بدون توضیح

Michael Yang 6f09d63862 draft: mlx 4 ماه پیش
.github 6a6328a5e9 ci: build dir changed (#8037) 4 ماه پیش
api 527cc97899 llama: update vendored code to commit 40c6d79f (#7875) 4 ماه پیش
app cf4d7c52c4 win: builtin arm runner (#8039) 4 ماه پیش
auth b732beba6a lint 9 ماه پیش
cache 2c5fb24855 wip: next ollama runner 4 ماه پیش
cmd 4879a234c4 build: Make target improvements (#7499) 4 ماه پیش
convert b7943d941d merge ggml file decoding 4 ماه پیش
discover 67bcb55941 no runners 4 ماه پیش
docs 527cc97899 llama: update vendored code to commit 40c6d79f (#7875) 4 ماه پیش
envconfig 4879a234c4 build: Make target improvements (#7499) 4 ماه پیش
examples abfdc4710f all: fix typos in documentation, code, and comments (#7021) 4 ماه پیش
format b732beba6a lint 9 ماه پیش
fs 756bfebe1b backend libraries 4 ماه پیش
integration abfdc4710f all: fix typos in documentation, code, and comments (#7021) 4 ماه پیش
llama bca6ed0ccc llama.cpp subdirs 4 ماه پیش
llm 67bcb55941 no runners 4 ماه پیش
macapp 55ea963c9e update default model to llama3.2 (#6959) 7 ماه پیش
make 054e31146e build: recursive make ggml-cuda 4 ماه پیش
ml 6f09d63862 draft: mlx 4 ماه پیش
model 6f09d63862 draft: mlx 4 ماه پیش
openai 630e7dc6ff api: structured outputs - chat endpoint (#7900) 4 ماه پیش
parser abfdc4710f all: fix typos in documentation, code, and comments (#7021) 4 ماه پیش
progress f7e3b9190f cmd: spinner progress for transfer model data (#6100) 8 ماه پیش
readline 2697d7f5aa lint 8 ماه پیش
runners 67bcb55941 no runners 4 ماه پیش
sample 2c5fb24855 wip: next ollama runner 4 ماه پیش
scripts 054e31146e build: recursive make ggml-cuda 4 ماه پیش
server 67bcb55941 no runners 4 ماه پیش
template b7943d941d merge ggml file decoding 4 ماه پیش
types 4b8a2e341a server: allow mixed-case model names on push, pull, cp, and create (#7676) 5 ماه پیش
version 2c7f956b38 add version 1 سال پیش
.dockerignore b754f5a6a3 Remove submodule and shift to Go server - 0.4.0 (#7157) 6 ماه پیش
.gitattributes 2c5fb24855 wip: next ollama runner 4 ماه پیش
.gitignore 4879a234c4 build: Make target improvements (#7499) 4 ماه پیش
.golangci.yaml 8d15a7a964 go1.23 4 ماه پیش
.prettierrc.json 8685a5ad18 move .prettierrc.json to root 1 سال پیش
CMakeLists.txt 6f09d63862 draft: mlx 4 ماه پیش
CONTRIBUTING.md 369479cc30 docs: fix spelling error (#6391) 7 ماه پیش
Dockerfile 4879a234c4 build: Make target improvements (#7499) 4 ماه پیش
Dockerfile2 bca6ed0ccc llama.cpp subdirs 4 ماه پیش
LICENSE df5fdd6647 `proto` -> `ollama` 1 سال پیش
Makefile2 bca6ed0ccc llama.cpp subdirs 4 ماه پیش
README.md 7622ea21af readme: add AI summary helper plugin to community-integrations (#7202) 4 ماه پیش
SECURITY.md 463a8aa273 Create SECURITY.md 9 ماه پیش
go.mod 2c5fb24855 wip: next ollama runner 4 ماه پیش
go.sum 2c5fb24855 wip: next ollama runner 4 ماه پیش
main.go b732beba6a lint 9 ماه پیش

README.md

 ollama

Ollama

Discord

Get up and running with large language models.

macOS

Download

Windows

Download

Linux

curl -fsSL https://ollama.com/install.sh | sh

Manual install instructions

Docker

The official Ollama Docker image ollama/ollama is available on Docker Hub.

Libraries

Quickstart

To run and chat with Llama 3.2:

ollama run llama3.2

Model library

Ollama supports a list of models available on ollama.com/library

Here are some example models that can be downloaded:

Model Parameters Size Download
Llama 3.3 70B 43GB ollama run llama3.3
Llama 3.2 3B 2.0GB ollama run llama3.2
Llama 3.2 1B 1.3GB ollama run llama3.2:1b
Llama 3.2 Vision 11B 7.9GB ollama run llama3.2-vision
Llama 3.2 Vision 90B 55GB ollama run llama3.2-vision:90b
Llama 3.1 8B 4.7GB ollama run llama3.1
Llama 3.1 405B 231GB ollama run llama3.1:405b
Phi 3 Mini 3.8B 2.3GB ollama run phi3
Phi 3 Medium 14B 7.9GB ollama run phi3:medium
Gemma 2 2B 1.6GB ollama run gemma2:2b
Gemma 2 9B 5.5GB ollama run gemma2
Gemma 2 27B 16GB ollama run gemma2:27b
Mistral 7B 4.1GB ollama run mistral
Moondream 2 1.4B 829MB ollama run moondream
Neural Chat 7B 4.1GB ollama run neural-chat
Starling 7B 4.1GB ollama run starling-lm
Code Llama 7B 3.8GB ollama run codellama
Llama 2 Uncensored 7B 3.8GB ollama run llama2-uncensored
LLaVA 7B 4.5GB ollama run llava
Solar 10.7B 6.1GB ollama run solar

[!NOTE] You should have at least 8 GB of RAM available to run the 7B models, 16 GB to run the 13B models, and 32 GB to run the 33B models.

Customize a model

Import from GGUF

Ollama supports importing GGUF models in the Modelfile:

  1. Create a file named Modelfile, with a FROM instruction with the local filepath to the model you want to import.

    FROM ./vicuna-33b.Q4_0.gguf
    
  2. Create the model in Ollama

    ollama create example -f Modelfile
    
  3. Run the model

    ollama run example
    

Import from PyTorch or Safetensors

See the guide on importing models for more information.

Customize a prompt

Models from the Ollama library can be customized with a prompt. For example, to customize the llama3.2 model:

ollama pull llama3.2

Create a Modelfile:

FROM llama3.2

# set the temperature to 1 [higher is more creative, lower is more coherent]
PARAMETER temperature 1

# set the system message
SYSTEM """
You are Mario from Super Mario Bros. Answer as Mario, the assistant, only.
"""

Next, create and run the model:

ollama create mario -f ./Modelfile
ollama run mario
>>> hi
Hello! It's your friend Mario.

For more examples, see the examples directory. For more information on working with a Modelfile, see the Modelfile documentation.

CLI Reference

Create a model

ollama create is used to create a model from a Modelfile.

ollama create mymodel -f ./Modelfile

Pull a model

ollama pull llama3.2

This command can also be used to update a local model. Only the diff will be pulled.

Remove a model

ollama rm llama3.2

Copy a model

ollama cp llama3.2 my-model

Multiline input

For multiline input, you can wrap text with """:

>>> """Hello,
... world!
... """
I'm a basic program that prints the famous "Hello, world!" message to the console.

Multimodal models

ollama run llava "What's in this image? /Users/jmorgan/Desktop/smile.png"
The image features a yellow smiley face, which is likely the central focus of the picture.

Pass the prompt as an argument

$ ollama run llama3.2 "Summarize this file: $(cat README.md)"
 Ollama is a lightweight, extensible framework for building and running language models on the local machine. It provides a simple API for creating, running, and managing models, as well as a library of pre-built models that can be easily used in a variety of applications.

Show model information

ollama show llama3.2

List models on your computer

ollama list

List which models are currently loaded

ollama ps

Stop a model which is currently running

ollama stop llama3.2

Start Ollama

ollama serve is used when you want to start ollama without running the desktop application.

Building

See the developer guide

Running local builds

Next, start the server:

./ollama serve

Finally, in a separate shell, run a model:

./ollama run llama3.2

REST API

Ollama has a REST API for running and managing models.

Generate a response

curl http://localhost:11434/api/generate -d '{
  "model": "llama3.2",
  "prompt":"Why is the sky blue?"
}'

Chat with a model

curl http://localhost:11434/api/chat -d '{
  "model": "llama3.2",
  "messages": [
    { "role": "user", "content": "why is the sky blue?" }
  ]
}'

See the API documentation for all endpoints.

Community Integrations

Web & Desktop

Cloud

Terminal

Apple Vision Pro

Database

  • MindsDB (Connects Ollama models with nearly 200 data platforms and apps)
  • chromem-go with example
  • Kangaroo (AI-powered SQL client and admin tool for popular databases)

Package managers

Libraries

Mobile

  • Enchanted
  • Maid
  • Ollama App (Modern and easy-to-use multi-platform client for Ollama)
  • ConfiChat (Lightweight, standalone, multi-platform, and privacy focused LLM chat interface with optional encryption)

Extensions & Plugins

Supported backends

  • llama.cpp project founded by Georgi Gerganov.

Observability

  • OpenLIT is an OpenTelemetry-native tool for monitoring Ollama Applications & GPUs using traces and metrics.
  • HoneyHive is an AI observability and evaluation platform for AI agents. Use HoneyHive to evaluate agent performance, interrogate failures, and monitor quality in production.