Nenhuma descrição

Josh Yan edeea1d6f0 server 8 meses atrás
.github feedf49c71 Go back to a pinned Go version 8 meses atrás
api 0a8d6ea86d Fix typo and improve readability (#5964) 8 meses atrás
app a84c05cf91 fix: Add tooltip to system tray icon 8 meses atrás
auth b732beba6a lint 9 meses atrás
cmd 0a8d6ea86d Fix typo and improve readability (#5964) 8 meses atrás
convert aec77d6a05 support new "longrope" attention factor 8 meses atrás
docs eda8a32a09 update chatml template format to latest in docs (#6344) 8 meses atrás
envconfig 85d9d73a72 comments 9 meses atrás
examples 0be8baad2b Update and Fix example models (#6065) 9 meses atrás
format b732beba6a lint 9 meses atrás
gpu 160d9d4900 Merge pull request #6171 from ollama/mxyng/remove-temp 8 meses atrás
integration 7ed367419e fix concurrency test 8 meses atrás
llm edeea1d6f0 server 8 meses atrás
macapp 0e4d653687 upate to `llama3.1` elsewhere in repo (#6032) 9 meses atrás
openai 01d544d373 OpenAI: Simplify input output in testing (#5858) 8 meses atrás
parser b732beba6a lint 9 meses atrás
progress f7e3b9190f cmd: spinner progress for transfer model data (#6100) 8 meses atrás
readline 2697d7f5aa lint 8 meses atrás
scripts df3802a65f Adjust arm cuda repo paths 9 meses atrás
server 3a75e74e34 only skip invalid json manifests 8 meses atrás
template b732beba6a lint 9 meses atrás
types 0a8d6ea86d Fix typo and improve readability (#5964) 8 meses atrás
util cb42e607c5 llm: speed up gguf decoding by a lot (#5246) 10 meses atrás
version 2c7f956b38 add version 1 ano atrás
.dockerignore 5017a15bcb add `macapp` to `.dockerignore` 1 ano atrás
.gitattributes d4e6407464 Restrict text files with explicit line feeds to *.go. 8 meses atrás
.gitignore 34a4a94f13 ignore debug bin files 1 ano atrás
.gitmodules fac9060da5 Init submodule with new path 1 ano atrás
.golangci.yaml 2697d7f5aa lint 8 meses atrás
.prettierrc.json 8685a5ad18 move .prettierrc.json to root 1 ano atrás
CONTRIBUTING.md 8200c371ae add `CONTRIBUTING.md` (#6349) 8 meses atrás
Dockerfile f02f83660c bump go version to 1.22.5 to fix security vulnerabilities 9 meses atrás
LICENSE df5fdd6647 `proto` -> `ollama` 1 ano atrás
README.md 023451ce47 add integration obook-summary (#6305) 8 meses atrás
SECURITY.md 463a8aa273 Create SECURITY.md 9 meses atrás
go.mod feedf49c71 Go back to a pinned Go version 8 meses atrás
go.sum 9b6c2e6eb6 detect chat template from KV 10 meses atrás
main.go b732beba6a lint 9 meses atrás

README.md

 ollama

Ollama

Discord

Get up and running with large language models.

macOS

Download

Windows preview

Download

Linux

curl -fsSL https://ollama.com/install.sh | sh

Manual install instructions

Docker

The official Ollama Docker image ollama/ollama is available on Docker Hub.

Libraries

Quickstart

To run and chat with Llama 3.1:

ollama run llama3.1

Model library

Ollama supports a list of models available on ollama.com/library

Here are some example models that can be downloaded:

Model Parameters Size Download
Llama 3.1 8B 4.7GB ollama run llama3.1
Llama 3.1 70B 40GB ollama run llama3.1:70b
Llama 3.1 405B 231GB ollama run llama3.1:405b
Phi 3 Mini 3.8B 2.3GB ollama run phi3
Phi 3 Medium 14B 7.9GB ollama run phi3:medium
Gemma 2 2B 1.6GB ollama run gemma2:2b
Gemma 2 9B 5.5GB ollama run gemma2
Gemma 2 27B 16GB ollama run gemma2:27b
Mistral 7B 4.1GB ollama run mistral
Moondream 2 1.4B 829MB ollama run moondream
Neural Chat 7B 4.1GB ollama run neural-chat
Starling 7B 4.1GB ollama run starling-lm
Code Llama 7B 3.8GB ollama run codellama
Llama 2 Uncensored 7B 3.8GB ollama run llama2-uncensored
LLaVA 7B 4.5GB ollama run llava
Solar 10.7B 6.1GB ollama run solar

[!NOTE] You should have at least 8 GB of RAM available to run the 7B models, 16 GB to run the 13B models, and 32 GB to run the 33B models.

Customize a model

Import from GGUF

Ollama supports importing GGUF models in the Modelfile:

  1. Create a file named Modelfile, with a FROM instruction with the local filepath to the model you want to import.

    FROM ./vicuna-33b.Q4_0.gguf
    
  2. Create the model in Ollama

    ollama create example -f Modelfile
    
  3. Run the model

    ollama run example
    

Import from PyTorch or Safetensors

See the guide on importing models for more information.

Customize a prompt

Models from the Ollama library can be customized with a prompt. For example, to customize the llama3.1 model:

ollama pull llama3.1

Create a Modelfile:

FROM llama3.1

# set the temperature to 1 [higher is more creative, lower is more coherent]
PARAMETER temperature 1

# set the system message
SYSTEM """
You are Mario from Super Mario Bros. Answer as Mario, the assistant, only.
"""

Next, create and run the model:

ollama create mario -f ./Modelfile
ollama run mario
>>> hi
Hello! It's your friend Mario.

For more examples, see the examples directory. For more information on working with a Modelfile, see the Modelfile documentation.

CLI Reference

Create a model

ollama create is used to create a model from a Modelfile.

ollama create mymodel -f ./Modelfile

Pull a model

ollama pull llama3.1

This command can also be used to update a local model. Only the diff will be pulled.

Remove a model

ollama rm llama3.1

Copy a model

ollama cp llama3.1 my-model

Multiline input

For multiline input, you can wrap text with """:

>>> """Hello,
... world!
... """
I'm a basic program that prints the famous "Hello, world!" message to the console.

Multimodal models

ollama run llava "What's in this image? /Users/jmorgan/Desktop/smile.png"
The image features a yellow smiley face, which is likely the central focus of the picture.

Pass the prompt as an argument

$ ollama run llama3.1 "Summarize this file: $(cat README.md)"
 Ollama is a lightweight, extensible framework for building and running language models on the local machine. It provides a simple API for creating, running, and managing models, as well as a library of pre-built models that can be easily used in a variety of applications.

Show model information

ollama show llama3.1

List models on your computer

ollama list

Start Ollama

ollama serve is used when you want to start ollama without running the desktop application.

Building

See the developer guide

Running local builds

Next, start the server:

./ollama serve

Finally, in a separate shell, run a model:

./ollama run llama3.1

REST API

Ollama has a REST API for running and managing models.

Generate a response

curl http://localhost:11434/api/generate -d '{
  "model": "llama3.1",
  "prompt":"Why is the sky blue?"
}'

Chat with a model

curl http://localhost:11434/api/chat -d '{
  "model": "llama3.1",
  "messages": [
    { "role": "user", "content": "why is the sky blue?" }
  ]
}'

See the API documentation for all endpoints.

Community Integrations

Web & Desktop

Terminal

Database

Package managers

Libraries

Mobile

Extensions & Plugins

Supported backends

  • llama.cpp project founded by Georgi Gerganov.