123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201 |
- package qwen2
- import (
- "fmt"
- "log/slog"
- "math"
- "github.com/ollama/ollama/cache"
- "github.com/ollama/ollama/ml"
- "github.com/ollama/ollama/ml/nn"
- "github.com/ollama/ollama/model"
- )
- type Options struct {
- hiddenSize, numHeads, numKVHeads int64
- eps, ropeBase, ropeScale float32
- ropeDim uint32
- }
- type Model struct {
- model.Base
- model.BytePairEncoding
- TokenEmbedding *nn.Embedding `gguf:"token_embd"`
- Layers []Layer `gguf:"blk"`
- OutputNorm *nn.RMSNorm `gguf:"output_norm"`
- Output *nn.Linear `gguf:"output,alt:token_embd"`
- *Options
- }
- func New(c ml.Config) (model.Model, error) {
- m := &Model{
- BytePairEncoding: model.BytePairEncoding{
- Pretokenizer: c.String("tokenizer.ggml.pretokenizer", `(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`),
- Vocabulary: &model.Vocabulary{
- Values: c.Strings("tokenizer.ggml.tokens"),
- Types: c.Uints("tokenizer.ggml.token_type"),
- Merges: c.Strings("tokenizer.ggml.merges"),
- BOS: c.Uint("tokenizer.ggml.bos_token_id"),
- EOS: c.Uint("tokenizer.ggml.eos_token_id"),
- },
- },
- Layers: make([]Layer, c.Uint("block_count")),
- Options: &Options{
- hiddenSize: int64(c.Uint("embedding_length")),
- numHeads: int64(c.Uint("attention.head_count")),
- numKVHeads: int64(c.Uint("attention.head_count_kv")),
- eps: c.Float("attention.layer_norm_rms_epsilon"),
- ropeBase: c.Float("rope.freq_base"),
- ropeScale: c.Float("rope.freq_scale", 1),
- ropeDim: c.Uint("rope.dimension_count", 64),
- },
- }
- slog.Debug("model configuration",
- "arch", "qwen2",
- "vocab_size", len(c.Strings("tokenizer.ggml.tokens")),
- "n_merges", len(c.Strings("tokenizer.ggml.merges")),
- "n_ctx_train", c.Uint("context_length"),
- "n_embd", m.hiddenSize,
- "n_layer", len(m.Layers),
- "n_head", m.numHeads,
- "n_head_kv", m.numKVHeads,
- "n_rot", m.ropeDim,
- "f_norm_rms_eps", m.eps,
- "rope_freq_base", m.ropeBase,
- "rope_freq_scale", m.ropeScale,
- "bos_token_id", c.Uint("tokenizer.ggml.bos_token_id"),
- "eos_token_id", c.Uint("tokenizer.ggml.eos_token_id"),
- )
- return m, nil
- }
- type SelfAttention struct {
- Query *nn.Linear `gguf:"attn_q"`
- Key *nn.Linear `gguf:"attn_k"`
- Value *nn.Linear `gguf:"attn_v"`
- Output *nn.Linear `gguf:"attn_output"`
- }
- func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, inputPositions ml.Tensor, layerIdx int, cache cache.Cache, opts *Options) ml.Tensor {
- batchSize := hiddenState.Dim(1)
- headDim := opts.hiddenSize / opts.numHeads
- q := sa.Query.Forward(ctx, hiddenState)
- ctx.Trace(fmt.Sprintf("model.layers.%d.self_attn.q_proj", layerIdx), q)
- q = q.Reshape(ctx, headDim, opts.numHeads, batchSize)
- q = q.RoPE(ctx, inputPositions, nil, opts.ropeDim, opts.ropeBase, opts.ropeScale)
- ctx.Trace(fmt.Sprintf("model.layers.%d.self_attn.q_proj.rope", layerIdx), q)
- k := sa.Key.Forward(ctx, hiddenState)
- k = k.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
- k = k.RoPE(ctx, inputPositions, nil, opts.ropeDim, opts.ropeBase, opts.ropeScale)
- ctx.Trace(fmt.Sprintf("model.layers.%d.self_attn.k_proj.rope", layerIdx), k)
- v := sa.Value.Forward(ctx, hiddenState)
- v = v.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
- ctx.Trace(fmt.Sprintf("model.layers.%d.self_attn.v_proj", layerIdx), v)
- k, v, mask := cache.Put(ctx, k, v)
- q = q.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
- k = k.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
- v = v.Permute(ctx, 1, 2, 0, 3).Contiguous(ctx)
- kq := k.Mulmat(ctx, q)
- kq = kq.Scale(ctx, 1.0/math.Sqrt(float64(headDim)))
- kq = kq.Add(ctx, mask)
- kq = kq.Softmax(ctx)
- kqv := v.Mulmat(ctx, kq)
- kqv = kqv.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
- kqv = kqv.Reshape(ctx, opts.hiddenSize, batchSize)
- output := sa.Output.Forward(ctx, kqv)
- return output
- }
- type MLP struct {
- Up *nn.Linear `gguf:"ffn_up"`
- Down *nn.Linear `gguf:"ffn_down"`
- Gate *nn.Linear `gguf:"ffn_gate"`
- }
- func (mlp *MLP) Forward(ctx ml.Context, hiddenState ml.Tensor, opts *Options) ml.Tensor {
- hiddenState = mlp.Gate.Forward(ctx, hiddenState).SILU(ctx).Mul(ctx, mlp.Up.Forward(ctx, hiddenState))
- return mlp.Down.Forward(ctx, hiddenState)
- }
- type Layer struct {
- AttentionNorm *nn.RMSNorm `gguf:"attn_norm"`
- SelfAttention *SelfAttention
- MLPNorm *nn.RMSNorm `gguf:"ffn_norm"`
- MLP *MLP
- }
- func (l *Layer) Forward(ctx ml.Context, hiddenState, positionIDs ml.Tensor, layerIdx int, cache cache.Cache, opts *Options) ml.Tensor {
- ctx.Trace(fmt.Sprintf("model.layers.%d.input", layerIdx), hiddenState)
- residual := hiddenState
- hiddenState = l.AttentionNorm.Forward(ctx, hiddenState, opts.eps)
- ctx.Trace(fmt.Sprintf("model.layers.%d.input_layernorm", layerIdx), hiddenState)
- hiddenState = l.SelfAttention.Forward(ctx, hiddenState, positionIDs, layerIdx, cache, opts)
- ctx.Trace(fmt.Sprintf("model.layers.%d.self_attn.output", layerIdx), hiddenState)
- hiddenState = hiddenState.Add(ctx, residual)
- residual = hiddenState
- ctx.Trace(fmt.Sprintf("model.layers.%d.self_attn.residual", layerIdx), hiddenState)
- hiddenState = l.MLPNorm.Forward(ctx, hiddenState, opts.eps)
- ctx.Trace(fmt.Sprintf("model.layers.%d.post_attention_layernorm", layerIdx), hiddenState)
- hiddenState = l.MLP.Forward(ctx, hiddenState, opts)
- ctx.Trace(fmt.Sprintf("model.layers.%d.mlp", layerIdx), hiddenState)
- output := hiddenState.Add(ctx, residual)
- ctx.Trace(fmt.Sprintf("model.layers.%d.output", layerIdx), output)
- return output
- }
- func (m *Model) Forward(ctx ml.Context, opts model.Options) (ml.Tensor, error) {
- slog.Debug("input tokens", "input_ids", opts.Inputs())
- inputs, err := ctx.FromIntSlice(opts.Inputs(), len(opts.Inputs()))
- if err != nil {
- return nil, err
- }
- positions, err := ctx.FromIntSlice(opts.Positions(), len(opts.Positions()))
- if err != nil {
- return nil, err
- }
- hiddenState := m.TokenEmbedding.Forward(ctx, inputs)
- ctx.Trace("model.embed_tokens", hiddenState)
- for i, layer := range m.Layers {
- hiddenState = layer.Forward(ctx, hiddenState, positions, i, opts.Cache.Sub(i), m.Options)
- }
- hiddenState = m.OutputNorm.Forward(ctx, hiddenState, m.eps)
- ctx.Trace("model.norm", hiddenState)
- hiddenState = m.Output.Forward(ctx, hiddenState)
- ctx.Trace("model.output", hiddenState)
- outputs, err := ctx.FromIntSlice(opts.Outputs(), len(opts.Outputs()))
- if err != nil {
- return nil, err
- }
- return hiddenState.Rows(ctx, outputs), nil
- }
- func init() {
- model.Register("qwen2", New)
- }
|