|
@@ -1,77 +1,110 @@
|
|
|
# syntax=docker/dockerfile:1
|
|
|
+# Initialize device type args
|
|
|
+# use build args in the docker build commmand with --build-arg="BUILDARG=true"
|
|
|
+ARG USE_CUDA=false
|
|
|
+ARG USE_OLLAMA=false
|
|
|
+# Tested with cu117 for CUDA 11 and cu121 for CUDA 12 (default)
|
|
|
+ARG USE_CUDA_VER=cu121
|
|
|
+# any sentence transformer model; models to use can be found at https://huggingface.co/models?library=sentence-transformers
|
|
|
+# Leaderboard: https://huggingface.co/spaces/mteb/leaderboard
|
|
|
+# for better performance and multilangauge support use "intfloat/multilingual-e5-large" (~2.5GB) or "intfloat/multilingual-e5-base" (~1.5GB)
|
|
|
+# IMPORTANT: If you change the default model (all-MiniLM-L6-v2) and vice versa, you aren't able to use RAG Chat with your previous documents loaded in the WebUI! You need to re-embed them.
|
|
|
+ARG USE_EMBEDDING_MODEL=all-MiniLM-L6-v2
|
|
|
|
|
|
-FROM node:alpine as build
|
|
|
+######## WebUI frontend ########
|
|
|
+FROM node:21-alpine3.19 as build
|
|
|
|
|
|
WORKDIR /app
|
|
|
|
|
|
-# wget embedding model weight from alpine (does not exist from slim-buster)
|
|
|
-RUN wget "https://chroma-onnx-models.s3.amazonaws.com/all-MiniLM-L6-v2/onnx.tar.gz" -O - | \
|
|
|
- tar -xzf - -C /app
|
|
|
-
|
|
|
COPY package.json package-lock.json ./
|
|
|
RUN npm ci
|
|
|
|
|
|
COPY . .
|
|
|
RUN npm run build
|
|
|
|
|
|
-
|
|
|
+######## WebUI backend ########
|
|
|
FROM python:3.11-slim-bookworm as base
|
|
|
|
|
|
-ENV ENV=prod
|
|
|
-ENV PORT ""
|
|
|
-
|
|
|
-ENV OLLAMA_BASE_URL "/ollama"
|
|
|
-
|
|
|
-ENV OPENAI_API_BASE_URL ""
|
|
|
-ENV OPENAI_API_KEY ""
|
|
|
-
|
|
|
-ENV WEBUI_SECRET_KEY ""
|
|
|
-
|
|
|
-ENV SCARF_NO_ANALYTICS true
|
|
|
-ENV DO_NOT_TRACK true
|
|
|
-
|
|
|
-######## Preloaded models ########
|
|
|
-# whisper TTS Settings
|
|
|
-ENV WHISPER_MODEL="base"
|
|
|
-ENV WHISPER_MODEL_DIR="/app/backend/data/cache/whisper/models"
|
|
|
-
|
|
|
-# RAG Embedding Model Settings
|
|
|
-# any sentence transformer model; models to use can be found at https://huggingface.co/models?library=sentence-transformers
|
|
|
-# Leaderboard: https://huggingface.co/spaces/mteb/leaderboard
|
|
|
-# for better persormance and multilangauge support use "intfloat/multilingual-e5-large" (~2.5GB) or "intfloat/multilingual-e5-base" (~1.5GB)
|
|
|
-# IMPORTANT: If you change the default model (all-MiniLM-L6-v2) and vice versa, you aren't able to use RAG Chat with your previous documents loaded in the WebUI! You need to re-embed them.
|
|
|
-ENV RAG_EMBEDDING_MODEL="all-MiniLM-L6-v2"
|
|
|
-# device type for whisper tts and embbeding models - "cpu" (default), "cuda" (nvidia gpu and CUDA required) or "mps" (apple silicon) - choosing this right can lead to better performance
|
|
|
-ENV RAG_EMBEDDING_MODEL_DEVICE_TYPE="cpu"
|
|
|
-ENV RAG_EMBEDDING_MODEL_DIR="/app/backend/data/cache/embedding/models"
|
|
|
-ENV SENTENCE_TRANSFORMERS_HOME $RAG_EMBEDDING_MODEL_DIR
|
|
|
-
|
|
|
-######## Preloaded models ########
|
|
|
+# Use args
|
|
|
+ARG USE_CUDA
|
|
|
+ARG USE_OLLAMA
|
|
|
+ARG USE_CUDA_VER
|
|
|
+ARG USE_EMBEDDING_MODEL
|
|
|
+
|
|
|
+## Basis ##
|
|
|
+ENV ENV=prod \
|
|
|
+ PORT=8080 \
|
|
|
+ # pass build args to the build
|
|
|
+ USE_OLLAMA_DOCKER=${USE_OLLAMA} \
|
|
|
+ USE_CUDA_DOCKER=${USE_CUDA} \
|
|
|
+ USE_CUDA_DOCKER_VER=${USE_CUDA_VER} \
|
|
|
+ USE_EMBEDDING_MODEL_DOCKER=${USE_EMBEDDING_MODEL}
|
|
|
+
|
|
|
+## Basis URL Config ##
|
|
|
+ENV OLLAMA_BASE_URL="/ollama" \
|
|
|
+ OPENAI_API_BASE_URL=""
|
|
|
+
|
|
|
+## API Key and Security Config ##
|
|
|
+ENV OPENAI_API_KEY="" \
|
|
|
+ WEBUI_SECRET_KEY="" \
|
|
|
+ SCARF_NO_ANALYTICS=true \
|
|
|
+ DO_NOT_TRACK=true
|
|
|
+
|
|
|
+#### Other models #########################################################
|
|
|
+## whisper TTS model settings ##
|
|
|
+ENV WHISPER_MODEL="base" \
|
|
|
+ WHISPER_MODEL_DIR="/app/backend/data/cache/whisper/models"
|
|
|
+
|
|
|
+## RAG Embedding model settings ##
|
|
|
+ENV RAG_EMBEDDING_MODEL="$USE_EMBEDDING_MODEL_DOCKER" \
|
|
|
+ RAG_EMBEDDING_MODEL_DIR="/app/backend/data/cache/embedding/models" \
|
|
|
+ SENTENCE_TRANSFORMERS_HOME="/app/backend/data/cache/embedding/models"
|
|
|
+#### Other models ##########################################################
|
|
|
|
|
|
WORKDIR /app/backend
|
|
|
-
|
|
|
# install python dependencies
|
|
|
COPY ./backend/requirements.txt ./requirements.txt
|
|
|
|
|
|
-RUN apt-get update && apt-get install ffmpeg libsm6 libxext6 -y
|
|
|
+RUN if [ "$USE_CUDA" = "true" ]; then \
|
|
|
+ # If you use CUDA the whisper and embedding modell will be downloaded on first use
|
|
|
+ pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/$USE_CUDA_DOCKER_VER --no-cache-dir && \
|
|
|
+ pip3 install -r requirements.txt --no-cache-dir && \
|
|
|
+ python -c "import os; from faster_whisper import WhisperModel; WhisperModel(os.environ['WHISPER_MODEL'], device='cpu', compute_type='int8', download_root=os.environ['WHISPER_MODEL_DIR'])"; \
|
|
|
+ else \
|
|
|
+ pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cpu --no-cache-dir && \
|
|
|
+ pip3 install -r requirements.txt --no-cache-dir && \
|
|
|
+ python -c "import os; from faster_whisper import WhisperModel; WhisperModel(os.environ['WHISPER_MODEL'], device='cpu', compute_type='int8', download_root=os.environ['WHISPER_MODEL_DIR'])" && \
|
|
|
+ python -c "import os; from chromadb.utils import embedding_functions; sentence_transformer_ef = embedding_functions.SentenceTransformerEmbeddingFunction(model_name=os.environ['RAG_EMBEDDING_MODEL'], device='cpu')"; \
|
|
|
+ fi
|
|
|
+
|
|
|
+
|
|
|
+RUN if [ "$USE_OLLAMA" = "true" ]; then \
|
|
|
+ apt-get update && \
|
|
|
+ # Install pandoc and netcat
|
|
|
+ apt-get install -y --no-install-recommends pandoc netcat-openbsd && \
|
|
|
+ # for RAG OCR
|
|
|
+ apt-get install -y --no-install-recommends ffmpeg libsm6 libxext6 && \
|
|
|
+ # install helper tools
|
|
|
+ apt-get install -y --no-install-recommends curl && \
|
|
|
+ # install ollama
|
|
|
+ curl -fsSL https://ollama.com/install.sh | sh && \
|
|
|
+ # cleanup
|
|
|
+ rm -rf /var/lib/apt/lists/*; \
|
|
|
+ else \
|
|
|
+ apt-get update && \
|
|
|
+ # Install pandoc and netcat
|
|
|
+ apt-get install -y --no-install-recommends pandoc netcat-openbsd && \
|
|
|
+ # for RAG OCR
|
|
|
+ apt-get install -y --no-install-recommends ffmpeg libsm6 libxext6 && \
|
|
|
+ # cleanup
|
|
|
+ rm -rf /var/lib/apt/lists/*; \
|
|
|
+ fi
|
|
|
|
|
|
-RUN pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cpu --no-cache-dir
|
|
|
-RUN pip3 install -r requirements.txt --no-cache-dir
|
|
|
|
|
|
-# Install pandoc and netcat
|
|
|
-# RUN python -c "import pypandoc; pypandoc.download_pandoc()"
|
|
|
-RUN apt-get update \
|
|
|
- && apt-get install -y pandoc netcat-openbsd \
|
|
|
- && rm -rf /var/lib/apt/lists/*
|
|
|
-
|
|
|
-# preload embedding model
|
|
|
-RUN python -c "import os; from chromadb.utils import embedding_functions; sentence_transformer_ef = embedding_functions.SentenceTransformerEmbeddingFunction(model_name=os.environ['RAG_EMBEDDING_MODEL'], device=os.environ['RAG_EMBEDDING_MODEL_DEVICE_TYPE'])"
|
|
|
-# preload tts model
|
|
|
-RUN python -c "import os; from faster_whisper import WhisperModel; WhisperModel(os.environ['WHISPER_MODEL'], device='auto', compute_type='int8', download_root=os.environ['WHISPER_MODEL_DIR'])"
|
|
|
|
|
|
# copy embedding weight from build
|
|
|
-RUN mkdir -p /root/.cache/chroma/onnx_models/all-MiniLM-L6-v2
|
|
|
-COPY --from=build /app/onnx /root/.cache/chroma/onnx_models/all-MiniLM-L6-v2/onnx
|
|
|
+# RUN mkdir -p /root/.cache/chroma/onnx_models/all-MiniLM-L6-v2
|
|
|
+# COPY --from=build /app/onnx /root/.cache/chroma/onnx_models/all-MiniLM-L6-v2/onnx
|
|
|
|
|
|
# copy built frontend files
|
|
|
COPY --from=build /app/build /app/build
|
|
@@ -81,4 +114,6 @@ COPY --from=build /app/package.json /app/package.json
|
|
|
# copy backend files
|
|
|
COPY ./backend .
|
|
|
|
|
|
-CMD [ "bash", "start.sh"]
|
|
|
+EXPOSE 8080
|
|
|
+
|
|
|
+CMD [ "bash", "start.sh"]
|