convert_llama.go 4.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183
  1. package convert
  2. import (
  3. "cmp"
  4. "fmt"
  5. "strings"
  6. "github.com/pdevine/tensor"
  7. "github.com/pdevine/tensor/native"
  8. "github.com/ollama/ollama/llm"
  9. )
  10. type llama struct {
  11. Parameters
  12. NLayers uint32 `json:"n_layers"`
  13. NumHiddenLayers uint32 `json:"num_hidden_layers"`
  14. NLayer uint32 `json:"n_layer"`
  15. MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
  16. NCtx uint32 `json:"n_ctx"`
  17. HiddenSize uint32 `json:"hidden_size"`
  18. NEmbd uint32 `json:"n_embd"`
  19. IntermediateSize uint32 `json:"intermediate_size"`
  20. NInner uint32 `json:"n_inner"`
  21. NumAttentionHeads uint32 `json:"num_attention_heads"`
  22. NHead uint32 `json:"n_head"`
  23. NumKeyValueHeads uint32 `json:"num_key_value_heads"`
  24. RopeTheta float32 `json:"rope_theta"`
  25. RopeScaling struct {
  26. Type string `json:"type"`
  27. Factor float32 `json:"factor"`
  28. } `json:"rope_scaling"`
  29. RMSNormEPS float32 `json:"rms_norm_eps"`
  30. LayerNormEPS float32 `json:"layer_norm_eps"`
  31. LayerNormEpsilon float32 `json:"layer_norm_epsilon"`
  32. NormEpsilon float32 `json:"norm_epsilon"`
  33. HeadDim uint32 `json:"head_dim"`
  34. }
  35. var _ Converter = (*llama)(nil)
  36. func (p *llama) KV(t *Tokenizer) llm.KV {
  37. kv := p.Parameters.KV(t)
  38. kv["general.architecture"] = "llama"
  39. kv["general.name"] = "llama"
  40. kv["llama.vocab_size"] = p.VocabSize
  41. kv["llama.block_count"] = cmp.Or(p.NLayers, p.NumHiddenLayers, p.NLayer)
  42. if contextLength := cmp.Or(p.MaxPositionEmbeddings, p.NCtx); contextLength > 0 {
  43. kv["llama.context_length"] = contextLength
  44. }
  45. if embeddingLength := cmp.Or(p.HiddenSize, p.NEmbd); embeddingLength > 0 {
  46. kv["llama.embedding_length"] = cmp.Or(p.HiddenSize, p.NEmbd)
  47. }
  48. if feedForwardLength := cmp.Or(p.IntermediateSize, p.NInner); feedForwardLength > 0 {
  49. kv["llama.feed_forward_length"] = cmp.Or(p.IntermediateSize, p.NInner)
  50. }
  51. if headCount := cmp.Or(p.NumAttentionHeads, p.NHead); headCount > 0 {
  52. kv["llama.attention.head_count"] = cmp.Or(p.NumAttentionHeads, p.NHead)
  53. kv["llama.rope.dimension_count"] = p.HiddenSize / headCount
  54. }
  55. if p.RopeTheta > 0 {
  56. kv["llama.rope.freq_base"] = p.RopeTheta
  57. }
  58. if p.RopeScaling.Type == "linear" {
  59. kv["llama.rope.scaling.type"] = p.RopeScaling.Type
  60. kv["llama.rope.scaling.factor"] = p.RopeScaling.Factor
  61. }
  62. if p.NumKeyValueHeads > 0 {
  63. kv["llama.attention.head_count_kv"] = p.NumKeyValueHeads
  64. }
  65. if p.RMSNormEPS > 0 {
  66. kv["llama.attention.layer_norm_rms_epsilon"] = p.RMSNormEPS
  67. }
  68. if layerNormEpsilon := cmp.Or(p.LayerNormEPS, p.LayerNormEpsilon, p.NormEpsilon); layerNormEpsilon > 0 {
  69. kv["llama.attention.layer_norm_epsilon"] = layerNormEpsilon
  70. }
  71. if p.HeadDim > 0 {
  72. kv["llama.attention.key_length"] = p.HeadDim
  73. kv["llama.attention.value_length"] = p.HeadDim
  74. }
  75. if len(t.Merges) > 0 {
  76. kv["tokenizer.ggml.merges"] = t.Merges
  77. }
  78. return kv
  79. }
  80. func (p *llama) Tensors(ts []Tensor) []llm.Tensor {
  81. var out []llm.Tensor
  82. for _, t := range ts {
  83. name := p.tensorName(t.Name())
  84. if strings.HasSuffix(name, "attn_q.weight") ||
  85. strings.HasSuffix(name, "attn_k.weight") {
  86. t.SetRepacker(p.repack)
  87. }
  88. out = append(out, llm.Tensor{
  89. Name: name,
  90. Kind: t.Kind(),
  91. Shape: t.Shape(),
  92. WriterTo: t,
  93. })
  94. }
  95. return out
  96. }
  97. func (p *llama) tensorName(n string) string {
  98. return strings.NewReplacer(
  99. "lm_head", "output",
  100. "model.embed_tokens", "token_embd",
  101. "model.norm", "output_norm",
  102. "model.layers", "blk",
  103. "input_layernorm", "attn_norm",
  104. "self_attn.q_proj", "attn_q",
  105. "self_attn.k_proj", "attn_k",
  106. "self_attn.v_proj", "attn_v",
  107. "self_attn.o_proj", "attn_output",
  108. "mlp.gate_proj", "ffn_gate",
  109. "mlp.down_proj", "ffn_down",
  110. "mlp.up_proj", "ffn_up",
  111. "post_attention_layernorm", "ffn_norm",
  112. // mixtral
  113. "block_sparse_moe.gate", "ffn_gate_inp",
  114. ).Replace(n)
  115. }
  116. func (p *llama) repack(name string, data []float32, shape []uint64) ([]float32, error) {
  117. var dims []int
  118. for _, dim := range shape {
  119. dims = append(dims, int(dim))
  120. }
  121. var heads uint32
  122. if strings.HasSuffix(name, "q_proj.weight") {
  123. heads = p.NumAttentionHeads
  124. } else if strings.HasSuffix(name, "k_proj.weight") {
  125. heads = cmp.Or(p.NumKeyValueHeads, p.NumAttentionHeads)
  126. } else {
  127. return nil, fmt.Errorf("unknown tensor for repack: %s", name)
  128. }
  129. n := tensor.New(tensor.WithShape(dims...), tensor.WithBacking(data))
  130. if err := n.Reshape(append([]int{int(heads), 2, dims[0] / int(heads) / 2}, dims[1:]...)...); err != nil {
  131. return nil, err
  132. }
  133. if err := n.T(0, 2, 1, 3); err != nil {
  134. return nil, err
  135. }
  136. if err := n.Reshape(dims...); err != nil {
  137. return nil, err
  138. }
  139. if err := n.Transpose(); err != nil {
  140. return nil, err
  141. }
  142. ts, err := native.SelectF32(n, 1)
  143. if err != nil {
  144. return nil, err
  145. }
  146. var f32s []float32
  147. for _, t := range ts {
  148. f32s = append(f32s, t...)
  149. }
  150. return f32s, nil
  151. }