Нет описания

Michael Yang 8b51db204f tmp 2 месяцев назад
.github 1f766c36fb ci: use windows-2022 to sign and bundle (#8941) 2 месяцев назад
api b901a712c6 docs: improve syntax highlighting in code blocks (#8854) 2 месяцев назад
app b901a712c6 docs: improve syntax highlighting in code blocks (#8854) 2 месяцев назад
auth b732beba6a lint 9 месяцев назад
cache 44b39749d5 next 2 месяцев назад
cmd a420a453b4 fix default modelfile for create (#8452) 3 месяцев назад
convert 58382892ad fix linter 2 месяцев назад
discover 548a9f56a6 Revert "cgo: use O3" 3 месяцев назад
docs b86c0a1500 docs: link directly to latest release page for tdm-gcc (#8939) 2 месяцев назад
envconfig dcfb7a105c next build (#8539) 3 месяцев назад
format 32285a6d19 format: rename test file from byte_test.go to bytes_test.go (#8865) 2 месяцев назад
fs 44b39749d5 next 2 месяцев назад
integration abfdc4710f all: fix typos in documentation, code, and comments (#7021) 4 месяцев назад
llama 8b51db204f tmp 2 месяцев назад
llm 58382892ad fix linter 2 месяцев назад
macapp b901a712c6 docs: improve syntax highlighting in code blocks (#8854) 2 месяцев назад
ml 8b51db204f tmp 2 месяцев назад
model 760e8fa656 tmp 2 месяцев назад
openai e28f2d4900 openai: return usage as final chunk for streams (#6784) 4 месяцев назад
parser 44b39749d5 next 2 месяцев назад
progress f7e3b9190f cmd: spinner progress for transfer model data (#6100) 8 месяцев назад
readline cb40d60469 chore: upgrade to gods v2 4 месяцев назад
sample 44b39749d5 next 2 месяцев назад
scripts 1f766c36fb ci: use windows-2022 to sign and bundle (#8941) 2 месяцев назад
server 44b39749d5 next 2 месяцев назад
template 44b39749d5 next 2 месяцев назад
types b1fd7fef86 server: more support for mixed-case model names (#8017) 4 месяцев назад
version 2c7f956b38 add version 1 год назад
.dockerignore dcfb7a105c next build (#8539) 3 месяцев назад
.gitattributes 5b446cc815 chore: update gitattributes (#8860) 2 месяцев назад
.gitignore dcfb7a105c next build (#8539) 3 месяцев назад
.golangci.yaml 87f0a49fe6 llm: do not silently fail for supplied, but invalid formats (#8130) 4 месяцев назад
CMakeLists.txt abb8dd57f8 add gfx instinct gpus (#8933) 2 месяцев назад
CMakePresets.json abb8dd57f8 add gfx instinct gpus (#8933) 2 месяцев назад
CONTRIBUTING.md 369479cc30 docs: fix spelling error (#6391) 8 месяцев назад
Dockerfile dcfb7a105c next build (#8539) 3 месяцев назад
LICENSE df5fdd6647 `proto` -> `ollama` 1 год назад
Makefile.sync 5b446cc815 chore: update gitattributes (#8860) 2 месяцев назад
README.md 0189bdd0b7 readme: add Abso SDK to community integrations (#8973) 2 месяцев назад
SECURITY.md 463a8aa273 Create SECURITY.md 9 месяцев назад
go.mod dcfb7a105c next build (#8539) 3 месяцев назад
go.sum dcfb7a105c next build (#8539) 3 месяцев назад
main.go b732beba6a lint 9 месяцев назад

README.md

  ollama

Ollama

Get up and running with large language models.

macOS

Download

Windows

Download

Linux

curl -fsSL https://ollama.com/install.sh | sh

Manual install instructions

Docker

The official Ollama Docker image ollama/ollama is available on Docker Hub.

Libraries

Community

Quickstart

To run and chat with Llama 3.2:

ollama run llama3.2

Model library

Ollama supports a list of models available on ollama.com/library

Here are some example models that can be downloaded:

Model Parameters Size Download
DeepSeek-R1 7B 4.7GB ollama run deepseek-r1
DeepSeek-R1 671B 404GB ollama run deepseek-r1:671b
Llama 3.3 70B 43GB ollama run llama3.3
Llama 3.2 3B 2.0GB ollama run llama3.2
Llama 3.2 1B 1.3GB ollama run llama3.2:1b
Llama 3.2 Vision 11B 7.9GB ollama run llama3.2-vision
Llama 3.2 Vision 90B 55GB ollama run llama3.2-vision:90b
Llama 3.1 8B 4.7GB ollama run llama3.1
Llama 3.1 405B 231GB ollama run llama3.1:405b
Phi 4 14B 9.1GB ollama run phi4
Phi 3 Mini 3.8B 2.3GB ollama run phi3
Gemma 2 2B 1.6GB ollama run gemma2:2b
Gemma 2 9B 5.5GB ollama run gemma2
Gemma 2 27B 16GB ollama run gemma2:27b
Mistral 7B 4.1GB ollama run mistral
Moondream 2 1.4B 829MB ollama run moondream
Neural Chat 7B 4.1GB ollama run neural-chat
Starling 7B 4.1GB ollama run starling-lm
Code Llama 7B 3.8GB ollama run codellama
Llama 2 Uncensored 7B 3.8GB ollama run llama2-uncensored
LLaVA 7B 4.5GB ollama run llava
Solar 10.7B 6.1GB ollama run solar

[!NOTE] You should have at least 8 GB of RAM available to run the 7B models, 16 GB to run the 13B models, and 32 GB to run the 33B models.

Customize a model

Import from GGUF

Ollama supports importing GGUF models in the Modelfile:

  1. Create a file named Modelfile, with a FROM instruction with the local filepath to the model you want to import.

    FROM ./vicuna-33b.Q4_0.gguf
    
  2. Create the model in Ollama

    ollama create example -f Modelfile
    
  3. Run the model

    ollama run example
    

Import from Safetensors

See the guide on importing models for more information.

Customize a prompt

Models from the Ollama library can be customized with a prompt. For example, to customize the llama3.2 model:

ollama pull llama3.2

Create a Modelfile:

FROM llama3.2

# set the temperature to 1 [higher is more creative, lower is more coherent]
PARAMETER temperature 1

# set the system message
SYSTEM """
You are Mario from Super Mario Bros. Answer as Mario, the assistant, only.
"""

Next, create and run the model:

ollama create mario -f ./Modelfile
ollama run mario
>>> hi
Hello! It's your friend Mario.

For more information on working with a Modelfile, see the Modelfile documentation.

CLI Reference

Create a model

ollama create is used to create a model from a Modelfile.

ollama create mymodel -f ./Modelfile

Pull a model

ollama pull llama3.2

This command can also be used to update a local model. Only the diff will be pulled.

Remove a model

ollama rm llama3.2

Copy a model

ollama cp llama3.2 my-model

Multiline input

For multiline input, you can wrap text with """:

>>> """Hello,
... world!
... """
I'm a basic program that prints the famous "Hello, world!" message to the console.

Multimodal models

ollama run llava "What's in this image? /Users/jmorgan/Desktop/smile.png"

Output: The image features a yellow smiley face, which is likely the central focus of the picture.

Pass the prompt as an argument

ollama run llama3.2 "Summarize this file: $(cat README.md)"

Output: Ollama is a lightweight, extensible framework for building and running language models on the local machine. It provides a simple API for creating, running, and managing models, as well as a library of pre-built models that can be easily used in a variety of applications.

Show model information

ollama show llama3.2

List models on your computer

ollama list

List which models are currently loaded

ollama ps

Stop a model which is currently running

ollama stop llama3.2

Start Ollama

ollama serve is used when you want to start ollama without running the desktop application.

Building

See the developer guide

Running local builds

Next, start the server:

./ollama serve

Finally, in a separate shell, run a model:

./ollama run llama3.2

REST API

Ollama has a REST API for running and managing models.

Generate a response

curl http://localhost:11434/api/generate -d '{
  "model": "llama3.2",
  "prompt":"Why is the sky blue?"
}'

Chat with a model

curl http://localhost:11434/api/chat -d '{
  "model": "llama3.2",
  "messages": [
    { "role": "user", "content": "why is the sky blue?" }
  ]
}'

See the API documentation for all endpoints.

Community Integrations

Web & Desktop

Cloud

Terminal

Apple Vision Pro

Database

  • pgai - PostgreSQL as a vector database (Create and search embeddings from Ollama models using pgvector)
  • MindsDB (Connects Ollama models with nearly 200 data platforms and apps)
  • chromem-go with example
  • Kangaroo (AI-powered SQL client and admin tool for popular databases)

Package managers

Libraries

Mobile

  • Enchanted
  • Maid
  • Ollama App (Modern and easy-to-use multi-platform client for Ollama)
  • ConfiChat (Lightweight, standalone, multi-platform, and privacy focused LLM chat interface with optional encryption)

Extensions & Plugins

Supported backends

  • llama.cpp project founded by Georgi Gerganov.

Observability

  • Lunary is the leading open-source LLM observability platform. It provides a variety of enterprise-grade features such as real-time analytics, prompt templates management, PII masking, and comprehensive agent tracing.
  • OpenLIT is an OpenTelemetry-native tool for monitoring Ollama Applications & GPUs using traces and metrics.
  • HoneyHive is an AI observability and evaluation platform for AI agents. Use HoneyHive to evaluate agent performance, interrogate failures, and monitor quality in production.
  • Langfuse is an open source LLM observability platform that enables teams to collaboratively monitor, evaluate and debug AI applications.
  • MLflow Tracing is an open source LLM observability tool with a convenient API to log and visualize traces, making it easy to debug and evaluate GenAI applications.