|
@@ -178,8 +178,7 @@ def merge_and_sort_query_results(
|
|
|
query_results: list[dict], k: int, reverse: bool = False
|
|
|
) -> dict:
|
|
|
# Initialize lists to store combined data
|
|
|
- combined = []
|
|
|
- seen_hashes = set() # To store unique document hashes
|
|
|
+ combined = dict() # To store documents with unique document hashes
|
|
|
|
|
|
for data in query_results:
|
|
|
distances = data["distances"][0]
|
|
@@ -192,10 +191,19 @@ def merge_and_sort_query_results(
|
|
|
document.encode()
|
|
|
).hexdigest() # Compute a hash for uniqueness
|
|
|
|
|
|
- if doc_hash not in seen_hashes:
|
|
|
- seen_hashes.add(doc_hash)
|
|
|
- combined.append((distance, document, metadata))
|
|
|
+ if doc_hash not in combined.keys():
|
|
|
+ combined[doc_hash] = (distance, document, metadata)
|
|
|
+ continue # if doc is new, no further comparison is needed
|
|
|
|
|
|
+ # if doc is alredy in, but new distance is better, update
|
|
|
+ if not reverse and distance < combined[doc_hash][0]:
|
|
|
+ # Chroma uses unconventional cosine similarity, so we don't need to reverse the results
|
|
|
+ # https://docs.trychroma.com/docs/collections/configure#configuring-chroma-collections
|
|
|
+ combined[doc_hash] = (distance, document, metadata)
|
|
|
+ if reverse and distance > combined[doc_hash][0]:
|
|
|
+ combined[doc_hash] = (distance, document, metadata)
|
|
|
+
|
|
|
+ combined = list(combined.values())
|
|
|
# Sort the list based on distances
|
|
|
combined.sort(key=lambda x: x[0], reverse=reverse)
|
|
|
|
|
@@ -204,6 +212,12 @@ def merge_and_sort_query_results(
|
|
|
zip(*combined[:k]) if combined else ([], [], [])
|
|
|
)
|
|
|
|
|
|
+ # if chromaDB, the distance is 0 (best) to 2 (worse)
|
|
|
+ # re-order to -1 (worst) to 1 (best) for relevance score
|
|
|
+ if not reverse:
|
|
|
+ sorted_distances = tuple(-dist for dist in sorted_distances)
|
|
|
+ sorted_distances = tuple(dist + 1 for dist in sorted_distances)
|
|
|
+
|
|
|
# Create and return the output dictionary
|
|
|
return {
|
|
|
"distances": [list(sorted_distances)],
|
|
@@ -294,12 +308,7 @@ def query_collection_with_hybrid_search(
|
|
|
"Hybrid search failed for all collections. Using Non hybrid search as fallback."
|
|
|
)
|
|
|
|
|
|
- if VECTOR_DB == "chroma":
|
|
|
- # Chroma uses unconventional cosine similarity, so we don't need to reverse the results
|
|
|
- # https://docs.trychroma.com/docs/collections/configure#configuring-chroma-collections
|
|
|
- return merge_and_sort_query_results(results, k=k, reverse=False)
|
|
|
- else:
|
|
|
- return merge_and_sort_query_results(results, k=k, reverse=True)
|
|
|
+ return merge_and_sort_query_results(results, k=k, reverse=True)
|
|
|
|
|
|
|
|
|
def get_embedding_function(
|