Bez popisu

Jeffrey Morgan 6a19724d5f remove colon from library modelfiles před 1 rokem
api 68df36ae50 fix pull 0 bytes on completed layer před 1 rokem
app dfceca48a7 update icons to have different images for bright and dark mode před 1 rokem
cmd 55b5f5dc34 ctrl+c on empty line exits (#135) před 1 rokem
docs 31f0cb7742 new `Modelfile` syntax před 1 rokem
examples 31f0cb7742 new `Modelfile` syntax před 1 rokem
format 5bea29f610 add new list command (#97) před 1 rokem
library 6a19724d5f remove colon from library modelfiles před 1 rokem
llama 40c9dc0a31 fix multibyte responses před 1 rokem
parser d59b164fa2 add prompt back to parser před 1 rokem
progressbar e4d7f3e287 vendor in progress bar and change to bytes instead of bibytes (#130) před 1 rokem
scripts 4dd296e155 build app in publish script před 1 rokem
server d59b164fa2 add prompt back to parser před 1 rokem
web e4b2ccfb23 web: clean up remaining `models.json` usage před 1 rokem
.dockerignore 6292f4b64c update `Dockerfile` před 1 rokem
.gitignore 7c71c10d4f fix compilation issue in Dockerfile, remove from `README.md` until ready před 1 rokem
.prettierrc.json 8685a5ad18 move .prettierrc.json to root před 1 rokem
Dockerfile 7c71c10d4f fix compilation issue in Dockerfile, remove from `README.md` until ready před 1 rokem
LICENSE df5fdd6647 `proto` -> `ollama` před 1 rokem
README.md 924ce739f9 documentation on the model format před 1 rokem
ggml-metal.metal e64ef69e34 look for ggml-metal in the same directory as the binary před 1 rokem
go.mod e4d7f3e287 vendor in progress bar and change to bytes instead of bibytes (#130) před 1 rokem
go.sum e4d7f3e287 vendor in progress bar and change to bytes instead of bibytes (#130) před 1 rokem
main.go 1775647f76 continue conversation před 1 rokem

README.md

logo

Ollama

Discord

Note: Ollama is in early preview. Please report any issues you find.

Create, run, and share portable large language models (LLMs). Ollama bundles a model’s weights, configuration, prompts, and more into self-contained packages that can run on any machine.

Portable Large Language Models (LLMs)

Package models as a series of layers in a portable, easy to manage format.

The idea behind Ollama

  • Universal model format that can run anywhere: desktop, cloud servers & other devices.
  • Encapsulate everything a model needs to operate – weights, configuration, and data – into a single package.
  • Build custom models from base models like Meta's Llama 2
  • Share large models without having to transmit large amounts of data.

logo

This format is inspired by the image spec originally introduced by Docker for Linux containers. Ollama extends this format to package large language models.

Download

  • Download for macOS on Apple Silicon (Intel coming soon)
  • Download for Windows and Linux (coming soon)
  • Build from source

Quickstart

To run and chat with Llama 2, the new model by Meta:

ollama run llama2

Model library

Ollama includes a library of open-source, pre-trained models. More models are coming soon. You should have at least 8 GB of RAM to run the 3B models, 16 GB to run the 7B models, and 32 GB to run the 13B models.

Model Parameters Size Download
Llama2 7B 3.8GB ollama pull llama2
Llama2 13B 13B 7.3GB ollama pull llama2:13b
Orca Mini 3B 1.9GB ollama pull orca
Vicuna 7B 3.8GB ollama pull vicuna
Nous-Hermes 13B 7.3GB ollama pull nous-hermes
Wizard Vicuna Uncensored 13B 7.3GB ollama pull wizard-vicuna

Examples

Run a model

ollama run llama2
>>> hi
Hello! How can I help you today?

Create a custom character model

Pull a base model:

ollama pull llama2

Create a Modelfile:

FROM llama2

# set the temperature to 1 [higher is more creative, lower is more coherent]
PARAMETER temperature 1

# set the system prompt
SYSTEM """
You are Mario from Super Mario Bros. Answer as Mario, the assistant, only.
"""

Next, create and run the model:

ollama create mario -f ./Modelfile
ollama run mario
>>> hi
Hello! It's your friend Mario.

For more examples, see the examples directory.

Pull a model from the registry

ollama pull orca

Building

go build .

To run it start the server:

./ollama serve &

Finally, run a model!

./ollama run llama2