123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142 |
- package convert
- import (
- "cmp"
- "github.com/ollama/ollama/fs/ggml"
- )
- type gemma3Model struct {
- gemmaModel
- Architecture string
- TextModel struct {
- HeadDim uint32 `json:"head_dim"`
- HiddenSize uint32 `json:"hidden_size"`
- HiddenLayers uint32 `json:"num_hidden_layers"`
- IntermediateSize uint32 `json:"intermediate_size"`
- SlidingWindow uint32 `json:"sliding_window"`
- } `json:"text_config"`
- VisionModel struct {
- NumAttentionHeads uint32 `json:"num_attention_heads"` // attention.head_count 16
- LayerNormEpsilon float32 `json:"layer_norm_eps"` // attention.layer_norm_epsilon 1e-05
- NumHiddenLayers uint32 `json:"num_hidden_layers"` // block_count 32
- HiddenSize uint32 `json:"hidden_size"` // embedding_length 1280
- IntermediateSize uint32 `json:"intermediate_size"` // feed_forward_length 5120
- ImageSize uint32 `json:"image_size"` // image_size 560
- NumChannels uint32 `json:"num_channels"` // num_channels 3
- PatchSize uint32 `json:"patch_size"` // patch_size 14
- } `json:"vision_config"`
- MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
- NumAttentionHeads uint32 `json:"num_attention_heads"`
- NumKeyValueHeads uint32 `json:"num_key_value_heads"`
- RMSNormEPS float32 `json:"rms_norm_eps"`
- HeadDim uint32 `json:"head_dim"`
- FinalLogitSoftcap float32 `json:"final_logit_softcapping"`
- RopeLocalTheta float32 `json:"rope_local_base_freq"`
- RopeGlobalTheta float32 `json:"rope_global_base_freq"`
- SlidingWindow uint32 `json:"sliding_window"`
- MultiModalTokensPerImage uint32 `json:"mm_tokens_per_image"`
- }
- const (
- gemma4BLayerCount = 34
- gemma12BLayerCount = 48
- gemma27BLayerCount = 62
- )
- func (p *gemma3Model) KV(t *Tokenizer) ggml.KV {
- kv := p.ModelParameters.KV(t)
- kv["general.architecture"] = "gemma3"
- numBlocks := cmp.Or(p.HiddenLayers, p.TextModel.HiddenLayers)
- kv["gemma3.block_count"] = numBlocks
- var (
- numHeads uint32
- numKVHeads uint32
- )
- switch numBlocks {
- case gemma4BLayerCount:
- numHeads = 8
- numKVHeads = 4
- case gemma12BLayerCount:
- numHeads = 16
- numKVHeads = 8
- case gemma27BLayerCount:
- numHeads = 32
- numKVHeads = 16
- default:
- numHeads = p.NumAttentionHeads
- numKVHeads = p.NumKeyValueHeads
- }
- kv["gemma3.attention.head_count"] = numHeads
- kv["gemma3.attention.head_count_kv"] = numKVHeads
- switch p.Architecture {
- case "Gemma3ForCausalLM":
- kv["gemma3.context_length"] = p.MaxPositionEmbeddings
- kv["gemma3.attention.layer_norm_rms_epsilon"] = p.RMSNormEPS
- kv["gemma3.attention.key_length"] = p.HeadDim
- kv["gemma3.attention.value_length"] = p.HeadDim
- kv["gemma3.attention.sliding_window"] = p.SlidingWindow
- kv["gemma3.final_logit_softcapping"] = cmp.Or(p.FinalLogitSoftcap, 30)
- kv["gemma3.rope.local.freq_base"] = cmp.Or(p.RopeLocalTheta, 10000.0)
- kv["gemma3.rope.global.freq_base"] = cmp.Or(p.RopeGlobalTheta, 1000000.0)
- kv["gemma3.embedding_length"] = p.HiddenSize
- kv["gemma3.feed_forward_length"] = p.IntermediateSize
- default:
- kv["gemma3.context_length"] = cmp.Or(p.MaxPositionEmbeddings, 131072)
- kv["gemma3.embedding_length"] = p.TextModel.HiddenSize
- kv["gemma3.feed_forward_length"] = p.TextModel.IntermediateSize
- kv["gemma3.attention.sliding_window"] = p.TextModel.SlidingWindow
- kv["gemma3.vision.block_count"] = p.VisionModel.NumHiddenLayers
- kv["gemma3.vision.embedding_length"] = p.VisionModel.HiddenSize
- kv["gemma3.vision.feed_forward_length"] = p.VisionModel.IntermediateSize
- kv["gemma3.vision.image_size"] = p.VisionModel.ImageSize
- kv["gemma3.vision.patch_size"] = p.VisionModel.PatchSize
- kv["gemma3.vision.num_channels"] = cmp.Or(p.VisionModel.NumChannels, 3)
- kv["gemma3.vision.attention.head_count"] = p.VisionModel.NumAttentionHeads
- kv["gemma3.vision.attention.layer_norm_epsilon"] = cmp.Or(p.VisionModel.LayerNormEpsilon, 1e-6)
- kv["gemma3.attention.key_length"] = cmp.Or(p.TextModel.HeadDim, 256)
- kv["gemma3.attention.value_length"] = cmp.Or(p.TextModel.HeadDim, 256)
- }
- if p.MultiModalTokensPerImage > 0 {
- kv["gemma3.mm.tokens_per_image"] = p.MultiModalTokensPerImage
- }
- return kv
- }
- func (p *gemma3Model) Replacements() []string {
- return []string{
- "lm_head", "output",
- "model.embed_tokens", "token_embd",
- "model.norm", "output_norm",
- "vision_tower.vision_model.embeddings", "v",
- "vision_tower.vision_model", "v",
- "vision_model.vision_model.embeddings", "v",
- "vision_model.vision_model", "v",
- "language_model.", "",
- "model.layers", "blk",
- "encoder.layers", "blk",
- "input_layernorm", "attn_norm",
- "self_attn.q_proj", "attn_q",
- "self_attn.q_norm", "attn_q_norm",
- "self_attn.k_proj", "attn_k",
- "self_attn.k_norm", "attn_k_norm",
- "self_attn.v_proj", "attn_v",
- "self_attn.o_proj", "attn_output",
- "self_attn.out_proj", "attn_output",
- "mlp.gate_proj", "ffn_gate",
- "mlp.down_proj", "ffn_down",
- "mlp.up_proj", "ffn_up",
- "post_attention_layernorm", "post_attention_norm",
- "pre_feedforward_layernorm", "ffn_norm",
- "post_feedforward_layernorm", "post_ffw_norm",
- "input_projection_weight", "input_projection.weight",
- "multi_modal_projector", "mm",
- }
- }
|