Nav apraksta

Parth Sareen b816ff86c9 docs: make context length faq readable (#10006) 1 mēnesi atpakaļ
.github 76e903cf9d .github/workflows: swap order of go test and golangci-lint (#9389) 2 mēneši atpakaļ
api 4bed739259 add verbose mode to the show command (#9640) 1 mēnesi atpakaļ
app b901a712c6 docs: improve syntax highlighting in code blocks (#8854) 2 mēneši atpakaļ
auth b732beba6a lint 9 mēneši atpakaļ
benchmark fb6252d786 benchmark: performance of running ollama server (#8643) 1 mēnesi atpakaļ
cmd 6d1103048e fix: show correct bool value for kv in verbose show information (#9928) 1 mēnesi atpakaļ
convert 61a8825216 convert: return name of unsupported architecture (#9862) 1 mēnesi atpakaļ
discover a499390648 build: support Compute Capability 5.0, 5.2 and 5.3 for CUDA 12.x (#8567) 2 mēneši atpakaļ
docs b816ff86c9 docs: make context length faq readable (#10006) 1 mēnesi atpakaļ
envconfig dc13813a03 server: allow vscode-file origins (#9313) 2 mēneši atpakaļ
format 716e365615 test: add test cases for HumanNumber (#9108) 2 mēneši atpakaļ
fs f66216e399 ggml: Support heterogeneous KV cache layer sizes in memory estimation 1 mēnesi atpakaļ
integration 9679f40146 ml: Allow models to constrain inputs to a single batch 1 mēnesi atpakaļ
kvcache 1feff61977 kvcache: Sliding window cache only needs a single batch total 1 mēnesi atpakaļ
llama ef378ad673 gemma3 quantization (#9776) 1 mēnesi atpakaļ
llm f66216e399 ggml: Support heterogeneous KV cache layer sizes in memory estimation 1 mēnesi atpakaļ
macapp b901a712c6 docs: improve syntax highlighting in code blocks (#8854) 2 mēneši atpakaļ
ml 74bd09652d ml/backend/ggml: load tensors in 32KiB chunks 1 mēnesi atpakaļ
model 74bd09652d ml/backend/ggml: load tensors in 32KiB chunks 1 mēnesi atpakaļ
openai 10d59d5f90 openai: finish_reason as tool_calls for streaming with tools (#7963) 2 mēneši atpakaļ
parser 00ebda8cc4 Revert "parser: remove role validation from Modelfile parser" (#9917) 1 mēnesi atpakaļ
progress 78f403ff45 address code review comments 2 mēneši atpakaļ
readline 6b45b1d6b4 cli: adding support ctrl-n/p like general cli (#9136) 1 mēnesi atpakaļ
runner 74bd09652d ml/backend/ggml: load tensors in 32KiB chunks 1 mēnesi atpakaļ
sample 42a14f7f63 sample: add error handling for empty logits (#9740) 1 mēnesi atpakaļ
scripts 2d2247e59e Align versions for local builds (#9635) 1 mēnesi atpakaļ
server f66216e399 ggml: Support heterogeneous KV cache layer sizes in memory estimation 1 mēnesi atpakaļ
template f8c3dbe5b5 templates: add autotemplate for gemma3 (#9880) 1 mēnesi atpakaļ
types b1fd7fef86 server: more support for mixed-case model names (#8017) 4 mēneši atpakaļ
version 2c7f956b38 add version 1 gadu atpakaļ
.dockerignore dcfb7a105c next build (#8539) 3 mēneši atpakaļ
.gitattributes 5b446cc815 chore: update gitattributes (#8860) 2 mēneši atpakaļ
.gitignore 348b3e0983 server/internal: copy bmizerany/ollama-go to internal package (#9294) 2 mēneši atpakaļ
.golangci.yaml 348b3e0983 server/internal: copy bmizerany/ollama-go to internal package (#9294) 2 mēneši atpakaļ
CMakeLists.txt 96a97adf9b build: use correct GGML_HIP_NO_VMM compiler definition for ggml-hip (#9451) 2 mēneši atpakaļ
CMakePresets.json 50b5962042 Add support for ROCm gfx1151 (#9773) 1 mēnesi atpakaļ
CONTRIBUTING.md 2099e2d267 CONTRIBUTING: provide clarity on good commit messages, and bad (#9405) 2 mēneši atpakaļ
Dockerfile b428ddd796 docker: use go version from go.mod 1 mēnesi atpakaļ
LICENSE df5fdd6647 `proto` -> `ollama` 1 gadu atpakaļ
Makefile.sync d7d7e99662 llama: update llama.cpp vendor code to commit d7cfe1ff (#9356) 2 mēneši atpakaļ
README.md e5d84fb90b docs: add molbal/orca-cli to community integrations (#9909) 1 mēnesi atpakaļ
SECURITY.md 463a8aa273 Create SECURITY.md 9 mēneši atpakaļ
go.mod 0682dae027 sample: improve ollama engine sampler performance (#9374) 1 mēnesi atpakaļ
go.sum e2252d0fc6 server/internal/registry: take over pulls from server package (#9485) 1 mēnesi atpakaļ
main.go b732beba6a lint 9 mēneši atpakaļ

README.md

  ollama

Ollama

Get up and running with large language models.

macOS

Download

Windows

Download

Linux

curl -fsSL https://ollama.com/install.sh | sh

Manual install instructions

Docker

The official Ollama Docker image ollama/ollama is available on Docker Hub.

Libraries

Community

Quickstart

To run and chat with Llama 3.2:

ollama run llama3.2

Model library

Ollama supports a list of models available on ollama.com/library

Here are some example models that can be downloaded:

Model Parameters Size Download
Gemma 3 1B 815MB ollama run gemma3:1b
Gemma 3 4B 3.3GB ollama run gemma3
Gemma 3 12B 8.1GB ollama run gemma3:12b
Gemma 3 27B 17GB ollama run gemma3:27b
QwQ 32B 20GB ollama run qwq
DeepSeek-R1 7B 4.7GB ollama run deepseek-r1
DeepSeek-R1 671B 404GB ollama run deepseek-r1:671b
Llama 3.3 70B 43GB ollama run llama3.3
Llama 3.2 3B 2.0GB ollama run llama3.2
Llama 3.2 1B 1.3GB ollama run llama3.2:1b
Llama 3.2 Vision 11B 7.9GB ollama run llama3.2-vision
Llama 3.2 Vision 90B 55GB ollama run llama3.2-vision:90b
Llama 3.1 8B 4.7GB ollama run llama3.1
Llama 3.1 405B 231GB ollama run llama3.1:405b
Phi 4 14B 9.1GB ollama run phi4
Phi 4 Mini 3.8B 2.5GB ollama run phi4-mini
Mistral 7B 4.1GB ollama run mistral
Moondream 2 1.4B 829MB ollama run moondream
Neural Chat 7B 4.1GB ollama run neural-chat
Starling 7B 4.1GB ollama run starling-lm
Code Llama 7B 3.8GB ollama run codellama
Llama 2 Uncensored 7B 3.8GB ollama run llama2-uncensored
LLaVA 7B 4.5GB ollama run llava
Granite-3.2 8B 4.9GB ollama run granite3.2

[!NOTE] You should have at least 8 GB of RAM available to run the 7B models, 16 GB to run the 13B models, and 32 GB to run the 33B models.

Customize a model

Import from GGUF

Ollama supports importing GGUF models in the Modelfile:

  1. Create a file named Modelfile, with a FROM instruction with the local filepath to the model you want to import.

    FROM ./vicuna-33b.Q4_0.gguf
    
  2. Create the model in Ollama

    ollama create example -f Modelfile
    
  3. Run the model

    ollama run example
    

Import from Safetensors

See the guide on importing models for more information.

Customize a prompt

Models from the Ollama library can be customized with a prompt. For example, to customize the llama3.2 model:

ollama pull llama3.2

Create a Modelfile:

FROM llama3.2

# set the temperature to 1 [higher is more creative, lower is more coherent]
PARAMETER temperature 1

# set the system message
SYSTEM """
You are Mario from Super Mario Bros. Answer as Mario, the assistant, only.
"""

Next, create and run the model:

ollama create mario -f ./Modelfile
ollama run mario
>>> hi
Hello! It's your friend Mario.

For more information on working with a Modelfile, see the Modelfile documentation.

CLI Reference

Create a model

ollama create is used to create a model from a Modelfile.

ollama create mymodel -f ./Modelfile

Pull a model

ollama pull llama3.2

This command can also be used to update a local model. Only the diff will be pulled.

Remove a model

ollama rm llama3.2

Copy a model

ollama cp llama3.2 my-model

Multiline input

For multiline input, you can wrap text with """:

>>> """Hello,
... world!
... """
I'm a basic program that prints the famous "Hello, world!" message to the console.

Multimodal models

ollama run llava "What's in this image? /Users/jmorgan/Desktop/smile.png"

Output: The image features a yellow smiley face, which is likely the central focus of the picture.

Pass the prompt as an argument

ollama run llama3.2 "Summarize this file: $(cat README.md)"

Output: Ollama is a lightweight, extensible framework for building and running language models on the local machine. It provides a simple API for creating, running, and managing models, as well as a library of pre-built models that can be easily used in a variety of applications.

Show model information

ollama show llama3.2

List models on your computer

ollama list

List which models are currently loaded

ollama ps

Stop a model which is currently running

ollama stop llama3.2

Start Ollama

ollama serve is used when you want to start ollama without running the desktop application.

Building

See the developer guide

Running local builds

Next, start the server:

./ollama serve

Finally, in a separate shell, run a model:

./ollama run llama3.2

REST API

Ollama has a REST API for running and managing models.

Generate a response

curl http://localhost:11434/api/generate -d '{
  "model": "llama3.2",
  "prompt":"Why is the sky blue?"
}'

Chat with a model

curl http://localhost:11434/api/chat -d '{
  "model": "llama3.2",
  "messages": [
    { "role": "user", "content": "why is the sky blue?" }
  ]
}'

See the API documentation for all endpoints.

Community Integrations

Web & Desktop

Cloud

Terminal

Apple Vision Pro

  • SwiftChat (Cross-platform AI chat app supporting Apple Vision Pro via "Designed for iPad")
  • Enchanted

Database

  • pgai - PostgreSQL as a vector database (Create and search embeddings from Ollama models using pgvector)
  • MindsDB (Connects Ollama models with nearly 200 data platforms and apps)
  • chromem-go with example
  • Kangaroo (AI-powered SQL client and admin tool for popular databases)

Package managers

Libraries

Mobile

  • SwiftChat (Lightning-fast Cross-platform AI chat app with native UI for Android, iOS and iPad)
  • Enchanted
  • Maid
  • Ollama App (Modern and easy-to-use multi-platform client for Ollama)
  • ConfiChat (Lightweight, standalone, multi-platform, and privacy focused LLM chat interface with optional encryption)
  • Ollama Android Chat (No need for Termux, start the Ollama service with one click on an Android device)
  • Reins (Easily tweak parameters, customize system prompts per chat, and enhance your AI experiments with reasoning model support.)

Extensions & Plugins

Supported backends

  • llama.cpp project founded by Georgi Gerganov.

Observability

  • Opik is an open-source platform to debug, evaluate, and monitor your LLM applications, RAG systems, and agentic workflows with comprehensive tracing, automated evaluations, and production-ready dashboards. Opik supports native intergration to Ollama.
  • Lunary is the leading open-source LLM observability platform. It provides a variety of enterprise-grade features such as real-time analytics, prompt templates management, PII masking, and comprehensive agent tracing.
  • OpenLIT is an OpenTelemetry-native tool for monitoring Ollama Applications & GPUs using traces and metrics.
  • HoneyHive is an AI observability and evaluation platform for AI agents. Use HoneyHive to evaluate agent performance, interrogate failures, and monitor quality in production.
  • Langfuse is an open source LLM observability platform that enables teams to collaboratively monitor, evaluate and debug AI applications.
  • MLflow Tracing is an open source LLM observability tool with a convenient API to log and visualize traces, making it easy to debug and evaluate GenAI applications.