convert_gemma3.go 5.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142
  1. package convert
  2. import (
  3. "cmp"
  4. "github.com/ollama/ollama/fs/ggml"
  5. )
  6. type gemma3Model struct {
  7. gemmaModel
  8. Architecture string
  9. TextModel struct {
  10. HeadDim uint32 `json:"head_dim"`
  11. HiddenSize uint32 `json:"hidden_size"`
  12. HiddenLayers uint32 `json:"num_hidden_layers"`
  13. IntermediateSize uint32 `json:"intermediate_size"`
  14. SlidingWindow uint32 `json:"sliding_window"`
  15. } `json:"text_config"`
  16. VisionModel struct {
  17. NumAttentionHeads uint32 `json:"num_attention_heads"` // attention.head_count 16
  18. LayerNormEpsilon float32 `json:"layer_norm_eps"` // attention.layer_norm_epsilon 1e-05
  19. NumHiddenLayers uint32 `json:"num_hidden_layers"` // block_count 32
  20. HiddenSize uint32 `json:"hidden_size"` // embedding_length 1280
  21. IntermediateSize uint32 `json:"intermediate_size"` // feed_forward_length 5120
  22. ImageSize uint32 `json:"image_size"` // image_size 560
  23. NumChannels uint32 `json:"num_channels"` // num_channels 3
  24. PatchSize uint32 `json:"patch_size"` // patch_size 14
  25. } `json:"vision_config"`
  26. MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
  27. NumAttentionHeads uint32 `json:"num_attention_heads"`
  28. NumKeyValueHeads uint32 `json:"num_key_value_heads"`
  29. RMSNormEPS float32 `json:"rms_norm_eps"`
  30. HeadDim uint32 `json:"head_dim"`
  31. FinalLogitSoftcap float32 `json:"final_logit_softcapping"`
  32. RopeLocalTheta float32 `json:"rope_local_base_freq"`
  33. RopeGlobalTheta float32 `json:"rope_global_base_freq"`
  34. SlidingWindow uint32 `json:"sliding_window"`
  35. MultiModalTokensPerImage uint32 `json:"mm_tokens_per_image"`
  36. }
  37. const (
  38. gemma4BLayerCount = 34
  39. gemma12BLayerCount = 48
  40. gemma27BLayerCount = 62
  41. )
  42. func (p *gemma3Model) KV(t *Tokenizer) ggml.KV {
  43. kv := p.ModelParameters.KV(t)
  44. kv["general.architecture"] = "gemma3"
  45. numBlocks := cmp.Or(p.HiddenLayers, p.TextModel.HiddenLayers)
  46. kv["gemma3.block_count"] = numBlocks
  47. var (
  48. numHeads uint32
  49. numKVHeads uint32
  50. )
  51. switch numBlocks {
  52. case gemma4BLayerCount:
  53. numHeads = 8
  54. numKVHeads = 4
  55. case gemma12BLayerCount:
  56. numHeads = 16
  57. numKVHeads = 8
  58. case gemma27BLayerCount:
  59. numHeads = 32
  60. numKVHeads = 16
  61. default:
  62. numHeads = p.NumAttentionHeads
  63. numKVHeads = p.NumKeyValueHeads
  64. }
  65. kv["gemma3.attention.head_count"] = numHeads
  66. kv["gemma3.attention.head_count_kv"] = numKVHeads
  67. switch p.Architecture {
  68. case "Gemma3ForCausalLM":
  69. kv["gemma3.context_length"] = p.MaxPositionEmbeddings
  70. kv["gemma3.attention.layer_norm_rms_epsilon"] = p.RMSNormEPS
  71. kv["gemma3.attention.key_length"] = p.HeadDim
  72. kv["gemma3.attention.value_length"] = p.HeadDim
  73. kv["gemma3.attention.sliding_window"] = p.SlidingWindow
  74. kv["gemma3.final_logit_softcapping"] = cmp.Or(p.FinalLogitSoftcap, 30)
  75. kv["gemma3.rope.local.freq_base"] = cmp.Or(p.RopeLocalTheta, 10000.0)
  76. kv["gemma3.rope.global.freq_base"] = cmp.Or(p.RopeGlobalTheta, 1000000.0)
  77. kv["gemma3.embedding_length"] = p.HiddenSize
  78. kv["gemma3.feed_forward_length"] = p.IntermediateSize
  79. default:
  80. kv["gemma3.context_length"] = cmp.Or(p.MaxPositionEmbeddings, 131072)
  81. kv["gemma3.embedding_length"] = p.TextModel.HiddenSize
  82. kv["gemma3.feed_forward_length"] = p.TextModel.IntermediateSize
  83. kv["gemma3.attention.sliding_window"] = p.TextModel.SlidingWindow
  84. kv["gemma3.vision.block_count"] = p.VisionModel.NumHiddenLayers
  85. kv["gemma3.vision.embedding_length"] = p.VisionModel.HiddenSize
  86. kv["gemma3.vision.feed_forward_length"] = p.VisionModel.IntermediateSize
  87. kv["gemma3.vision.image_size"] = p.VisionModel.ImageSize
  88. kv["gemma3.vision.patch_size"] = p.VisionModel.PatchSize
  89. kv["gemma3.vision.num_channels"] = cmp.Or(p.VisionModel.NumChannels, 3)
  90. kv["gemma3.vision.attention.head_count"] = p.VisionModel.NumAttentionHeads
  91. kv["gemma3.vision.attention.layer_norm_epsilon"] = cmp.Or(p.VisionModel.LayerNormEpsilon, 1e-6)
  92. kv["gemma3.attention.key_length"] = cmp.Or(p.TextModel.HeadDim, 256)
  93. kv["gemma3.attention.value_length"] = cmp.Or(p.TextModel.HeadDim, 256)
  94. }
  95. if p.MultiModalTokensPerImage > 0 {
  96. kv["gemma3.mm.tokens_per_image"] = p.MultiModalTokensPerImage
  97. }
  98. return kv
  99. }
  100. func (p *gemma3Model) Replacements() []string {
  101. return []string{
  102. "lm_head", "output",
  103. "model.embed_tokens", "token_embd",
  104. "model.norm", "output_norm",
  105. "vision_tower.vision_model.embeddings", "v",
  106. "vision_tower.vision_model", "v",
  107. "vision_model.vision_model.embeddings", "v",
  108. "vision_model.vision_model", "v",
  109. "language_model.", "",
  110. "model.layers", "blk",
  111. "encoder.layers", "blk",
  112. "input_layernorm", "attn_norm",
  113. "self_attn.q_proj", "attn_q",
  114. "self_attn.q_norm", "attn_q_norm",
  115. "self_attn.k_proj", "attn_k",
  116. "self_attn.k_norm", "attn_k_norm",
  117. "self_attn.v_proj", "attn_v",
  118. "self_attn.o_proj", "attn_output",
  119. "self_attn.out_proj", "attn_output",
  120. "mlp.gate_proj", "ffn_gate",
  121. "mlp.down_proj", "ffn_down",
  122. "mlp.up_proj", "ffn_up",
  123. "post_attention_layernorm", "post_attention_norm",
  124. "pre_feedforward_layernorm", "ffn_norm",
  125. "post_feedforward_layernorm", "post_ffw_norm",
  126. "input_projection_weight", "input_projection.weight",
  127. "multi_modal_projector", "mm",
  128. }
  129. }