|
@@ -0,0 +1,152 @@
|
|
|
|
+from opensearchpy import OpenSearch
|
|
|
|
+from typing import Optional
|
|
|
|
+
|
|
|
|
+from open_webui.apps.rag.vector.main import VectorItem, SearchResult, GetResult
|
|
|
|
+from open_webui.config import (
|
|
|
|
+ OPENSEARCH_URI,
|
|
|
|
+ OPENSEARCH_SSL,
|
|
|
|
+ OPENSEARCH_CERT_VERIFY,
|
|
|
|
+ OPENSEARCH_USERNAME,
|
|
|
|
+ OPENSEARCH_PASSWORD
|
|
|
|
+)
|
|
|
|
+
|
|
|
|
+class OpenSearchClient:
|
|
|
|
+ def __init__(self):
|
|
|
|
+ self.index_prefix = "open_webui"
|
|
|
|
+ self.client = OpenSearch(
|
|
|
|
+ hosts=[OPENSEARCH_URI],
|
|
|
|
+ use_ssl=OPENSEARCH_SSL,
|
|
|
|
+ verify_certs=OPENSEARCH_CERT_VERIFY,
|
|
|
|
+ http_auth=(OPENSEARCH_USERNAME, OPENSEARCH_PASSWORD),
|
|
|
|
+ )
|
|
|
|
+
|
|
|
|
+ def _result_to_get_result(self, result) -> GetResult:
|
|
|
|
+ ids = []
|
|
|
|
+ documents = []
|
|
|
|
+ metadatas = []
|
|
|
|
+
|
|
|
|
+ for hit in result['hits']['hits']:
|
|
|
|
+ ids.append(hit['_id'])
|
|
|
|
+ documents.append(hit['_source'].get("text"))
|
|
|
|
+ metadatas.append(hit['_source'].get("metadata"))
|
|
|
|
+
|
|
|
|
+ return GetResult(ids=ids, documents=documents, metadatas=metadatas)
|
|
|
|
+
|
|
|
|
+ def _result_to_search_result(self, result) -> SearchResult:
|
|
|
|
+ ids = []
|
|
|
|
+ distances = []
|
|
|
|
+ documents = []
|
|
|
|
+ metadatas = []
|
|
|
|
+
|
|
|
|
+ for hit in result['hits']['hits']:
|
|
|
|
+ ids.append(hit['_id'])
|
|
|
|
+ distances.append(hit['_score'])
|
|
|
|
+ documents.append(hit['_source'].get("text"))
|
|
|
|
+ metadatas.append(hit['_source'].get("metadata"))
|
|
|
|
+
|
|
|
|
+ return SearchResult(ids=ids, distances=distances, documents=documents, metadatas=metadatas)
|
|
|
|
+
|
|
|
|
+ def _create_index(self, index_name: str, dimension: int):
|
|
|
|
+ body = {
|
|
|
|
+ "mappings": {
|
|
|
|
+ "properties": {
|
|
|
|
+ "id": {"type": "keyword"},
|
|
|
|
+ "vector": {
|
|
|
|
+ "type": "dense_vector",
|
|
|
|
+ "dims": dimension, # Adjust based on your vector dimensions
|
|
|
|
+ "index": true,
|
|
|
|
+ "similarity": "faiss",
|
|
|
|
+ "method": {
|
|
|
|
+ "name": "hnsw",
|
|
|
|
+ "space_type": "ip", # Use inner product to approximate cosine similarity
|
|
|
|
+ "engine": "faiss",
|
|
|
|
+ "ef_construction": 128,
|
|
|
|
+ "m": 16
|
|
|
|
+ }
|
|
|
|
+ },
|
|
|
|
+ "text": {"type": "text"},
|
|
|
|
+ "metadata": {"type": "object"}
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ self.client.indices.create(index=f"{self.index_prefix}_{index_name}", body=body)
|
|
|
|
+
|
|
|
|
+ def _create_batches(self, items: list[VectorItem], batch_size=100):
|
|
|
|
+ for i in range(0, len(items), batch_size):
|
|
|
|
+ yield items[i:i + batch_size]
|
|
|
|
+
|
|
|
|
+ def has_collection(self, index_name: str) -> bool:
|
|
|
|
+ # has_collection here means has index.
|
|
|
|
+ # We are simply adapting to the norms of the other DBs.
|
|
|
|
+ return self.client.indices.exists(index=f"{self.index_prefix}_{index_name}")
|
|
|
|
+
|
|
|
|
+ def delete_colleciton(self, index_name: str):
|
|
|
|
+ # delete_collection here means delete index.
|
|
|
|
+ # We are simply adapting to the norms of the other DBs.
|
|
|
|
+ self.client.indices.delete(index=f"{self.index_prefix}_{index_name}")
|
|
|
|
+
|
|
|
|
+ def search(self, index_name: str, vectors: list[list[float]], limit: int) -> Optional[SearchResult]:
|
|
|
|
+ query = {
|
|
|
|
+ "size": limit,
|
|
|
|
+ "_source": ["text", "metadata"],
|
|
|
|
+ "query": {
|
|
|
|
+ "script_score": {
|
|
|
|
+ "query": {"match_all": {}},
|
|
|
|
+ "script": {
|
|
|
|
+ "source": "cosineSimilarity(params.vector, 'vector') + 1.0",
|
|
|
|
+ "params": {"vector": vectors[0]} # Assuming single query vector
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ result = self.client.search(
|
|
|
|
+ index=f"{self.index_prefix}_{index_name}",
|
|
|
|
+ body=query
|
|
|
|
+ )
|
|
|
|
+
|
|
|
|
+ return self._result_to_search_result(result)
|
|
|
|
+
|
|
|
|
+ def get_or_create_index(self, index_name: str, dimension: int):
|
|
|
|
+ if not self.has_index(index_name):
|
|
|
|
+ self._create_index(index_name, dimension)
|
|
|
|
+
|
|
|
|
+ def get(self, index_name: str) -> Optional[GetResult]:
|
|
|
|
+ query = {
|
|
|
|
+ "query": {"match_all": {}},
|
|
|
|
+ "_source": ["text", "metadata"]
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ result = self.client.search(index=f"{self.index_prefix}_{index_name}", body=query)
|
|
|
|
+ return self._result_to_get_result(result)
|
|
|
|
+
|
|
|
|
+ def insert(self, index_name: str, items: list[VectorItem]):
|
|
|
|
+ if not self.has_index(index_name):
|
|
|
|
+ self._create_index(index_name, dimension=len(items[0]["vector"]))
|
|
|
|
+
|
|
|
|
+ for batch in self._create_batches(items):
|
|
|
|
+ actions = [
|
|
|
|
+ {"index": {"_id": item["id"], "_source": {"vector": item["vector"], "text": item["text"], "metadata": item["metadata"]}}}
|
|
|
|
+ for item in batch
|
|
|
|
+ ]
|
|
|
|
+ self.client.bulk(actions)
|
|
|
|
+
|
|
|
|
+ def upsert(self, index_name: str, items: list[VectorItem]):
|
|
|
|
+ if not self.has_index(index_name):
|
|
|
|
+ self._create_index(index_name, dimension=len(items[0]["vector"]))
|
|
|
|
+
|
|
|
|
+ for batch in self._create_batches(items):
|
|
|
|
+ actions = [
|
|
|
|
+ {"index": {"_id": item["id"], "_source": {"vector": item["vector"], "text": item["text"], "metadata": item["metadata"]}}}
|
|
|
|
+ for item in batch
|
|
|
|
+ ]
|
|
|
|
+ self.client.bulk(actions)
|
|
|
|
+
|
|
|
|
+ def delete(self, index_name: str, ids: list[str]):
|
|
|
|
+ actions = [{"delete": {"_index": f"{self.index_prefix}_{index_name}", "_id": id}} for id in ids]
|
|
|
|
+ self.client.bulk(body=actions)
|
|
|
|
+
|
|
|
|
+ def reset(self):
|
|
|
|
+ indices = self.client.indices.get(index=f"{self.index_prefix}_*")
|
|
|
|
+ for index in indices:
|
|
|
|
+ self.client.indices.delete(index=index)
|