123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183 |
- package convert
- import (
- "cmp"
- "fmt"
- "strings"
- "github.com/pdevine/tensor"
- "github.com/pdevine/tensor/native"
- "github.com/ollama/ollama/llm"
- )
- type llama struct {
- Parameters
- NLayers uint32 `json:"n_layers"`
- NumHiddenLayers uint32 `json:"num_hidden_layers"`
- NLayer uint32 `json:"n_layer"`
- MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
- NCtx uint32 `json:"n_ctx"`
- HiddenSize uint32 `json:"hidden_size"`
- NEmbd uint32 `json:"n_embd"`
- IntermediateSize uint32 `json:"intermediate_size"`
- NInner uint32 `json:"n_inner"`
- NumAttentionHeads uint32 `json:"num_attention_heads"`
- NHead uint32 `json:"n_head"`
- NumKeyValueHeads uint32 `json:"num_key_value_heads"`
- RopeTheta float32 `json:"rope_theta"`
- RopeScaling struct {
- Type string `json:"type"`
- Factor float32 `json:"factor"`
- } `json:"rope_scaling"`
- RMSNormEPS float32 `json:"rms_norm_eps"`
- LayerNormEPS float32 `json:"layer_norm_eps"`
- LayerNormEpsilon float32 `json:"layer_norm_epsilon"`
- NormEpsilon float32 `json:"norm_epsilon"`
- HeadDim uint32 `json:"head_dim"`
- }
- var _ Converter = (*llama)(nil)
- func (p *llama) KV(t *Tokenizer) llm.KV {
- kv := p.Parameters.KV(t)
- kv["general.architecture"] = "llama"
- kv["general.name"] = "llama"
- kv["llama.vocab_size"] = p.VocabSize
- kv["llama.block_count"] = cmp.Or(p.NLayers, p.NumHiddenLayers, p.NLayer)
- if contextLength := cmp.Or(p.MaxPositionEmbeddings, p.NCtx); contextLength > 0 {
- kv["llama.context_length"] = contextLength
- }
- if embeddingLength := cmp.Or(p.HiddenSize, p.NEmbd); embeddingLength > 0 {
- kv["llama.embedding_length"] = cmp.Or(p.HiddenSize, p.NEmbd)
- }
- if feedForwardLength := cmp.Or(p.IntermediateSize, p.NInner); feedForwardLength > 0 {
- kv["llama.feed_forward_length"] = cmp.Or(p.IntermediateSize, p.NInner)
- }
- if headCount := cmp.Or(p.NumAttentionHeads, p.NHead); headCount > 0 {
- kv["llama.attention.head_count"] = cmp.Or(p.NumAttentionHeads, p.NHead)
- kv["llama.rope.dimension_count"] = p.HiddenSize / headCount
- }
- if p.RopeTheta > 0 {
- kv["llama.rope.freq_base"] = p.RopeTheta
- }
- if p.RopeScaling.Type == "linear" {
- kv["llama.rope.scaling.type"] = p.RopeScaling.Type
- kv["llama.rope.scaling.factor"] = p.RopeScaling.Factor
- }
- if p.NumKeyValueHeads > 0 {
- kv["llama.attention.head_count_kv"] = p.NumKeyValueHeads
- }
- if p.RMSNormEPS > 0 {
- kv["llama.attention.layer_norm_rms_epsilon"] = p.RMSNormEPS
- }
- if layerNormEpsilon := cmp.Or(p.LayerNormEPS, p.LayerNormEpsilon, p.NormEpsilon); layerNormEpsilon > 0 {
- kv["llama.attention.layer_norm_epsilon"] = layerNormEpsilon
- }
- if p.HeadDim > 0 {
- kv["llama.attention.key_length"] = p.HeadDim
- kv["llama.attention.value_length"] = p.HeadDim
- }
- if len(t.Merges) > 0 {
- kv["tokenizer.ggml.merges"] = t.Merges
- }
- return kv
- }
- func (p *llama) Tensors(ts []Tensor) []llm.Tensor {
- var out []llm.Tensor
- for _, t := range ts {
- name := p.tensorName(t.Name())
- if strings.HasSuffix(name, "attn_q.weight") ||
- strings.HasSuffix(name, "attn_k.weight") {
- t.SetRepacker(p.repack)
- }
- out = append(out, llm.Tensor{
- Name: name,
- Kind: t.Kind(),
- Shape: t.Shape(),
- WriterTo: t,
- })
- }
- return out
- }
- func (p *llama) tensorName(n string) string {
- return strings.NewReplacer(
- "lm_head", "output",
- "model.embed_tokens", "token_embd",
- "model.norm", "output_norm",
- "model.layers", "blk",
- "input_layernorm", "attn_norm",
- "self_attn.q_proj", "attn_q",
- "self_attn.k_proj", "attn_k",
- "self_attn.v_proj", "attn_v",
- "self_attn.o_proj", "attn_output",
- "mlp.gate_proj", "ffn_gate",
- "mlp.down_proj", "ffn_down",
- "mlp.up_proj", "ffn_up",
- "post_attention_layernorm", "ffn_norm",
- // mixtral
- "block_sparse_moe.gate", "ffn_gate_inp",
- ).Replace(n)
- }
- func (p *llama) repack(name string, data []float32, shape []uint64) ([]float32, error) {
- var dims []int
- for _, dim := range shape {
- dims = append(dims, int(dim))
- }
- var heads uint32
- if strings.HasSuffix(name, "q_proj.weight") {
- heads = p.NumAttentionHeads
- } else if strings.HasSuffix(name, "k_proj.weight") {
- heads = cmp.Or(p.NumKeyValueHeads, p.NumAttentionHeads)
- } else {
- return nil, fmt.Errorf("unknown tensor for repack: %s", name)
- }
- n := tensor.New(tensor.WithShape(dims...), tensor.WithBacking(data))
- if err := n.Reshape(append([]int{int(heads), 2, dims[0] / int(heads) / 2}, dims[1:]...)...); err != nil {
- return nil, err
- }
- if err := n.T(0, 2, 1, 3); err != nil {
- return nil, err
- }
- if err := n.Reshape(dims...); err != nil {
- return nil, err
- }
- if err := n.Transpose(); err != nil {
- return nil, err
- }
- ts, err := native.SelectF32(n, 1)
- if err != nil {
- return nil, err
- }
- var f32s []float32
- for _, t := range ts {
- f32s = append(f32s, t...)
- }
- return f32s, nil
- }
|