|
@@ -0,0 +1,206 @@
|
|
|
+package gemma2
|
|
|
+
|
|
|
+import (
|
|
|
+ "math"
|
|
|
+
|
|
|
+ "github.com/ollama/ollama/kvcache"
|
|
|
+ "github.com/ollama/ollama/ml"
|
|
|
+ "github.com/ollama/ollama/ml/nn"
|
|
|
+ "github.com/ollama/ollama/model"
|
|
|
+ "github.com/ollama/ollama/model/input"
|
|
|
+)
|
|
|
+
|
|
|
+type Options struct {
|
|
|
+ hiddenSize, numHeads, numKVHeads int
|
|
|
+ attnKeyLen, attnValLen int
|
|
|
+ eps, ropeBase, ropeScale float32
|
|
|
+ attnLogitSoftcap float32
|
|
|
+ finalLogitSoftcap float32
|
|
|
+ largeModelScaling bool
|
|
|
+}
|
|
|
+
|
|
|
+type Model struct {
|
|
|
+ model.Base
|
|
|
+ model.SentencePieceModel
|
|
|
+
|
|
|
+ TokenEmbedding *nn.Embedding `gguf:"token_embd"`
|
|
|
+ Layers []Layer `gguf:"blk"`
|
|
|
+ OutputNorm *nn.RMSNorm `gguf:"output_norm"`
|
|
|
+ Output *nn.Linear `gguf:"output,alt:token_embd"` // just set to token_embd?
|
|
|
+
|
|
|
+ *Options
|
|
|
+}
|
|
|
+
|
|
|
+const (
|
|
|
+ gemma27BLayerCount = 46
|
|
|
+)
|
|
|
+
|
|
|
+func New(c ml.Config) (model.Model, error) {
|
|
|
+ m := Model{
|
|
|
+ SentencePieceModel: model.NewSentencePieceModel(
|
|
|
+ c.String("tokenizer.ggml.pretokenizer", `(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`),
|
|
|
+ &model.Vocabulary{
|
|
|
+ Values: c.Strings("tokenizer.ggml.tokens"),
|
|
|
+ Scores: c.Floats("tokenizer.ggml.scores"),
|
|
|
+ Types: c.Uints("tokenizer.ggml.token_type"),
|
|
|
+ BOS: int32(c.Uint("tokenizer.ggml.bos_token_id")),
|
|
|
+ EOS: int32(c.Uint("tokenizer.ggml.eos_token_id")),
|
|
|
+ },
|
|
|
+ ),
|
|
|
+ Layers: make([]Layer, c.Uint("block_count")),
|
|
|
+ Options: &Options{
|
|
|
+ hiddenSize: int(c.Uint("embedding_length")),
|
|
|
+ numHeads: int(c.Uint("attention.head_count")),
|
|
|
+ numKVHeads: int(c.Uint("attention.head_count_kv")),
|
|
|
+ attnKeyLen: int(c.Uint("attention.key_length")),
|
|
|
+ attnValLen: int(c.Uint("attention.value_length")),
|
|
|
+ eps: c.Float("attention.layer_norm_rms_epsilon"),
|
|
|
+ ropeBase: c.Float("rope.freq_base", 10000.0),
|
|
|
+ ropeScale: c.Float("rope.freq_scale", 1.0),
|
|
|
+ attnLogitSoftcap: c.Float("attn_logit_softcapping"),
|
|
|
+ finalLogitSoftcap: c.Float("final_logit_softcapping"),
|
|
|
+ },
|
|
|
+ }
|
|
|
+
|
|
|
+ slidingWindowLen := int32(c.Uint("attention.sliding_window"))
|
|
|
+ m.Cache = kvcache.NewWrapperCache(kvcache.NewSWACache(slidingWindowLen, m.Shift), kvcache.NewCausalCache(m.Shift))
|
|
|
+
|
|
|
+ return &m, nil
|
|
|
+}
|
|
|
+
|
|
|
+type SelfAttention struct {
|
|
|
+ Query *nn.Linear `gguf:"attn_q"`
|
|
|
+ Key *nn.Linear `gguf:"attn_k"`
|
|
|
+ Value *nn.Linear `gguf:"attn_v"`
|
|
|
+ Output *nn.Linear `gguf:"attn_output"`
|
|
|
+}
|
|
|
+
|
|
|
+func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positionIDs ml.Tensor, cache kvcache.Cache, opts *Options) ml.Tensor {
|
|
|
+ batchSize := hiddenState.Dim(1)
|
|
|
+ ropeType := uint32(2)
|
|
|
+
|
|
|
+ q := sa.Query.Forward(ctx, hiddenState)
|
|
|
+ q = q.Reshape(ctx, opts.attnKeyLen, opts.numHeads, batchSize)
|
|
|
+ q = q.RoPE(ctx, positionIDs, nil, uint32(opts.attnKeyLen), ropeType, opts.ropeBase, opts.ropeScale)
|
|
|
+
|
|
|
+ if opts.largeModelScaling {
|
|
|
+ q = q.Scale(ctx, 1.0/math.Sqrt(float64(opts.hiddenSize / opts.numHeads)))
|
|
|
+ } else {
|
|
|
+ q = q.Scale(ctx, 1.0/math.Sqrt(float64(opts.attnKeyLen)))
|
|
|
+ }
|
|
|
+
|
|
|
+ k := sa.Key.Forward(ctx, hiddenState)
|
|
|
+ k = k.Reshape(ctx, opts.attnKeyLen, opts.numKVHeads, batchSize)
|
|
|
+ k = k.RoPE(ctx, positionIDs, nil, uint32(opts.attnKeyLen), ropeType, opts.ropeBase, opts.ropeScale)
|
|
|
+
|
|
|
+ v := sa.Value.Forward(ctx, hiddenState)
|
|
|
+ v = v.Reshape(ctx, opts.attnValLen, opts.numKVHeads, batchSize)
|
|
|
+
|
|
|
+ cache.Put(ctx, k, v)
|
|
|
+ k, v, mask := cache.Get(ctx)
|
|
|
+
|
|
|
+ q = q.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
|
|
|
+ k = k.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
|
|
|
+ v = v.Permute(ctx, 1, 2, 0, 3).Contiguous(ctx)
|
|
|
+
|
|
|
+ kq := k.Mulmat(ctx, q)
|
|
|
+
|
|
|
+ // logit softcap
|
|
|
+ kq = kq.Scale(ctx, 1.0/float64(opts.attnLogitSoftcap))
|
|
|
+ kq = kq.Tanh(ctx)
|
|
|
+ kq = kq.Scale(ctx, float64(opts.attnLogitSoftcap))
|
|
|
+
|
|
|
+ kq = kq.Add(ctx, mask)
|
|
|
+ kq = kq.Softmax(ctx)
|
|
|
+
|
|
|
+ kqv := v.Mulmat(ctx, kq)
|
|
|
+ kqv = kqv.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
|
|
|
+ kqv = kqv.Reshape(ctx, opts.attnValLen*opts.numHeads, batchSize)
|
|
|
+
|
|
|
+ return sa.Output.Forward(ctx, kqv)
|
|
|
+}
|
|
|
+
|
|
|
+func (m *Model) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
|
|
|
+ return key.RoPE(ctx, shift, nil, uint32(m.Options.attnKeyLen), uint32(2), m.Options.ropeBase, m.Options.ropeScale), nil
|
|
|
+}
|
|
|
+
|
|
|
+type MLP struct {
|
|
|
+ Up *nn.Linear `gguf:"ffn_up"`
|
|
|
+ Down *nn.Linear `gguf:"ffn_down"`
|
|
|
+ Gate *nn.Linear `gguf:"ffn_gate"`
|
|
|
+}
|
|
|
+
|
|
|
+func (mlp *MLP) Forward(ctx ml.Context, hiddenState ml.Tensor, opts *Options) ml.Tensor {
|
|
|
+ hiddenState = mlp.Gate.Forward(ctx, hiddenState).GELU(ctx).Mul(ctx, mlp.Up.Forward(ctx, hiddenState))
|
|
|
+ return mlp.Down.Forward(ctx, hiddenState)
|
|
|
+}
|
|
|
+
|
|
|
+type Layer struct {
|
|
|
+ AttentionNorm *nn.RMSNorm `gguf:"attn_norm"`
|
|
|
+ SelfAttention *SelfAttention
|
|
|
+ PostAttentionNorm *nn.RMSNorm `gguf:"post_attention_norm"`
|
|
|
+ MLPNorm *nn.RMSNorm `gguf:"ffn_norm"`
|
|
|
+ MLP *MLP
|
|
|
+ PostMLPNorm *nn.RMSNorm `gguf:"post_ffw_norm"`
|
|
|
+}
|
|
|
+
|
|
|
+func (l *Layer) Forward(ctx ml.Context, hiddenState, positionIDs ml.Tensor, cache kvcache.Cache, opts *Options) ml.Tensor {
|
|
|
+ residual := hiddenState
|
|
|
+
|
|
|
+ hiddenState = l.AttentionNorm.Forward(ctx, hiddenState, opts.eps)
|
|
|
+ hiddenState = l.SelfAttention.Forward(ctx, hiddenState, positionIDs, cache, opts)
|
|
|
+ hiddenState = l.PostAttentionNorm.Forward(ctx, hiddenState, opts.eps)
|
|
|
+ hiddenState = hiddenState.Add(ctx, residual)
|
|
|
+ residual = hiddenState
|
|
|
+
|
|
|
+ hiddenState = l.MLPNorm.Forward(ctx, hiddenState, opts.eps)
|
|
|
+ hiddenState = l.MLP.Forward(ctx, hiddenState, opts)
|
|
|
+ hiddenState = l.PostMLPNorm.Forward(ctx, hiddenState, opts.eps)
|
|
|
+ return hiddenState.Add(ctx, residual)
|
|
|
+}
|
|
|
+
|
|
|
+func (m *Model) Forward(ctx ml.Context, opts input.Options) (ml.Tensor, error) {
|
|
|
+ inputs, err := ctx.Input().FromIntSlice(opts.Inputs, len(opts.Inputs))
|
|
|
+ if err != nil {
|
|
|
+ return nil, err
|
|
|
+ }
|
|
|
+
|
|
|
+ positions, err := ctx.Input().FromIntSlice(opts.Positions, len(opts.Positions))
|
|
|
+ if err != nil {
|
|
|
+ return nil, err
|
|
|
+ }
|
|
|
+
|
|
|
+ hiddenState := m.TokenEmbedding.Forward(ctx, inputs)
|
|
|
+ hiddenState = hiddenState.Scale(ctx, math.Sqrt(float64(m.Options.hiddenSize)))
|
|
|
+
|
|
|
+ if len(m.Layers) == gemma27BLayerCount {
|
|
|
+ m.Options.largeModelScaling = true
|
|
|
+ }
|
|
|
+
|
|
|
+ for i, layer := range m.Layers {
|
|
|
+ cacheType := i % 2
|
|
|
+ m.Cache.SetLayer(i)
|
|
|
+ wc := m.Cache.(*kvcache.WrapperCache)
|
|
|
+ wc.SetLayerType(cacheType)
|
|
|
+ hiddenState = layer.Forward(ctx, hiddenState, positions, m.Cache, m.Options)
|
|
|
+ }
|
|
|
+
|
|
|
+ hiddenState = m.OutputNorm.Forward(ctx, hiddenState, m.eps)
|
|
|
+ hiddenState = m.Output.Forward(ctx, hiddenState)
|
|
|
+
|
|
|
+ // final logit softcap
|
|
|
+ hiddenState = hiddenState.Scale(ctx, 1.0/float64(m.Options.finalLogitSoftcap))
|
|
|
+ hiddenState = hiddenState.Tanh(ctx)
|
|
|
+ hiddenState = hiddenState.Scale(ctx, float64(m.Options.finalLogitSoftcap))
|
|
|
+
|
|
|
+ outputs, err := ctx.Output().FromIntSlice(opts.Outputs, len(opts.Outputs))
|
|
|
+ if err != nil {
|
|
|
+ return nil, err
|
|
|
+ }
|
|
|
+
|
|
|
+ return hiddenState.Rows(ctx, outputs), nil
|
|
|
+}
|
|
|
+
|
|
|
+func init() {
|
|
|
+ model.Register("gemma2", New)
|
|
|
+}
|