", err.what());
  14532. return 0;
  14533. }
  14534. }
  14535. size_t llama_state_seq_load_file(struct llama_context * ctx, const char * filepath, llama_seq_id dest_seq_id, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  14536. try {
  14537. return llama_state_seq_load_file_internal(ctx, filepath, dest_seq_id, tokens_out, n_token_capacity, n_token_count_out);
  14538. } catch (const std::exception & err) {
  14539. LLAMA_LOG_ERROR("error loading sequence state file: %s\n", err.what());
  14540. return 0;
  14541. }
  14542. }
  14543. void llama_set_n_threads(struct llama_context * ctx, uint32_t n_threads, uint32_t n_threads_batch) {
  14544. ctx->cparams.n_threads = n_threads;
  14545. ctx->cparams.n_threads_batch = n_threads_batch;
  14546. }
  14547. void llama_set_abort_callback(struct llama_context * ctx, bool (*abort_callback)(void * data), void * abort_callback_data) {
  14548. ctx->abort_callback = abort_callback;
  14549. ctx->abort_callback_data = abort_callback_data;
  14550. }
  14551. void llama_set_causal_attn(struct llama_context * ctx, bool causal_attn) {
  14552. ctx->cparams.causal_attn = causal_attn;
  14553. }
  14554. struct llama_batch llama_batch_get_one(
  14555. llama_token * tokens,
  14556. int32_t n_tokens,
  14557. llama_pos pos_0,
  14558. llama_seq_id seq_id) {
  14559. return {
  14560. /*n_tokens =*/ n_tokens,
  14561. /*tokens =*/ tokens,
  14562. /*embd =*/ nullptr,
  14563. /*pos =*/ nullptr,
  14564. /*n_seq_id =*/ nullptr,
  14565. /*seq_id =*/ nullptr,
  14566. /*logits =*/ nullptr,
  14567. /*all_pos_0 =*/ pos_0,
  14568. /*all_pos_1 =*/ 1,
  14569. /*all_seq_id =*/ seq_id,
  14570. };
  14571. }
  14572. struct llama_batch llama_batch_init(int32_t n_tokens_alloc, int32_t embd, int32_t n_seq_max) {
  14573. llama_batch batch = { 0, nullptr, nullptr, nullptr, nullptr, nullptr, nullptr, 0, 0, 0, };
  14574. if (embd) {
  14575. batch.embd = (float *) malloc(sizeof(float) * n_tokens_alloc * embd);
  14576. } else {
  14577. batch.token = (llama_token *) malloc(sizeof(llama_token) * n_tokens_alloc);
  14578. }
  14579. batch.pos = (llama_pos *) malloc(sizeof(llama_pos) * n_tokens_alloc);
  14580. batch.n_seq_id = (int32_t *) malloc(sizeof(int32_t) * n_tokens_alloc);
  14581. batch.seq_id = (llama_seq_id **) malloc(sizeof(llama_seq_id *) * (n_tokens_alloc + 1));
  14582. for (int i = 0; i < n_tokens_alloc; ++i) {
  14583. batch.seq_id[i] = (llama_seq_id *) malloc(sizeof(llama_seq_id) * n_seq_max);
  14584. }
  14585. batch.seq_id[n_tokens_alloc] = nullptr;
  14586. batch.logits = (int8_t *) malloc(sizeof(int8_t) * n_tokens_alloc);
  14587. return batch;
  14588. }
  14589. void llama_batch_free(struct llama_batch batch) {
  14590. if (batch.token) free(batch.token);
  14591. if (batch.embd) free(batch.embd);
  14592. if (batch.pos) free(batch.pos);
  14593. if (batch.n_seq_id) free(batch.n_seq_id);
  14594. if (batch.seq_id) {
  14595. for (int i = 0; batch.seq_id[i] != nullptr; ++i) {
  14596. free(batch.seq_id[i]);
  14597. }
  14598. free(batch.seq_id);
  14599. }
  14600. if (batch.logits) free(batch.logits);
  14601. }
  14602. int32_t llama_decode(
  14603. struct llama_context * ctx,
  14604. struct llama_batch batch) {
  14605. const int ret = llama_decode_internal(*ctx, batch);
  14606. if (ret < 0) {
  14607. LLAMA_LOG_ERROR("%s: failed to decode, ret = %d\n", __func__, ret);
  14608. }
  14609. return ret;
  14610. }
  14611. void llama_synchronize(struct llama_context * ctx) {
  14612. ggml_backend_sched_synchronize(ctx->sched);
  14613. // FIXME: if multiple single tokens are evaluated without a synchronization,
  14614. // the stats will be added to the prompt evaluation stats
  14615. // this should only happen when using batch size 1 to evaluate a batch
  14616. // add the evaluation to the stats
  14617. if (ctx->n_queued_tokens == 1) {
  14618. ctx->t_eval_us += ggml_time_us() - ctx->t_compute_start_us;
  14619. ctx->n_eval++;
  14620. } else if (ctx->n_queued_tokens > 1) {
  14621. ctx->t_p_eval_us += ggml_time_us() - ctx->t_compute_start_us;
  14622. ctx->n_p_eval += ctx->n_queued_tokens;
  14623. }
  14624. // get a more accurate load time, upon first eval
  14625. if (ctx->n_queued_tokens > 0 && !ctx->has_evaluated_once) {
  14626. ctx->t_load_us = ggml_time_us() - ctx->t_start_us;
  14627. ctx->has_evaluated_once = true;
  14628. }
  14629. ctx->n_queued_tokens = 0;
  14630. ctx->t_compute_start_us = 0;
  14631. }
  14632. float * llama_get_logits(struct llama_context * ctx) {
  14633. llama_synchronize(ctx);
  14634. return ctx->logits;
  14635. }
  14636. float * llama_get_logits_ith(struct llama_context * ctx, int32_t i) {
  14637. int32_t j = -1;
  14638. llama_synchronize(ctx);
  14639. try {
  14640. if (ctx->logits == nullptr) {
  14641. throw std::runtime_error("no logits");
  14642. }
  14643. if (i < 0) {
  14644. j = ctx->n_outputs + i;
  14645. if (j < 0) {
  14646. throw std::runtime_error(format("negative index out of range [0, %d)", ctx->n_outputs));
  14647. }
  14648. } else if ((size_t) i >= ctx->output_ids.size()) {
  14649. throw std::runtime_error(format("out of range [0, %lu)", ctx->output_ids.size()));
  14650. } else {
  14651. j = ctx->output_ids[i];
  14652. }
  14653. if (j < 0) {
  14654. throw std::runtime_error(format("batch.logits[%d] != true", i));
  14655. }
  14656. if (j >= ctx->n_outputs) {
  14657. // This should not happen
  14658. throw std::runtime_error(format("corrupt output buffer (j=%d, n_outputs=%d)", j, ctx->n_outputs));
  14659. }
  14660. return ctx->logits + j*ctx->model.hparams.n_vocab;
  14661. } catch (const std::exception & err) {
  14662. LLAMA_LOG_ERROR("%s: invalid logits id %d, reason: %s\n", __func__, i, err.what());
  14663. #ifndef NDEBUG
  14664. GGML_ASSERT(false);
  14665. #endif
  14666. return nullptr;
  14667. }
  14668. }
  14669. float * llama_get_embeddings(struct llama_context * ctx) {
  14670. llama_synchronize(ctx);
  14671. return ctx->embd;
  14672. }
  14673. float * llama_get_embeddings_ith(struct llama_context * ctx, int32_t i) {
  14674. int32_t j = -1;
  14675. llama_synchronize(ctx);
  14676. try {
  14677. if (ctx->embd == nullptr) {
  14678. throw std::runtime_error("no embeddings");
  14679. }
  14680. if (i < 0) {
  14681. j = ctx->n_outputs + i;
  14682. if (j < 0) {
  14683. throw std::runtime_error(format("negative index out of range [0, %d)", ctx->n_outputs));
  14684. }
  14685. } else if ((size_t) i >= ctx->output_ids.size()) {
  14686. throw std::runtime_error(format("out of range [0, %lu)", ctx->output_ids.size()));
  14687. } else {
  14688. j = ctx->output_ids[i];
  14689. }
  14690. if (j < 0) {
  14691. throw std::runtime_error(format("batch.logits[%d] != true", i));
  14692. }
  14693. if (j >= ctx->n_outputs) {
  14694. // This should not happen
  14695. throw std::runtime_error(format("corrupt output buffer (j=%d, n_outputs=%d)", j, ctx->n_outputs));
  14696. }
  14697. return ctx->embd + j*ctx->model.hparams.n_embd;
  14698. } catch (const std::exception & err) {
  14699. LLAMA_LOG_ERROR("%s: invalid embeddings id %d, reason: %s\n", __func__, i, err.what());
  14700. #ifndef NDEBUG
  14701. GGML_ASSERT(false);
  14702. #endif
  14703. return nullptr;
  14704. }
  14705. }
  14706. float * llama_get_embeddings_seq(struct llama_context * ctx, llama_seq_id seq_id) {
  14707. llama_synchronize(ctx);
  14708. auto it = ctx->embd_seq.find(seq_id);
  14709. if (it == ctx->embd_seq.end()) {
  14710. return nullptr;
  14711. }
  14712. return it->second.data();
  14713. }
  14714. const char * llama_token_get_text(const struct llama_model * model, llama_token token) {
  14715. GGML_ASSERT(model->vocab.type != LLAMA_VOCAB_TYPE_NONE);
  14716. return model->vocab.id_to_token[token].text.c_str();
  14717. }
  14718. float llama_token_get_score(const struct llama_model * model, llama_token token) {
  14719. GGML_ASSERT(model->vocab.type != LLAMA_VOCAB_TYPE_NONE);
  14720. return model->vocab.id_to_token[token].score;
  14721. }
  14722. llama_token_type llama_token_get_type(const struct llama_model * model, llama_token token) {
  14723. GGML_ASSERT(model->vocab.type != LLAMA_VOCAB_TYPE_NONE);
  14724. return model->vocab.id_to_token[token].type;
  14725. }
  14726. bool llama_token_is_eog(const struct llama_model * model, llama_token token) {
  14727. return token != -1 && (
  14728. token == llama_token_eos(model) ||
  14729. token == llama_token_eot(model)
  14730. );
  14731. }
  14732. llama_token llama_token_bos(const struct llama_model * model) {
  14733. return model->vocab.special_bos_id;
  14734. }
  14735. llama_token llama_token_eos(const struct llama_model * model) {
  14736. return model->vocab.special_eos_id;
  14737. }
  14738. llama_token llama_token_cls(const struct llama_model * model) {
  14739. return model->vocab.special_cls_id;
  14740. }
  14741. llama_token llama_token_sep(const struct llama_model * model) {
  14742. return model->vocab.special_sep_id;
  14743. }
  14744. llama_token llama_token_nl(const struct llama_model * model) {
  14745. return model->vocab.linefeed_id;
  14746. }
  14747. int32_t llama_add_bos_token(const struct llama_model * model) {
  14748. return model->vocab.special_add_bos;
  14749. }
  14750. int32_t llama_add_eos_token(const struct llama_model * model) {
  14751. return model->vocab.special_add_eos;
  14752. }
  14753. llama_token llama_token_prefix(const struct llama_model * model) {
  14754. return model->vocab.special_prefix_id;
  14755. }
  14756. llama_token llama_token_middle(const struct llama_model * model) {
  14757. return model->vocab.special_middle_id;
  14758. }
  14759. llama_token llama_token_suffix(const struct llama_model * model) {
  14760. return model->vocab.special_suffix_id;
  14761. }
  14762. llama_token llama_token_eot(const struct llama_model * model) {
  14763. return model->vocab.special_eot_id;
  14764. }
  14765. int32_t llama_tokenize(
  14766. const struct llama_model * model,
  14767. const char * text,
  14768. int32_t text_len,
  14769. llama_token * tokens,
  14770. int32_t n_tokens_max,
  14771. bool add_special,
  14772. bool parse_special) {
  14773. auto res = llama_tokenize_internal(model->vocab, std::string(text, text_len), add_special, parse_special);
  14774. if (n_tokens_max < (int) res.size()) {
  14775. // LLAMA_LOG_ERROR("%s: too many tokens\n", __func__);
  14776. return -((int) res.size());
  14777. }
  14778. for (size_t i = 0; i < res.size(); i++) {
  14779. tokens[i] = res[i];
  14780. }
  14781. return res.size();
  14782. }
  14783. static std::string llama_decode_text(const std::string & text) {
  14784. std::string decoded_text;
  14785. const auto cpts = unicode_cpts_from_utf8(text);
  14786. for (const auto cpt : cpts) {
  14787. decoded_text += unicode_utf8_to_byte(unicode_cpt_to_utf8(cpt));
  14788. }
  14789. return decoded_text;
  14790. }
  14791. // does not write null-terminator to buf
  14792. int32_t llama_token_to_piece(const struct llama_model * model, llama_token token, char * buf, int32_t length, bool special) {
  14793. if (0 <= token && token < llama_n_vocab(model)) {
  14794. switch (llama_vocab_get_type(model->vocab)) {
  14795. case LLAMA_VOCAB_TYPE_WPM:
  14796. case LLAMA_VOCAB_TYPE_SPM: {
  14797. // NOTE: we accept all unsupported token types,
  14798. // suppressing them like CONTROL tokens.
  14799. if (llama_is_normal_token(model->vocab, token)) {
  14800. std::string result = model->vocab.id_to_token[token].text;
  14801. llama_unescape_whitespace(result);
  14802. if (length < (int) result.length()) {
  14803. return -(int) result.length();
  14804. }
  14805. memcpy(buf, result.c_str(), result.length());
  14806. return result.length();
  14807. } else if (
  14808. (llama_is_user_defined_token(model->vocab, token)) ||
  14809. (llama_is_control_token (model->vocab, token) && special)) {
  14810. std::string result = model->vocab.id_to_token[token].text;
  14811. if (length < (int) result.length()) {
  14812. return -(int) result.length();
  14813. }
  14814. memcpy(buf, result.c_str(), result.length());
  14815. return result.length();
  14816. } else if (llama_is_unknown_token(model->vocab, token)) { // NOLINT
  14817. if (length < 3) {
  14818. return -3;
  14819. }
  14820. memcpy(buf, "\xe2\x96\x85", 3);
  14821. return 3;
  14822. } else if (llama_is_byte_token(model->vocab, token)) {
  14823. if (length < 1) {
  14824. return -1;
  14825. }
  14826. buf[0] = llama_token_to_byte(model->vocab, token);
  14827. return 1;
  14828. }
  14829. break;
  14830. }
  14831. case LLAMA_VOCAB_TYPE_BPE: {
  14832. // NOTE: we accept all unsupported token types,
  14833. // suppressing them like CONTROL tokens.
  14834. if (llama_is_normal_token(model->vocab, token)) {
  14835. std::string result = model->vocab.id_to_token[token].text;
  14836. result = llama_decode_text(result);
  14837. if (length < (int) result.length()) {
  14838. return -(int) result.length();
  14839. }
  14840. memcpy(buf, result.c_str(), result.length());
  14841. return result.length();
  14842. } else if (
  14843. (llama_is_user_defined_token(model->vocab, token)) ||
  14844. (llama_is_control_token (model->vocab, token) && special)) {
  14845. std::string result = model->vocab.id_to_token[token].text;
  14846. if (length < (int) result.length()) {
  14847. return -(int) result.length();
  14848. }
  14849. memcpy(buf, result.c_str(), result.length());
  14850. return result.length();
  14851. }
  14852. break;
  14853. }
  14854. default:
  14855. GGML_ASSERT(false);
  14856. }
  14857. }
  14858. return 0;
  14859. }
  14860. // trim whitespace from the beginning and end of a string
  14861. static std::string trim(const std::string & str) {
  14862. size_t start = 0;
  14863. size_t end = str.size();
  14864. while (start < end && isspace(str[start])) {
  14865. start += 1;
  14866. }
  14867. while (end > start && isspace(str[end - 1])) {
  14868. end -= 1;
  14869. }
  14870. return str.substr(start, end - start);
  14871. }
  14872. // Simple version of "llama_apply_chat_template" that only works with strings
  14873. // This function uses heuristic checks to determine commonly used template. It is not a jinja parser.
  14874. static int32_t llama_chat_apply_template_internal(
  14875. const std::string & tmpl,
  14876. const std::vector<const llama_chat_message *> & chat,
  14877. std::string & dest, bool add_ass) {
  14878. // Taken from the research: https://github.com/ggerganov/llama.cpp/issues/5527
  14879. std::stringstream ss;
  14880. if (tmpl == "chatml" || tmpl.find("<|im_start|>") != std::string::npos) {
  14881. // chatml template
  14882. for (auto message : chat) {
  14883. ss << "<|im_start|>" << message->role << "\n" << message->content << "<|im_end|>\n";
  14884. }
  14885. if (add_ass) {
  14886. ss << "<|im_start|>assistant\n";
  14887. }
  14888. } else if (tmpl == "llama2" || tmpl.find("[INST]") != std::string::npos) {
  14889. // llama2 template and its variants
  14890. // [variant] support system message
  14891. bool support_system_message = tmpl.find("<<SYS>>") != std::string::npos;
  14892. // [variant] space before + after response
  14893. bool space_around_response = tmpl.find("' ' + eos_token") != std::string::npos;
  14894. // [variant] add BOS inside history
  14895. bool add_bos_inside_history = tmpl.find("bos_token + '[INST]") != std::string::npos;
  14896. // [variant] trim spaces from the input message
  14897. bool strip_message = tmpl.find("content.strip()") != std::string::npos;
  14898. // construct the prompt
  14899. bool is_inside_turn = true; // skip BOS at the beginning
  14900. ss << "[INST] ";
  14901. for (auto message : chat) {
  14902. std::string content = strip_message ? trim(message->content) : message->content;
  14903. std::string role(message->role);
  14904. if (!is_inside_turn) {
  14905. is_inside_turn = true;
  14906. ss << (add_bos_inside_history ? "<s>[INST] " : "[INST] ");
  14907. }
  14908. if (role == "system") {
  14909. if (support_system_message) {
  14910. ss << "<<SYS>>\n" << content << "\n<</SYS>>\n\n";
  14911. } else {
  14912. // if the model does not support system message, we still include it in the first message, but without <<SYS>>
  14913. ss << content << "\n";
  14914. }
  14915. } else if (role == "user") {
  14916. ss << content << " [/INST]";
  14917. } else {
  14918. ss << (space_around_response ? " " : "") << content << (space_around_response ? " " : "") << "</s>";
  14919. is_inside_turn = false;
  14920. }
  14921. }
  14922. // llama2 templates seem to not care about "add_generation_prompt"
  14923. } else if (tmpl == "zephyr" || tmpl.find("<|user|>") != std::string::npos) {
  14924. // zephyr template
  14925. for (auto message : chat) {
  14926. ss << "<|" << message->role << "|>" << "\n" << message->content << "<|endoftext|>\n";
  14927. }
  14928. if (add_ass) {
  14929. ss << "<|assistant|>\n";
  14930. }
  14931. } else if (tmpl == "monarch" || tmpl.find("bos_token + message['role']") != std::string::npos) {
  14932. // mlabonne/AlphaMonarch-7B template (the <s> is included inside history)
  14933. for (auto message : chat) {
  14934. std::string bos = (message == chat.front()) ? "" : "<s>"; // skip BOS for first message
  14935. ss << bos << message->role << "\n" << message->content << "</s>\n";
  14936. }
  14937. if (add_ass) {
  14938. ss << "<s>assistant\n";
  14939. }
  14940. } else if (tmpl == "gemma" || tmpl.find("<start_of_turn>") != std::string::npos) {
  14941. // google/gemma-7b-it
  14942. std::string system_prompt = "";
  14943. for (auto message : chat) {
  14944. std::string role(message->role);
  14945. if (role == "system") {
  14946. // there is no system message for gemma, but we will merge it with user prompt, so nothing is broken
  14947. system_prompt = trim(message->content);
  14948. continue;
  14949. }
  14950. // in gemma, "assistant" is "model"
  14951. role = role == "assistant" ? "model" : message->role;
  14952. ss << "<start_of_turn>" << role << "\n";
  14953. if (!system_prompt.empty() && role != "model") {
  14954. ss << system_prompt << "\n\n";
  14955. system_prompt = "";
  14956. }
  14957. ss << trim(message->content) << "<end_of_turn>\n";
  14958. }
  14959. if (add_ass) {
  14960. ss << "<start_of_turn>model\n";
  14961. }
  14962. } else if (tmpl == "orion" || tmpl.find("'\\n\\nAssistant: ' + eos_token") != std::string::npos) {
  14963. // OrionStarAI/Orion-14B-Chat
  14964. std::string system_prompt = "";
  14965. for (auto message : chat) {
  14966. std::string role(message->role);
  14967. if (role == "system") {
  14968. // there is no system message support, we will merge it with user prompt
  14969. system_prompt = message->content;
  14970. continue;
  14971. } else if (role == "user") {
  14972. ss << "Human: ";
  14973. if (!system_prompt.empty()) {
  14974. ss << system_prompt << "\n\n";
  14975. system_prompt = "";
  14976. }
  14977. ss << message->content << "\n\nAssistant: </s>";
  14978. } else {
  14979. ss << message->content << "</s>";
  14980. }
  14981. }
  14982. } else if (tmpl == "openchat" || tmpl.find("GPT4 Correct ") != std::string::npos) {
  14983. // openchat/openchat-3.5-0106,
  14984. for (auto message : chat) {
  14985. std::string role(message->role);
  14986. if (role == "system") {
  14987. ss << message->content << "<|end_of_turn|>";
  14988. } else {
  14989. role[0] = toupper(role[0]);
  14990. ss << "GPT4 Correct " << role << ": " << message->content << "<|end_of_turn|>";
  14991. }
  14992. }
  14993. if (add_ass) {
  14994. ss << "GPT4 Correct Assistant:";
  14995. }
  14996. } else if (tmpl == "vicuna" || tmpl == "vicuna-orca" || (tmpl.find("USER: ") != std::string::npos && tmpl.find("ASSISTANT: ") != std::string::npos)) {
  14997. // eachadea/vicuna-13b-1.1 (and Orca variant)
  14998. for (auto message : chat) {
  14999. std::string role(message->role);
  15000. if (role == "system") {
  15001. // Orca-Vicuna variant uses a system prefix
  15002. if (tmpl == "vicuna-orca" || tmpl.find("SYSTEM: ") != std::string::npos) {
  15003. ss << "SYSTEM: " << message->content << "\n";
  15004. } else {
  15005. ss << message->content << "\n\n";
  15006. }
  15007. } else if (role == "user") {
  15008. ss << "USER: " << message->content << "\n";
  15009. } else if (role == "assistant") {
  15010. ss << "ASSISTANT: " << message->content << "</s>\n";
  15011. }
  15012. }
  15013. if (add_ass) {
  15014. ss << "ASSISTANT:";
  15015. }
  15016. } else if (tmpl == "deepseek" || (tmpl.find("### Instruction:") != std::string::npos && tmpl.find("<|EOT|>") != std::string::npos)) {
  15017. // deepseek-ai/deepseek-coder-33b-instruct
  15018. for (auto message : chat) {
  15019. std::string role(message->role);
  15020. if (role == "system") {
  15021. ss << message->content;
  15022. } else if (role == "user") {
  15023. ss << "### Instruction:\n" << message->content << "\n";
  15024. } else if (role == "assistant") {
  15025. ss << "### Response:\n" << message->content << "\n<|EOT|>\n";
  15026. }
  15027. }
  15028. if (add_ass) {
  15029. ss << "### Response:\n";
  15030. }
  15031. } else if (tmpl == "command-r" || (tmpl.find("<|START_OF_TURN_TOKEN|>") != std::string::npos && tmpl.find("<|USER_TOKEN|>") != std::string::npos)) {
  15032. // CohereForAI/c4ai-command-r-plus
  15033. for (auto message : chat) {
  15034. std::string role(message->role);
  15035. if (role == "system") {
  15036. ss << "<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>" << trim(message->content) << "<|END_OF_TURN_TOKEN|>";
  15037. } else if (role == "user") {
  15038. ss << "<|START_OF_TURN_TOKEN|><|USER_TOKEN|>" << trim(message->content) << "<|END_OF_TURN_TOKEN|>";
  15039. } else if (role == "assistant") {
  15040. ss << "<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>" << trim(message->content) << "<|END_OF_TURN_TOKEN|>";
  15041. }
  15042. }
  15043. if (add_ass) {
  15044. ss << "<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>";
  15045. }
  15046. } else if (tmpl == "llama3" || (tmpl.find("<|start_header_id|>") != std::string::npos && tmpl.find("<|end_header_id|>") != std::string::npos)) {
  15047. // Llama 3
  15048. for (auto message : chat) {
  15049. std::string role(message->role);
  15050. ss << "<|start_header_id|>" << role << "<|end_header_id|>\n\n" << trim(message->content) << "<|eot_id|>";
  15051. }
  15052. if (add_ass) {
  15053. ss << "<|start_header_id|>assistant<|end_header_id|>\n\n";
  15054. }
  15055. } else if (tmpl == "phi3" || (tmpl.find("<|assistant|>") != std::string::npos && tmpl.find("<|end|>") != std::string::npos )) {
  15056. // Phi 3
  15057. for (auto message : chat) {
  15058. std::string role(message->role);
  15059. ss << "<|" << role << "|>\n" << trim(message->content) << "<|end|>\n";
  15060. }
  15061. if (add_ass) {
  15062. ss << "<|assistant|>\n";
  15063. }
  15064. } else {
  15065. // template not supported
  15066. return -1;
  15067. }
  15068. dest = ss.str();
  15069. return dest.size();
  15070. }
  15071. LLAMA_API int32_t llama_chat_apply_template(
  15072. const struct llama_model * model,
  15073. const char * tmpl,
  15074. const struct llama_chat_message * chat,
  15075. size_t n_msg,
  15076. bool add_ass,
  15077. char * buf,
  15078. int32_t length) {
  15079. std::string curr_tmpl(tmpl == nullptr ? "" : tmpl);
  15080. if (tmpl == nullptr) {
  15081. GGML_ASSERT(model != nullptr);
  15082. // load template from model
  15083. std::vector<char> model_template(2048, 0); // longest known template is about 1200 bytes
  15084. std::string template_key = "tokenizer.chat_template";
  15085. int32_t res = llama_model_meta_val_str(model, template_key.c_str(), model_template.data(), model_template.size());
  15086. if (res < 0) {
  15087. // worst case: there is no information about template, we will use chatml by default
  15088. curr_tmpl = "chatml"; // see llama_chat_apply_template_internal
  15089. } else {
  15090. curr_tmpl = std::string(model_template.data(), model_template.size());
  15091. }
  15092. }
  15093. // format the chat to string
  15094. std::vector<const llama_chat_message *> chat_vec;
  15095. chat_vec.resize(n_msg);
  15096. for (size_t i = 0; i < n_msg; i++) {
  15097. chat_vec[i] = &chat[i];
  15098. }
  15099. std::string formatted_chat;
  15100. int32_t res = llama_chat_apply_template_internal(curr_tmpl, chat_vec, formatted_chat, add_ass);
  15101. if (res < 0) {
  15102. return res;
  15103. }
  15104. if (buf && length > 0) {
  15105. strncpy(buf, formatted_chat.c_str(), length);
  15106. }
  15107. return res;
  15108. }
  15109. LLAMA_API int llama_split_path(char * split_path, size_t maxlen, const char * path_prefix, int split_no, int split_count) {
  15110. static const char * const SPLIT_PATH_FORMAT = "%s-%05d-of-%05d.gguf";
  15111. if (snprintf(split_path, maxlen, SPLIT_PATH_FORMAT, path_prefix, split_no + 1, split_count)) {
  15112. return strlen(split_path);
  15113. }
  15114. return 0;
  15115. }
  15116. int llama_split_prefix(char * dest, size_t maxlen, const char * split_path, int split_no, int split_count) {
  15117. std::string str_split_path(split_path);
  15118. char postfix[32];
  15119. snprintf(postfix, 32, "-%05d-of-%05d.gguf", split_no + 1, split_count);
  15120. std::string str_postfix(postfix);
  15121. // check if dest ends with postfix
  15122. int size_prefix = str_split_path.size() - str_postfix.size();
  15123. if (size_prefix > 0 && str_split_path.find(str_postfix, size_prefix) != std::string::npos) {
  15124. snprintf(dest, std::min((size_t) size_prefix + 1, maxlen), "%s", split_path);
  15125. return size_prefix;
  15126. }
  15127. return 0;
  15128. }
  15129. struct llama_timings llama_get_timings(struct llama_context * ctx) {
  15130. struct llama_timings result = {
  15131. /*.t_start_ms =*/ 1e-3 * ctx->t_start_us,
  15132. /*.t_end_ms =*/ 1.00 * ggml_time_ms(),
  15133. /*.t_load_ms =*/ 1e-3 * ctx->t_load_us,
  15134. /*.t_sample_ms =*/ 1e-3 * ctx->t_sample_us,
  15135. /*.t_p_eval_ms =*/ 1e-3 * ctx->t_p_eval_us,
  15136. /*.t_eval_ms =*/ 1e-3 * ctx->t_eval_us,
  15137. /*.n_sample =*/ std::max(1, ctx->n_sample),
  15138. /*.n_p_eval =*/ std::max(0, ctx->n_p_eval),
  15139. /*.n_eval =*/ std::max(1, ctx->n_eval),
  15140. };
  15141. return result;
  15142. }
  15143. void llama_print_timings(struct llama_context * ctx) {
  15144. const llama_timings timings = llama_get_timings(ctx);
  15145. LLAMA_LOG_INFO("\n");
  15146. LLAMA_LOG_INFO("%s: load time = %10.2f ms\n", __func__, timings.t_load_ms);
  15147. LLAMA_LOG_INFO("%s: sample time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n",
  15148. __func__, timings.t_sample_ms, timings.n_sample, timings.t_sample_ms / timings.n_sample, 1e3 / timings.t_sample_ms * timings.n_sample);
  15149. LLAMA_LOG_INFO("%s: prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n",
  15150. __func__, timings.t_p_eval_ms, timings.n_p_eval, timings.t_p_eval_ms / timings.n_p_eval, 1e3 / timings.t_p_eval_ms * timings.n_p_eval);
  15151. LLAMA_LOG_INFO("%s: eval time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n",
  15152. __func__, timings.t_eval_ms, timings.n_eval, timings.t_eval_ms / timings.n_eval, 1e3 / timings.t_eval_ms * timings.n_eval);
  15153. LLAMA_LOG_INFO("%s: total time = %10.2f ms / %5d tokens\n", __func__, (timings.t_end_ms - timings.t_start_ms), (timings.n_p_eval + timings.n_eval));
  15154. }
  15155. void llama_reset_timings(struct llama_context * ctx) {
  15156. ctx->t_start_us = ggml_time_us();
  15157. ctx->t_sample_us = ctx->n_sample = 0;
  15158. ctx->t_eval_us = ctx->n_eval = 0;
  15159. ctx->t_p_eval_us = ctx->n_p_eval = 0;
  15160. }
  15161. const char * llama_print_system_info(void) {
  15162. static std::string s;
  15163. s = "";
  15164. s += "AVX = " + std::to_string(ggml_cpu_has_avx()) + " | ";
  15165. s += "AVX_VNNI = " + std::to_string(ggml_cpu_has_avx_vnni()) + " | ";
  15166. s += "AVX2 = " + std::to_string(ggml_cpu_has_avx2()) + " | ";
  15167. s += "AVX512 = " + std::to_string(ggml_cpu_has_avx512()) + " | ";
  15168. s += "AVX512_VBMI = " + std::to_string(ggml_cpu_has_avx512_vbmi()) + " | ";
  15169. s += "AVX512_VNNI = " + std::to_string(ggml_cpu_has_avx512_vnni()) + " | ";
  15170. s += "FMA = " + std::to_string(ggml_cpu_has_fma()) + " | ";
  15171. s += "NEON = " + std::to_string(ggml_cpu_has_neon()) + " | ";
  15172. s += "ARM_FMA = " + std::to_string(ggml_cpu_has_arm_fma()) + " | ";
  15173. s += "F16C = " + std::to_string(ggml_cpu_has_f16c()) + " | ";
  15174. s += "FP16_VA = " + std::to_string(ggml_cpu_has_fp16_va()) + " | ";
  15175. s += "WASM_SIMD = " + std::to_string(ggml_cpu_has_wasm_simd()) + " | ";
  15176. s += "BLAS = " + std::to_string(ggml_cpu_has_blas()) + " | ";
  15177. s += "SSE3 = " + std::to_string(ggml_cpu_has_sse3()) + " | ";
  15178. s += "SSSE3 = " + std::to_string(ggml_cpu_has_ssse3()) + " | ";
  15179. s += "VSX = " + std::to_string(ggml_cpu_has_vsx()) + " | ";
  15180. s += "MATMUL_INT8 = " + std::to_string(ggml_cpu_has_matmul_int8()) + " | ";
  15181. #ifdef GGML_USE_LLAMAFILE
  15182. s += "LLAMAFILE = 1 | ";
  15183. #else
  15184. s += "LLAMAFILE = 0 | ";
  15185. #endif
  15186. return s.c_str();
  15187. }
  15188. void llama_dump_timing_info_yaml(FILE * stream, const llama_context * ctx) {
  15189. fprintf(stream, "\n");
  15190. fprintf(stream, "###########\n");
  15191. fprintf(stream, "# Timings #\n");
  15192. fprintf(stream, "###########\n");
  15193. fprintf(stream, "\n");
  15194. fprintf(stream, "mst_eval: %.2f # ms / token during generation\n",
  15195. 1.0e-3 * ctx->t_eval_us / ctx->n_eval);
  15196. fprintf(stream, "mst_p_eval: %.2f # ms / token during prompt processing\n",
  15197. 1.0e-3 * ctx->t_p_eval_us / ctx->n_p_eval);
  15198. fprintf(stream, "mst_sample: %.2f # ms / token during sampling\n",
  15199. 1.0e-3 * ctx->t_sample_us / ctx->n_sample);
  15200. fprintf(stream, "n_eval: %d # number of tokens generated (excluding the first one)\n", ctx->n_eval);
  15201. fprintf(stream, "n_p_eval: %d # number of tokens processed in batches at the beginning\n", ctx->n_p_eval);
  15202. fprintf(stream, "n_sample: %d # number of sampled tokens\n", ctx->n_sample);
  15203. fprintf(stream, "t_eval_us: %" PRId64 " # total microseconds spent generating tokens\n", ctx->t_eval_us);
  15204. fprintf(stream, "t_load_us: %" PRId64 " # total microseconds spent loading the model\n", ctx->t_load_us);
  15205. fprintf(stream, "t_p_eval_us: %" PRId64 " # total microseconds spent prompt processing\n", ctx->t_p_eval_us);
  15206. fprintf(stream, "t_sample_us: %" PRId64 " # total microseconds spent sampling\n", ctx->t_sample_us);
  15207. fprintf(stream, "ts_eval: %.2f # tokens / second during generation\n",
  15208. 1.0e6 * ctx->n_eval / ctx->t_eval_us);
  15209. fprintf(stream, "ts_p_eval: %.2f # tokens / second during prompt processing\n",
  15210. 1.0e6 * ctx->n_p_eval / ctx->t_p_eval_us);
  15211. fprintf(stream, "ts_sample: %.2f # tokens / second during sampling\n",
  15212. 1.0e6 * ctx->n_sample / ctx->t_sample_us);
  15213. }
  15214. // For internal test use
  15215. const std::vector<std::pair<std::string, struct ggml_tensor *>> & llama_internal_get_tensor_map(
  15216. struct llama_context * ctx
  15217. ) {
  15218. return ctx->model.tensors_by_name;
  15219. }
  15220. void llama_log_set(ggml_log_callback log_callback, void * user_data) {
  15221. g_state.log_callback = log_callback ? log_callback : llama_log_callback_default;
  15222. g_state.log_callback_user_data = user_data;
  15223. #ifdef GGML_USE_METAL
  15224. ggml_backend_metal_log_set_callback(g_state.log_callback, g_state.log_callback_user_data);
  15225. #endif
  15226. }
  15227. static void llama_log_internal_v(ggml_log_level level, const char * format, va_list args) {
  15228. va_list args_copy;
  15229. va_copy(args_copy, args);
  15230. char buffer[128];
  15231. int len = vsnprintf(buffer, 128, format, args);
  15232. if (len < 128) {
  15233. g_state.log_callback(level, buffer, g_state.log_callback_user_data);
  15234. } else {
  15235. char* buffer2 = new char[len+1];
  15236. vsnprintf(buffer2, len+1, format, args_copy);
  15237. buffer2[len] = 0;
  15238. g_state.log_callback(level, buffer2, g_state.log_callback_user_data);
  15239. delete[] buffer2;
  15240. }
  15241. va_end(args_copy);
  15242. }
  15243. static void llama_log_internal(ggml_log_level level, const char * format, ...) {
  15244. va_list args;
  15245. va_start(args, format);
  15246. llama_log_internal_v(level, format, args);
  15247. va_end(args);
  15248. }
  15249. static void llama_log_callback_default(ggml_log_level level, const char * text, void * user_data) {
  15250. (void) level;
  15251. (void) user_data;
  15252. fputs(text, stderr);
  15253. fflush(stderr);
  15254. }